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Abstract

Sparse Filtering is a popular feature learning algorithm
for image classification pipelines. In this paper, we con-
nect the performance of Sparse Filtering with spectral
properties of the corresponding feature matrices. This
connection provides new insights into Sparse Filtering;
in particular, it suggests early stopping of Sparse Fil-
tering. We therefore introduce the Optimal Roundness
Criterion (ORC), a novel stopping criterion for Sparse
Filtering. We show that this stopping criterion is re-
lated with pre-processing procedures such as Statistical
Whitening and demonstrate that it can make image clas-
sification with Sparse Filtering considerably faster and
more accurate.

Introduction
Standard ways to improve image classification are to collect
more samples or to change the representation and the pro-
cessing of the data. In practice, the number of samples is typ-
ically limited, so that the second approach becomes relevant.
An important tool for this second approach are feature learn-
ing algorithms, which aim at easing the classification task
by transforming the data. Recently proposed deep learning
methods intend to jointly learn learn a feature transforma-
tion and the classification (Krizhevsky, Sutskever, and Hin-
ton 2012). In this work, however, we focus on unsupervised
feature learning, especially on Sparse Filtering, because of
their simplicity and scalability.

Feature learning algorithms for image classification
pipelines typically consists of three steps: pre-processing,
(un)supervised dictionary learning, and encoding. An abun-
dance of procedures is available for each of these steps, but
for accurate image classification, we need procedures that
are effective and interact beneficially with each other (Agar-
wal and Triggs 2006; Coates and Ng 2011; Coates, Ng,
and Lee 2011; Jia, Huang, and Darrell 2012; Le 2013;
LeCun, Huang, and Bottou 2004). Therefore, a profound un-
derstanding of these procedures is crucial to ensure accurate
results and efficient computations.

In this paper, we study the performance of Sparse Filter-
ing (Ngiam et al. 2011) for image classification. Our main
contributions are:
Copyright © 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• we show that Sparse Filtering can strongly benefit from
early stopping;

• we show that the performance of Sparse Filtering is corre-
lated with spectral properties of feature matrices on tests
sets;

• we introduce the Optimal Roundness Criterion (ORC), a
stopping criterion for Sparse Filtering based on the above
correlation, and demonstrate that the ORC can consider-
ably improve image classification.

Feature Learning for Image Classification
Feature learning algorithms often consist of two steps: In a
first step, a dictionary is learned, and in a second step, the
samples are encoded based on this dictionary. A typical dic-
tionary learning step for image classification is sketched in
Figure 1: First, random patches (samples) are extracted from
the training images. These patches are then pre-processed
using, for example, Statistical Whitening or Contrast Nor-
malization. Finally, an unsupervised learning algorithm is
applied to learn a dictionary from the pre-processed patches.
Once a dictionary is learnt, several further steps need to
be applied to finally train an image classifier, see, for ex-
ample, (Coates and Ng 2011; Coates, Ng, and Lee 2011;
Jia, Huang, and Darrell 2012; Le 2013). Our pipeline is
similar to the one in (Coates and Ng 2011): We extract
square patches comprising 9 × 9 pixels, pre-process them
with Contrast Normalization1 and/or Statistical Whitening,
and finally pass them to Random Patches or Sparse Filtering.
(Note that our outcomes differ slightly from those in (Coates
and Ng 2011) because we use square patches comprising
9×9 pixels instead of 6×6 pixels.) Subsequently, we apply
soft-thresholding for encoding, 4×4 spatial max pooling for
extracting features from the training data images, and finally
L2 SVM classification (cf. (Coates and Ng 2011)).

Numerous examples show that feature learning can con-
siderably improve classification. Therefore, insight in the
underlying principles of feature learning algorithms such as
Statistical Whitening and Sparse Filtering is of great inter-
est.

1Contrast normalization consists of subtracting the mean and
dividing by the standard deviation of the pixel values.
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Figure 1: A typical dictionary learning step. Statistical
Whitening and Contrast Normalization are examples for pre-
processing procedures; Random Patches and Sparse Filter-
ing are examples for unsupervised learning procedures.

