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Abstract
As an important and challenging problem in com-
puter vision and graphics, keypoint-based object track-
ing is typically formulated in a spatio-temporal sta-
tistical learning framework. However, most existing
keypoint trackers are incapable of effectively model-
ing and balancing the following three aspects in a si-
multaneous manner: temporal model coherence across
frames, spatial model consistency within frames, and
discriminative feature construction. To address this is-
sue, we propose a robust keypoint tracker based on
spatio-temporal multi-task structured output optimiza-
tion driven by discriminative metric learning. Con-
sequently, temporal model coherence is characterized
by multi-task structured keypoint model learning over
several adjacent frames, while spatial model consis-
tency is modeled by solving a geometric verification
based structured learning problem. Discriminative fea-
ture construction is enabled by metric learning to ensure
the intra-class compactness and inter-class separability.
Finally, the above three modules are simultaneously op-
timized in a joint learning scheme. Experimental results
have demonstrated the effectiveness of our tracker.

1 Introduction
Due to the effectiveness and efficiency in object motion
analysis, keypoint-based object tracking (Lucas and Kanade
1981; Santner et al. 2010; Maresca and Petrosino 2013;
Nebehay and Pflugfelder 2014) is a popular and powerful
tool of video processing, and thus has a wide range of ap-
plications such as augmented reality (AR), object retrieval,
and video compression. By encoding the local structural in-
formation on object appearance (Li et al. 2013), it is gener-
ally robust to various appearance changes caused by several
complicated factors such as shape deformation, illumination
variation, and partial occlusion (Mikolajczyk and Schmid
2005; Bouachir and Bilodeau 2014). Motivated by this ob-
servation, we focus on constructing effective and robust key-
point models to well model the intrinsic spatio-temporal
structural properties of object appearance in this paper.

Typically, keypoint model construction consists of key-
point representation and statistical modeling. For keypoint
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Figure 1: Illustration of our tracking approach.

representation, a variety of keypoint descriptors are pro-
posed to encode the local invariance information on object
appearance, for example, SIFT (Lowe 2004) and SURF (Bay
et al. 2008). To further speed up the feature extraction
process, a number of binary local descriptors emerge, in-
cluding BRIEF (Calonder et al. 2010), ORB (Rublee et
al. 2011), BRISK (Leutenegger, Chli, and Siegwart 2011),
FREAK (Alahi, Ortiz, and Vandergheynst 2012), etc. Since
the way of feature extraction is handcrafted and fixed all the
time, these keypoint descriptors are usually incapable of ef-
fectively and flexibly adapting to complex time-varying ap-
pearance variations as tracking proceeds.

In general, statistical modeling is cast as a tracking-
by-detection problem, which seeks to build an object lo-
cator based on discriminative learning such as random-
ized decision trees (Lepetit and Fua 2006; Özuysal et al.
2010) and boosting (Grabner, Grabner, and Bischof 2007;
Guo and Liu 2013). However, these approaches usually gen-
erate the binary classification output for object tracking, and
thus ignore the intrinsic structural or geometrical informa-
tion (e.g., geometric transform across frames) on object lo-
calization and matching during model learning. To address
this issue, Hare et al. (Hare, Saffari, and Torr 2012) propose
a structured SVM-based keypoint tracking approach that in-
corporates the RANSAC-based geometric matching infor-
mation into the optimization process of learning keypoint-
specific SVM models. As a result, the proposed tracking ap-
proach is able to simultaneously find correct keypoint corre-
spondences and estimate underlying object geometric trans-
forms across frames. In addition, the model learning pro-
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cess is independently carried out frame by frame, and hence
ignores the intrinsic cross-frame interaction information on
temporal model coherence, leading to instable tracking re-
sults in complicated scenarios.

In this work, we propose a joint learning approach that
is capable of well balancing the following three impor-
tant parts: temporal model coherence across frames, spatial
model consistency within frames, and discriminative feature
construction. As illustrated in Figure 1, the joint learning
approach ensures the temporal model coherence by build-
ing a multi-task structured model learning scheme, which
encodes the cross-frame interaction information by simul-
taneously optimizing a set of mutually correlated learning
subtasks (i.e., a common model plus different biases) over
several successive frames. As a result, the interaction infor-
mation induced by multi-task learning can guide the tracker
to produce stable tracking results. Moreover, the proposed
approach explores the keypoint-specific structural informa-
tion on spatial model consistency by performing geometric
verification based structured output learning, which aims to
estimate a geometric transformation while associating cross-
frame keypoints. In order to make the keypoint descriptors
well adapt to time-varying tracking situations, the proposed
approach naturally embeds metric learning to the structured
SVM learning process, which enhances the discriminative
power of inter-class separability.

In summary, we propose a keypoint tracking approach
that learns an effective and robust keypoint model through
metric learning-driven multi-task structured output opti-
mization. The main contributions of this work are as follows:

1. We propose a multi-task joint learning scheme to learn
structured keypoint models by simultaneously consider-
ing spatial model consistency, temporal model coherence,
and discriminative feature learning. An online optimiza-
tion algorithm is further presented to efficiently and ef-
fectively solve the proposed scheme. To our knowledge,
it is the first time that such a joint learning scheme is pro-
posed for learning-based keypoint tracking.

2. We create and release a new benchmark video dataset con-
taining four challenging video sequences (covering sev-
eral complicated scenarios) for experimental evaluations.
In these video sequences, the keypoint tracking results are
manually annotated as ground truth. Besides, the quantita-
tive results on them are also provided in the experimental
section.

2 Approach

Our tracking approach is mainly composed of two parts:
learning part and prediction part. Namely, an object model
is first learned by a multi-task structured learning scheme
in a discriminative feature space (induced by metric learn-
ing). Based on the learned object model, our approach sub-
sequently produces the tracking results through structured
prediction. Using the tracking results, a set of training sam-
ples are further collected for structured learning. The above
process is repeated as tracking proceeds.

2.1 Preliminary
Let the template image O be represented as a set of key-
pointsO = {(ui,qi)}N

O

i=1, where each keypoint is defined by
a location ui and associated descriptor qi. Similarly, let I =

{(vj ,dj)}N
I

j=1 denote the input frame with keypoints. Typ-
ically, the traditional approaches construct the correspon-
dences between the template keypoints and the input frame
keypoints. The correspondences are scored by calculating
the distances between {qi}N

O

i=1 and {dj}N
I

j=1. Following the
model learning approaches (Hare, Saffari, and Torr 2012;
Stückler and Behnke 2012), we learn a model parameter-
ized by a weight vector wi for the template keypoint ui
to score each correspondence. The set of the hypothetical
correspondences is defined as C = {(ui, vj , sij)|(ui,qi) ∈
O, (vj ,dj) ∈ I, sij = 〈wi,dj〉}, where sij is a correspon-
dence score and 〈·, ·〉 is the inner product.

Similar to (Hare, Saffari, and Torr 2012; Pernici and
Del Bimbo 2013), we estimate the homography transforma-
tion for planar object tracking as the tracking result based on
the hypothetical correspondences.

2.2 Multi-task Structured Learning
During the tracking process, the keypoints in the successive
frames {I1, I2, . . . } corresponding to the i-th keypoint ui
in the template image form a tracklet {v1, v2, . . . }. Based
on the observation that the adjacent keypoints in a tracklet
are similar to each other, the models learned for the frames
{w1

i ,w
2
i , . . . } should be mutually correlated. So we con-

struct K learning tasks over several adjacent frames. For
example, task k learns a model wk over the training sam-
ples collected from the frames I1 to It+k, where wk =
[wk

1 , . . . ,w
k
NO ]T is the column concatenation of the model

parameter vectors. We model each wk as a linear combina-
tion of a common model w0 and an unique part vk (Zheng
and Ni 2013):

wk = w0 + vk, k = 1, . . . ,K (1)
where all the vectors {vk}Kk=1 are “small” when the tasks
are similar to each other.