In mathematical terms, a feature learning algorithm pro-
vides a transformation

F : Rl×p → Rn×p

X 7→ F(X)
(1)

of an original feature matrix X ∈ Rl×p to a new feature
matrix F(X) ∈ Rn×p. We adopt the convention that the
rows of the matrices correspond to the features, the columns
to the samples; this convention implies in particular that l ∈
N is the number of original features, p ∈ N the number of
samples, and n ∈ N the number of new features.

The Optimal Roundness Criterion
Roundness of Feature Matrices
Feature learning can be seen as trade-off between reducing
the correlations of the feature representation and preserva-
tion of relevant information. This trade-off can be readily
understood looking at Statistical Whitening. For this, recall
that pre-processing with Statistical Whitening transforms a
set of image patches into a new set of patches by chang-
ing the local correlation structure. More precisely, Statisti-
cal Whitening transforms patches XPatch ∈ Rn′×p (n′ < n),
that is, subsets of the entire feature matrix, into new patches
FPatch(XPatch) such that

FPatch(XPatch)
TFPatch(XPatch) = n′ In′ .

Statistical Whitening therefore acts locally: while the corre-
lation structures of the single patches are directly and radi-
cally changed, the structure of the entire matrix is affected
only indirectly. However, these indirect effects on the entire
matrix are important for the following. To capture these ef-
fects, we therefore introduce the roundness of a feature ma-
trix F := F(X) given an original feature matrix X . On a
high level, we say that the new feature matrix F is round if
the spectrum of the associated Gram matrixFFT ∈ Rn×n is
narrow. To specify this notion, we denote the ordered eigen-
values of FFT by σ1(F ) ≥ · · · ≥ σn(F ) ≥ 0 and their
mean by σ(F ) := 1

n

∑n
i=1 σi(F ) and define roundness as

follows:

Definition 1. For any matrix F 6= 0, we define its roundness
as

r(F ) :=
σ(F )

σ1(F )
∈ [0, 1].

The largest eigenvalue σ1 measures the width of the spec-
trum of the Gram matrix; alternative measures of the width
such as the standard deviation of the eigenvalues would

serve the same purpose. The mean of the eigenvalues σ, on
the other hand, is basically a normalization as the follow-
ing result illustrates (the proof is found in the supplementary
material):

Theorem 1. Denote the columns of F by F 1, . . . , F p. Then,
the mean σ(F ) of the eigenvalues of the Gram matrix FFT
is constant on S := {F ∈ Rn×p : ‖F 1‖2 = · · · = ‖F p‖2 =
1} :

σ(F ) :=
p

n
for all F ∈ S.

Definition 1 therefore states that the larger is r, the nar-
rower is the spectrum of the eigenvalues of the Gram ma-
trix of F , and therefore, the rounder is the matrix F . With
this notion of roundness at hand, we can now understand
the effects of Statistical Whitening: On the one hand, Def-
inition 1 indicates that Statistical Whitening renders sin-
gle patches perfectly round, that is, r(FPatch) = 1. On the
other hand, Statistical Whitening preserves global structures
in the feature matrix. In particular, the entire feature ma-
trix is made rounder but not rendered perfectly round, that
is, r(F(X)) < 1. In this sense, Statistical Whitening can
be seen as trade-off between increasing of roundness and
preservation of global structures. It therefore remains to con-
nect roundness and randomization.

Roundness and Randomness
A connection between roundness and randomization is pro-
vided by random matrix theory. To illustrate this connection,
we first recall Gordon’s theorem for Gaussian random ma-
trices (see (Eldar and Kutyniok 2012, Chapter 5) for a recent
introduction to random matrix theory):

Theorem 2 (Gordon). Let F ∈ Rn×p be a random matrix
with independent standard normal entries. Then,

1−
√
n/p ≤ E

[√
σn(F )/p

]
≤ E

[√
σ1(F )/p

]
≤ 1 +

√
n/p.

Such exact bounds are available only for matrices with inde-
pendent standard normal entries, but sharp bounds in prob-
ability are available also for other random matrices. For our
purposes, the common message of all these bounds is that
random matrices with sufficiently many columns (number
of samples) have a small spectrum. This means in particu-
lar that such matrices are round as the following asymptotic
result illustrates (the proof is based on well-known results
from random matrix theory and therefore omitted):

Lemma 1. Let the number of features n ≡ n(p) be a func-
tion of the number of samples p such that n/p → 0. More-
over, for all p ∈ {1, 2, . . . }, let F ≡ F (p) be a random
matrix with independent standard normal entries. Then, for
all ε > 0,

P (|r(F )− 1| > ε)→ 0 for p→∞,

that is, r(F ) converges in probability to 1.