To consider the spatial model consistency in the model
learning process, the transformation which maps the tem-
plate to the location of the input frame is regarded as
a structure, which can be learned in a geometric veri-
fication based structured learning framework. In our ap-
proach, the expected transformation ŷ is expressed as ŷ =
arg maxy∈Y F (C,y), where F is a compatibility function,
scoring all possible transformations generated by using the
RANSAC (Fischler and Bolles 1981) method. Before intro-
ducing the compatibility function, we give the definition of
the inlier set with a specific transformation y:
H(C,y) = {(ui, vj)|(ui, vj) ∈ C, ‖y(ui)− vj‖ < τ} (2)

where y(ui) is the transformed location in the input frame of
the template keypoint location ui, τ ∈ R is a spatial distance
threshold, and ‖·‖ denotes the Euclidean norm.

The compatibility function with respect to task k is then
defined as the total score of the inliers:

F k(C,y) =
∑

(ui,vj)∈H(C,y)

〈
wk

i ,dj

〉
=
〈
wk,Φ(C,y)

〉
(3)
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Figure 2: Example tracking results. Figure (a) shows the quantita-
tive results of the trackers with and without multi-task learning in
the accumulated number of falsely detected frames (lower is bet-
ter), the tracker with multi-task learning produces a stable tracking
result. Figure (b) and (c) show the qualitative tracking results. The
blue bounding box represents the location of the detected object
,and the yellow line represents a keypoint correspondence. In figure
(b), the tracker without multi-task learning fails to match keypoints
correctly.

where Φ(C,y) is a joint feature mapping vector concate-
nated by φi(C,y) which is defined as:

φi(C,y) =

{
dj ∃(ui, vj) ∈ C : ‖y(ui)− vj‖ < τ

0 otherwise
(4)

Given training samples {(Ct,yt)}Tt=1 (each Ct is the
hypothetical correspondences of the frame It, and yt is
the predicted transformation), a structured output maxi-
mum margin framework (Taskar, Guestrin, and Koller 2003;
Tsochantaridis et al. 2005) is used to learn all the multi-task
models, which can be expressed by the following optimiza-
tion problem:

min
w0,vk,ξ

1

2
‖w0‖2 +

λ1
2K

K∑
k=1

‖vk‖2 + ν1

K∑
k=1

T∑
t=k

ξkt

s.t.∀k, t, ξkt ≥ 0

∀k, t, ∀y 6= yt : δF k
t (y) ≥ ∆(yt,y)− ξkt

(5)

where δF k
t (y) =

〈
wk,Φ(Ct,yt)

〉
−
〈
wk,Φ(Ct,y)

〉
and

∆(yt,y) is a loss function which measures the differ-
ence of two transformations (in our case, the loss function
∆(yt,y) = |#H(C,yt) − #H(C,y)| is the difference in
number of two inlier sets). The nonnegative λ1 is the weight
parameter for multiple tasks, and the weighting parameter
ν1 determines the trade-off between accuracy and regular-
ization.

To better describe the contribution of the multi-task learn-
ing, example tracking results of the trackers with and with-
out multi-task learning are shown in Figure 2. From Fig-
ure 2(b), we observe that the independent model fails to
match the keypoints in the case of drastic rotations, while
the multi-task model enables the temporal model coherence
to capture the information of rotational changes, thus pro-
duces a stable tracking result.

2.3 Discriminative Feature Space
In order to make the keypoint descriptors well adapt to time-
varying tracking situations, we wish to learn a mapping
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Figure 3: Visualization of keypoint features using PCA. The 50
green circle points represent the keypoints from 50 successive
frames corresponding to the same keypoint in the template (seman-
tically similar keypoints). The blue asterisk points represent any
other keypoints, which are dissimilar to the above 50 keypoints.
In figure (a), all the keypoints mix together in the original feature
space. In figure (b), there is a large margin between dissimilar key-
points in current learned feature space.

function f(d) that maps the original feature space to another
discriminative feature space, in which the semantically simi-
lar keypoints are close to each other while the dissimilar key-
points are far away from each other, that can be formulated
as a metric learning process (Weinberger and Saul 2009;
Park et al. 2011). We then use the mapped feature f(d) to
replace the original feature d in the structured learning pro-
cess, to enhance its discriminative power of inter-class sep-
arability.

Figure 3 shows an example of such feature space trans-
formation. Before the mapping procedure, the object key-
points and the background keypoints can not be discrimi-
nated in the original feature space. After the transformation,
the keypoints in different frames corresponding to the same
keypoint in the template, which are semantically similar, get
close to each other in the mapped feature space, while the
features of the other keypoints have a distribution in another
side with a large margin.

The following describes how to learn the mapping func-
tion. For a particular task k, given the learned model wk

i , the
distance between a doublet (dj ,dk) is defined as follows:

Dk
i (dj ,dj′) =

〈
wk

i , f(dj)− f(dj′)
〉

(6)

We assume that the binary matrix pjj′ ∈ {0, 1} indicates
whether or not the features dj and dj′ are semantically sim-
ilar (if they are similar, pjj′ = 1). Therefore, the hinge loss
function on a doublet is defined as:

`ki (dj ,dj′) = [(−1)pjj′ (1−Dk
i (dj ,dj′))]+ (7)

where [z]+ = max(z, 0).
To learn the effective feature consistently in our mapping

process, we wish to find the group-sparsity of the features.
So we utilize `2,1-norm (Cai et al. 2011; Li et al. 2012) to
learn the discriminative information and feature correlation
consistently. Since we use a linear transformation f(d) =
MTd as our mapping function, the `2,1-norm for the map-

ping matrix M is defined as: ‖M‖2,1 =
∑

i

√∑
j M2

ij .
Given all the keypoint features from the video frames

{It}Tt=1, we collect all possible combinations of the features
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as the training set, which is denoted asA = {(dj ,dj′)|dj ∈
{It}Tt=1, j

′ 6= j,dj′ ∈ {It}Tt=1}. We obtain the binary ma-
trix pjj′ by using the tracking results (if dj and dj′ from
different frames correspond to the same keypoint in the tem-
plate, pjj′ is set to 1; otherwise, pjj′ is set to 0). We wish to
minimize the following cost function consisting of the em-
pirical loss term and the `2,1-norm regularization term:∑

i,k,(dj ,dj′ )∈A

`ki (dj ,dj′) + λ‖M‖2,1 (8)

The cost function is incorporated into our multi-task
structured learning framework, and then a unified joint
learning scheme for object tracking is obtained. The final
optimization problem of our approach is expressed in the
following form:

min
w0,vk,M,ξ,γ

1

2
‖w0‖2 +

λ1
2K

K∑
k=1

‖vk‖2 + λ2‖M‖2,1

+
K∑

k=1

(
ν1

T∑
t=k

ξkt + ν2

T∑
t=k

∑
(ui,vj)∈H(Ct,yt)

γkti

)
s.t.∀k, t,ξkt ≥ 0

∀k, t,∀y 6= yt : δF k
t (y) ≥ ∆(yt,y)− ξkt

∀k, t,i : γkti ≥ 0

∀k, t,(ui, vj), ∀j′ 6= j : Dk
i (dj ,dj′) ≥ 1− γkti

(9)
After all the models w1,w2, . . . ,wK are learned, we use

the last model w = wK to predict the result of new frame It.
We use the RANSAC method to generate hypothetical trans-
formations. Based on the model w, we predict the expected
transformation yt from all hypothetical transformations by
maximizing Eq. (3). The hypothetical correspondence setCt

of the frame It and the predicted transformation yt are then
added to our training set. We use all the training samples
collected from the results of previous K frames (It−K+1 to
It) to update our model. Then the above process is repeated
as tracking proceeds.