Similar results can be derived for non-Gaussian or correlated
entries, indicating that random matrices are typically round.
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Besides the connection between roundness and random-
ization, the above results for random matrices also provide
a link between roundness and sample sizes. Indeed, we ob-
serve that the above results indicate that large samples sizes
lead to round matrices. To make this link more tangible,
we conduct simulations with Toeplitz matrices, which can
model local correlations that are typical for nearby pixels in
natural images (Girshick and Malik 2013). To this end, we
first recall that for any fixed parameter ρ ∈ [0, 1), the entries
of a Toeplitz matrix Tρ are defined as2 (Tρ)ij := ρ|i−j|. We
now construct a feature matrix Uρ by drawing each of its
columns, that is, the samples, from the normal distribution
with mean zero and covariance matrix Tρ ∈ Rn×n. Toeplitz
matrices with ρ = 0 lead to feature matrices with indepen-
dent entries; Toeplitz matrices with ρ = 0.8 lead to feature
matrices with dependence structures that are more similar to
dependence structures found in natural images. In Figure 2,
we report the roundness of Uρ for ρ = 0 (plot on the left)
and ρ = 0.8 (plot on the right) as a function of the numbers
of samples p for different numbers of features n. The re-
sults are commensurate with the theoretical findings above:
First, both plots illustrate that the roundness of matrices in-
creases if the number of samples is increased but decreases
if the number of features is increased (cf. Theorem 2 and
Lemma 1). Second, a comparison of the two plots illustrate
that the roundness is larger for ρ = 0 than for ρ = 0.8 (since
T0 is perfectly round while T0.8 is not).

Optimal Roundness Criterion (ORC)
The above discussion suggest that optimal feature learning
is the result of a trade-off between increasing the round-
ness of the feature matrix and preserving global structures
in the data. In this part, we want to exploit this insight to un-
derstand and improve iterative feature learning algorithms.
Common feature learning algorithms consist of transforma-
tions that are defined as minimizers of a functional. These
functionals are then often computed iteratively via a se-

2We set 0k := 1 for k = 0 and 0k := 0 for k 6= 0.

quence of gradient based operations. In this paper, we there-
fore focus on feature learning algorithms where the transfor-
mation F as in (1) is the limit of a sequence of transforma-
tions (Gk)k∈N, that is,

F = lim
k→∞

Gk,

where for all k ∈ N,

Gk : Rl×p → Rn×p

X 7→ Gk(X).

A prominent representative of such iterative algorithms is
Sparse Filtering. Sparse Filtering consists of normalizations
and the minimization of an `1-criterion (see next Section).
It is reasonable to assume that these operations - similar to
the local changes by Statistical Whitening - preserve certain
global structures of the feature matrix. In view of a trade-
off between roundness and preservation of global structures,
we are therefore interested in stopping the iterations as soon
as the roundness is maximized. More formally, we introduce
the ORC, which serves as stopping criterion to maximize the
roundness:

Definition 2. Let r be the roundness introduced in Defini-
tion 1. The Optimal Roundness Criterion (ORC) replaces the
transformation F by

Ĝ := Gk̂
for

k̂ := argmax
k∈N

{r(Gk′) < r(Gk) for all k′ < k}

if the arg-maximum is finite and Ĝ := F otherwise.

The ORC assures that the computations continue only as
long as the roundness increases. Assuming that certain
global structures are preserved by the transformations, the
ORC provides an optimization scheme for the performance
of iterative feature learning algorithms. One could also think
of modifications of the ORC that include an additive con-
stant or a factor to force larger increases or to allow for tem-
porary decreases of the roundness.