2.4 Online Optimization
The optimization problem presented in Eq. (9) can be solved
online effectively. We adopt an alternating optimization al-
gorithm to solve the optimization problem.

Unconstrained form Let αkt = [maxy 6=yt
{∆(yt,y) −

δF k
t (y)}]+ and βkti = [maxj′ 6=j{1 − Dk

i (dj ,dj′)}]+.
Therefore, Eq. (9) can be rewritten to an unconstrained form:

min
w0,vk,M

1

2
‖w0‖2 +

λ1
2K

K∑
k=1

‖vk‖2 + λ2‖M‖2,1

+
K∑

k=1

(
ν1

T∑
t=k

αkt + ν2

T∑
t=k

∑
(ui,vj)∈H(Ct,yt)

βkti

) (10)

For descriptive convenience, let J denote the term of
ν1
∑T

t=k αkt + ν2
∑T

t=k

∑
(ui,vj)∈H(Ct,yt)

βkti.

Fix {vk}Kk=1 and w0, solve M Firstly, we fix all {vk}Kk=1
and w0, and learn the transformation matrix M by solving
the following problem:

min
M
‖M‖2,1 +

1

λ2

K∑
k=1

J (11)

Let Mi denote the i-th row of M, and Tr(·) denote the
trace operator. In mathematics, the Eq. (11) can be converted
to the following form:

min
M

Tr(MTDM) +
1

λ2

K∑
k=1

J (12)

where D is the diagonal matrix of M, and each diagonal
element is Dii = 1

2‖Mi‖2 . We use an alternating algorithm
to calculate D and M respectively. We calculate M with
the current D by using gradient descent method, and then
update D according to the current M. The details of solving
Eq. (12) are shown in the supplementary file.

Fix M and {vk}Kk=1, solve w0 Secondly, after M is
learned, let {vk}Kk=1 have been the optimal solution of
Eq. (10). Then w0 can be obtained by the combination of
vk according to (Evgeniou and Pontil 2004):

w0 =
λ1
K

K∑
k=1

vk (13)

The proof can be found in our supplementary material.

Fix M and w0, solve {vk}Kk=1 Finally, {vk}Kk=1 can be
learned one by one using gradient descent method. In fact,
we learn wk = w0 + vk instead of vk for convenience. Let
w̄ = 1

K

∑K
k=1 wk be the average vector of all wk. Then the

optimization problem for each wk can be rewritten as:

min
wk

ρ1‖wk‖2 + ρ2‖wk − w̄‖2 + J (14)

where ρ1 = λ1/(λ1 + 1) and ρ2 = λ21/(λ1 + 1) (the deriva-
tion proof is given in the supplementary material).

Given training samples {(Ct−k,yt−k)}K−1k=0 at time t, the
subgradient of Eq. (14) with respect to wk is calculated, and
we perform a gradient descent step according to:

wk ← (1− 1

t
)wk + ηρ2w̄ − η

∂J

∂wk
(15)

where η = 1/(ρ1t+ ρ2t) is the step size (the details of the
term J is described in the supplementary material). We re-
peat the procedure to obtain an optimal solution until the al-
gorithm converges (on average converges after 5 iterations).

All the above is summarized in Algorithm 1, and the de-
tails are described in the supplementary material.

3 Experiments and Results
3.1 Experimental Settings
Dataset The video dataset used in our experiments con-
sists of nine video sequences. Specifically, the first five se-
quences are from (Hare, Saffari, and Torr 2012), and the last
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Algorithm 1: Online Optimization for Tracking

Input: Input frame It and previous models {w1, . . . ,wK}
Output: The predicted transformation yt, updated models

and mapping matrix for metric learning
/* The structured prediction part */

1 Calculate the correspondences Ct based on the model wK ;
2 Estimate hypothetical transformations y using RANSAC;

Calculate the inlier set of each y using Eq. (2);
3 Predict the expected yt by maximizing Eq. (3);
/* The structured learning part */

4 Collect the training samples {(Ct−k,yt−k)}K−1
k=0 ;

5 repeat
6 Calculate J according to Section 2.4;
7 for k = 1, . . . ,K do
8 Update each model wk using Eq. (15);
9 end

10 Update the mapping matrix M by solving Eq. (12);
11 until Alternating optimization convergence;
12 return yt, {w1, . . . ,wK} and M;

four sequences (i.e., “chart”, “keyboard”, “food”, “book”)
are recorded by ourselves. All these sequences cover sev-
eral complicated scenarios such as background clutter, ob-
ject zooming, object rotation, illumination variation, motion
blurring and partial occlusion (example frames can be found
in the supplementary material).

Implementation Details For keypoint feature extraction,
we use FAST keypoint detector (Rosten and Drummond
2006) with 256-bit BRIEF descriptor (Calonder et al. 2010).
For metric learning, the linear transformation matrix M is
initialized to be an identity matrix. For multi-task learning,
the number of tasks K is chosen as 5 and we update all the
multi-task models frame by frame. All weighting parame-
ters λ1, λ2, ν1, ν2 are set to 1, and remain fixed through-
out all the experiments. Similar to (Hare, Saffari, and Torr
2012), we consider the tracking process of estimating ho-
mography transformation on the planar object as a tracking-
by-detection task.

Evaluation Criteria We use the same criteria as (Hare,
Saffari, and Torr 2012) with a scoring function between the
predicted homography y and the ground-truth homography
y∗:

S(y,y∗) =
1

4

4∑
i=1

‖y(ci)− y∗(ci)‖2 (16)

where {ci}4i=1 = {(−1,−1)T, (1,−1)T, (−1, 1)T, (1, 1)T}
is a normalized square. For each frame, it is regarded as a
successfully detected frame if S(y,y∗) < 10, and a falsely
detected frame otherwise. The average success rate is de-
fined as the number of successfully detected frames divided
by the length of the sequence, which is used to evaluate the
performance of the tracker. To provide the tracking result
frame by frame, we present a criterion of the accumulated
false detection number, which is defined as the accumulated
number of falsely detected frames as tracking proceeds.

Sequence Average Success Rate(%)
Static Boosting SSVM Ours

barbapapa 19.7138 89.0302 94.1176 94.4356
comic 42.5000 57.6042 98.1250 98.8542
map 81.1295 82.0937 98.7603 98.7603
paper 05.0267 03.8502 82.7807 88.2353
phone 88.1491 84.9534 96.6711 98.4021
chart 13.1461 01.9101 53.0337 77.5281

keyboard 27.8607 57.7114 62.3549 94.5274
food 32.8173 67.4923 85.7585 99.6904
book 08.5616 08.9041 55.8219 81.6781

Table 1: Comparison with state-of-the-art approaches in the aver-
age success rate (higher is better). The best result on each sequence
is shown in bold font. We observe that our approach performs best
on all the sequences.
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Figure 4: Comparison of three approaches in the accumulated
number of falsely detected frames (lower is better). The curve cor-
responding to our approach grows slowly and is almost horizontal,
which means that our tracking result is stable.

3.2 Experimental Results
Comparison with State-of-the-art Methods We com-
pare our approach with some state-of-the-art approaches,
including boosting based approach (Grabner, Grabner, and
Bischof 2007), structured SVM (SSVM) approach (Hare,
Saffari, and Torr 2012) and a baseline static tracking ap-
proach (without model updating). All these approaches are
implemented by making use of their publicly available code.
We also implement our approach in C++ and OPENCV. On
average, our algorithm takes 0.0746 second to process one
frame with a quad-core 2.4GHz Intel Xeon E5-2609 CPU
and 16GB memory. Table 1 shows the experimental results
of all four approaches in the average success rate. As shown
in this table, our approach performs best on all sequences.