Image Classification on CIFAR-10
For our all experiments, we use the CIFAR-10 dataset
(Krizhevsky and Hinton 2009)3. This dataset consists of
60 000 color images partitioned into 10 classes, each con-
taining 6 000 images. Each of the images comprises 32×32
pixels. The dataset is split into a training set with 50 000
images and a test set with 10 000 images. From the train-
ing set, we randomly select 10 000 patches for the unsuper-
vised feature learning. These patches are also used to deter-
mine the parameters of Contrast Normalization and Statisti-
cal Whitening (if applied).

3http://www.cs.toronto.edu/∼kriz/cifar.html
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Figure 2: Roundness of random feature matrices with
columns drawn from a normal distribution with mean zero
and a Toeplitz covariance matrix. For the left plot, ρ = 0
(uncorrelated entries). For the right plot, ρ = 0.8 (correla-
tions that relate to natural images). The roundness is plotted
as a function of the number of samples p ∈ [10, 104] for four
different numbers of features n ∈ {100, 250, 500, 1000}.
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Random Patches
For the dictionary learning step, it was shown that simple
randomized procedures combined with Statistical Whiten-
ing work surprisingly well (Coates and Ng 2011; Jarrett et
al. 2009; Saxe et al. 2011). A popular example is Random
Patches, which creates a dictionary matrix by simply stack-
ing up randomly selected samples. In Table 1, we report the
influence of Contrast Normalization and Statistical Whiten-
ing on Random Patches (cf. (Coates and Ng 2011)). We
see that Statistical Whitening is very beneficial for Random
Patches and increases the roundness of the transformed fea-
ture matrix. This suggests that the roundness can be used as
an indicator for the performance of feature learning. (Note
that the roundness is on different scales for different num-
bers of features and can therefore not be compared for dif-
ferent numbers of features.)

Sparse Filtering
Sparse Filtering (Ngiam et al. 2011) is an unsupervised fea-
ture learning algorithm that computationally scales partic-
ularly well with the dimensions. To recall the definition of
Sparse Filtering, we denote by N : Rn×p → Rn×p the
function that first normalizes4 the rows of a matrix in Rn×p
to unit Euclidean norm and then normalizes the columns of
the resulting matrix to unit Euclidean norm. For any fixed
matrix X ∈ Rl×p, we then define a matrix WX ∈ Rn×l

4We set 0/0 := 0 ∗ ∞ := ∞ in the corresponding operations
ensure that (2) is well defined.
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Figure 3: Intermediate outcomes of Sparse Filtering at ev-
ery 20 iterations. Test accuracy (blue, solid curve), training
accuracy (green, solid curve), roundness on the training set
(red, dashed curve), and correlations with the test accuracy
(numbers in brackets). To enhance visibility, all curves are
normalized to have zero mean and unit standard deviation.

such that
WX ∈ argmin

W∈Rn×l

‖N (WX)‖1 (2)

if the minimum is finite and WX := 0 otherwise. Sparse
Filtering is then the transformation

FSF : Rl×p → Rn×p

X 7→ FSF (X) :=WXX.
(Sparse Filtering)

However, we now show by making the normalizations ex-
plicit that these normalizations make Sparse Filtering intri-
cate. For this, we define the rank one matricesE1, . . . , En ∈
Rn×n via

(Ei)kl := δklδik ∀i, k, l ∈ {1, . . . , n}

and G1, . . . , Gp ∈ Rp×p via

(Gi)kl := δklδik ∀i, k, l ∈ {1, . . . , p}

where δ is the usual Kronecker delta. This then yields the
following form of Definition (2).
Theorem 3. The matrix WX in (2) is the minimizer of∥∥∥∥∥
[

n∑
i=1

EiWX(WX)TEi

]- 1
2

WX ×

×

[
p∑

i=1

Gi(WX)T
[

n∑
i=1

EiWX(WX)TEi

]-1

WXGi

]- 1
2
∥∥∥∥∥
1

over all matrices W ∈ Rl×n.
Although Sparse Filtering is sometimes claimed to have
sparsity properties due to the involvement of the `1-norm
(similar as the Lasso (Tibshirani 1996), for example), the
above reformulation demonstrates that this is far from obvi-
ous and needs further clarification.

Num Norm. White. Round. Acc.