To provide an intuitive illustration, we report the detec-
tion result on each frame in Figure 4. We observe that both
the “Boosting” and “SSVM” approaches obtain a number
of incorrect detection results on some frames of the test se-
quences, while our approach achieves stable tracking results
in most situations (the curve corresponding to our approach
grows slowly and is almost horizontal).
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SSVM Ours

(a) chart frame 388 (camera motion blurring)

(b) keyboard frame 300 (illumination variation)

(c) food frame 350 (object rotation)

(d) book frame 357 (confusing keypoints)

Figure 5: Example tracking results on our test video sequences.
In each picture, the left part highlighted in red bounding box is
the template image. The blue box shows the location of the de-
tected object in the frame. Our model has adapted to obtain correct
detection results in the complicated scenarios with drastic object
appearance changes.

Figure 5 shows the tracking results on some sample
frames (more experimental results can be found in our sup-
plementary materials). These sequences containing back-
ground clutter are challenging for keypoint based tracking.
In terms of metric learning and multi-task learning, our ap-
proach still performs well in some complicated scenarios
with drastic object appearance changes.

Evaluation of Our Individual Components To explore
the contribution of each component in our approach, we
compare the performances of the approaches with individ-
ual parts, including SSVM(structured SVM), SML(SSVM
+ metric learning), SMT(SSVM + multi-task learning), and
SMM (SSVM + ML + MT, which is exactly our approach).
The experimental results of all these approaches in the aver-
age success rate are reported in Table 2.

From Table 2, we find that the geometric verification
based structured learning approach achieves good track-
ing results in most situations. Furthermore, we observe
from Figure 6 that multi-task structured learning guides the
tracker to produce a stable tracking result in the complicated
scenarios, and metric learning enhances the capability of the
tracker to separate keypoints from background clutter. Our
approach consisting of all these components then generates
a robust tracker.

Sequence
Average Success Rate(%)

SSVM SML SMT SMM
barbapapa 94.1176 94.4356 94.2766 94.4356

comic 98.1250 98.5417 98.6458 98.8542
map 98.7603 98.6226 98.7603 98.7603
paper 82.7807 86.2032 87.3797 88.2353
phone 96.6711 97.2037 97.6032 98.4021
chart 53.0337 62.0225 61.1236 77.5281

keyboard 62.3549 73.6318 76.6169 94.5274
food 85.7585 88.0805 99.3808 99.6904
book 55.8219 71.5753 74.8288 81.6781

Table 2: Evaluation of our individual components in the average
success rate (higher is better). The best result on each sequence is
shown in bold font. We find that both metric learning and multi-
task learning based approach obtain a higher success rate than the
structured SVM approach, and our joint learning approach achieves
the best performance.
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Figure 6: Evaluation of our individual components in the accu-
mulated number of falsely detected frames (lower is better). We
observe that both metric learning and multi-task learning can im-
prove the robustness of the tracker.

4 Conclusion
In this paper, we have presented a novel and robust keypoint
tracker by solving a multi-task structured output optimiza-
tion problem driven by metric learning. Our joint learning
approach have simultaneously considered spatial model con-
sistency, temporal model coherence, and discriminative fea-
ture construction during the tracking process.

We have shown in extensive experiments that geometric
verification based structured learning has modeled the spa-
tial model consistency to generate a robust tracker in most
scenarios, multi-task structured learning has characterized
the temporal model coherence to produce stable tracking re-
sults even in complicated scenarios with drastic changes,
and metric learning has enabled the discriminative feature
construction to enhance the discriminative power of the
tracker. We have created a new benchmark video dataset
consisting of challenging video sequences, and experimental
results performed on the dataset have shown that our tracker
outperforms the other state-of-the-art trackers.
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