243 No No 0.0041 32.50%
243 Yes No 0.0131 63.65%
243 No Yes 0.2080 65.01%
243 Yes Yes 0.1548 64.34%

486 No No 0.0021 31.67%
486 Yes No 0.0062 66.14%
486 No Yes 0.1134 67.08%
486 Yes Yes 0.0965 67.84%

Table 1: Roundness and accuracy of Random Patches with
and without Contrast Normalization and Statistical Whiten-
ing.

Num ORC Round. Acc.

243 No 0.0519 57.66%
243 Yes 0.1425 62.47%

486 No 0.0495 58.19%
486 Yes 0.0908 63.80%

Table 2: Roundness and accuracy of Sparse Filtering with
and without early stopping based on the ORC.
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Figure 4: Intermediate outcomes of Sparse Filtering at ev-
ery 2 iterations. Test accuracy (blue, solid curve), training
accuracy (green, solid curve), roundness on the training set
(red, dashed curve), and correlations with the test accuracy
(numbers in brackets). To enhance visibility, all curves are
normalized to have zero mean and unit standard deviation.

It is apparent that the choice of the number of features n
influences the performance of Sparse Filtering. As can be
seen in Figure /refWe will see below, however, that the
choice of the number of iterations surprisingly can have an
even larger influence. We are therefore interested in choos-
ing an appropriate number of iterations. A standard approach
would involve l-fold cross-validation schemes, but this re-
quires training of l models and is therefore computationally
costly. The ORC, on the other hand, can be a computation-
ally feasible alternative to cross-validation. To illustrate this,
we compare in Table 2 the outcomes of Sparse Filtering on
the CIFAR-10 dataset with and without application of the
ORC. We have also computed the intermediate outcomes of
Sparse Filtering at every 20 iterations and report in Figure 3
the corresponding test accuracy, training accuracy, round-
ness on the training set, and correlations with the test accu-
racy. The roundness on the test set is basically indistinguish-
able from the roundness on the training set and is therefore
not shown. We make three crucial observations: (i) the test
accuracy of Sparse Filtering peaks at around 20 iterations
and then decreases monotonically; (ii) the roundness on the
training set is highly correlated with the test accuracy; in par-
ticular, the locations of the peaks of these curves coincide;
(iii) the roundness on the training set is highly correlated
with the roundness on the test set. These observations sug-
gest that (i) Sparse Filtering should be stopped early; (ii) the
ORC can optimize the performance of Sparse Filtering; (iii)
it is sufficient to compute the roundness on the training set.
To further support these claims, we have also computed the
intermediate outcomes of Sparse Filtering at every 2 itera-
tions in the region around the peaks, that is, we have com-
puted a zoomed-in version of Figure 3. We report the results
in Figure 4. We observe that training accuracy, test accu-
racy, and roundness are highly correlated, which corrobo-
rates the above claims and therefore confirms the potential

of the ORC. We finally note that the curves in the zoomed-
in version are wiggly not only because of the randomness
involved but also because computations of gradients over a
small number of iterations involve numerical imprecisions.

Conclusions and Outlook
The spectral analysis of feature matrices is a novel and
promising approach to feature learning. In particular, our re-
sults show that this “geometric” approach can provide new
interpretations and substantial improvements of wide-spread
feature learning tools such as Statistical Whitening, Ran-
dom Patches, and Sparse Filtering. For example, we have
revealed that Sparse Filtering can, quite surprisingly, deteri-
orate with increasing number of iterations and can be made
considerably faster and more accurate by early stopping ac-
cording to the spectrum of the intermediate feature matrices.

Regarding the theory, it would be of interest to obtain,
for specific procedures, predictions on how the roundness
changes with the iterations and to what it converges in the
limit.

In an extended version of this paper, we are planning to
include an analysis of Roundness in Convolutional Neural
Networks (CNNs) (Fukushima 1980). After being neglected
for many years, CNNs have received an enormous deal of
attention recently, see (Krizhevsky, Sutskever, and Hinton
2012; Girshick et al. 2013) and many others. We therefore
expect that the application of our approach to CNNs can be
of substantial interest.
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Appendix: Proofs
We denote in the following the columns and rows of any
matrix M by M1, . . . ,Mp and M1, . . . ,Mn, respectively.

Proof of Theorem 1. The matrix FFT is symmetric and can
therefore be diagonalized. This implies that there is an or-
thogonal orthogonal matrix A ∈ Rn×n such that the diag-
onal entries of AFFTAT ∈ Rn×n are σ1(F ), . . . , σn(F ).
For this matrix A, it then holds

σ(F ) =
1

n

n∑
i=1

σi(F )

=
1

n

n∑
i=1

(AFFTAT )ii

=
1

n
trace(AFFTAT ).

Next, we invoke the cyclic property of the trace and the or-
thogonality of the matrix A to obtain

trace(AFFTAT ) = trace(FTATAF )

= trace(FTF )

=

p∑
i=1

(FTF )ii.
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Finally, we note that the normalization of the columns of F
yields

(FTF )ii = (F i)TF i = ‖F i‖22 = 1

for all i ∈ {1, . . . , p}. The desired result

σ(F ) =
1

n

p∑
i=1

1 =
p

n

can now derived combining the three displays.

Proof of Theorem 3. We first show that for a matrix A ∈
Rn×p, the corresponding matrix AR ∈ Rn×p with normal-
ized rows can be written as

AR =

[
n∑
i=1

EiAA
TEi

]-1/2

A. (Claim 1)

To this end, we observe that the normalization of the rows of
the matrix A corresponds to the matrix multiplication

AR = DRA,

where DR ∈ Rn×n is the diagonal matrix with nonzero en-
tries

(DR)ii = 1/

√√√√ p∑
j=1

(Aij)2 ∀i ∈ {1, . . . , n}.

Next, we note that
p∑
j=1

(Aij)
2 = (AAT )ii ∀i ∈ {1, . . . , n}

and therefore

((DR)-1)ii = 1/(DR)ii =
√

(AAT )ii ∀i ∈ {1, . . . , n}.

This yields the matrix equation

(DR)-2 =

n∑
i=1

EiAA
TEi

and therefore

DR =

[
n∑
i=1

EiAA
TEi

]-1/2

.

This proves the first claim.
We now show that for a matrix B ∈ Rn×p, the correspond-
ing matrix BC ∈ Rn×p with normalized columns is given
by

BC = B

[
p∑
i=1

GiB
TBGi

]-1/2

. (Claim 2)

We first note that we can write the normalization step - this
time for the columns - as the matrix multiplication

BC = BDC ,

where DC ∈ Rp×p is the diagonal matrix with entries

(DC)ii = 1/

√√√√ n∑
j=1

(Bji)2 ∀i ∈ {1, . . . , p}.

Next, we note that

n∑
j=1

(Bji)
2 = (BTB)ii ∀i ∈ {1, . . . , p},

and therefore for the inverse diagonal matrix

((DC)-1)ii = 1/(DC)ii =
√

(BTB)ii ∀i ∈ {1, . . . , p}.

This yields the matrix equation

(DC)-2 =

p∑
i=1

GiB
TBGi

and therefore

DC =

[
p∑
i=1

GiB
TBGi

]-1/2

.

This proves the second claim.
We now consider FW := WX ∈ Rn×p for an arbitrary
matrix W ∈ Rn×p and apply Claim 1 and Claim 2: Setting
A = FW , we obtain from Claim 1 that normalizing the rows
of the matrix FW yields the matrix FRW ∈ Rn×p given by

FRW :=

[
n∑
i=1

EiFWF
T
WEi

]-1/2

FW .

This implies in particular

(FRW )TFRW =FTW

[
n∑
i=1

EiFWF
T
WEi

]-1

FW .

Setting then B = FRW , we obtain from Claim 2 and the two
previous displays that the matrix FW becomes after normal-
izing its rows and then its columns the matrix[

n∑
i=1

EiFWF
T
WEi

]-1/2

FW ×

×

 p∑
i=1

GiF
T
W

[
n∑
i=1

EiFWF
T
WEi

]-1

FWGi

-1/2

.

The desired result can then be deduced from the definition
of WX in (2).

Appendix
We also present numerical outcomes for a different random
splitting of the CIFAR-10 dataset. In particular, we recom-
pute Figures 3 and 4 for a different splitting and give the re-
sults in Figures 5 and 6 below. The conclusions are virtually
the same as above, which further corroborates our findings.
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