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Abstract
Feature matching problem that incorporates pairwise
constraints is usually formulated as a quadratic assign-
ment problem (QAP). Since it is NP-hard, relaxation
models are required. In this paper, we first formulate the
QAP from the match selection point of view; and then
propose a local sparse model for matching problem. Our
local sparse matching (LSM) method has the following
advantages: (1) It is parameter-free; (2) It generates a
local sparse solution which is closer to a discrete matrix
than most other continuous relaxation methods for the
matching problem. (3) The one-to-one matching con-
straints are better maintained in LSM solution. Promis-
ing experimental results show the effectiveness of the
proposed LSM method.

Many problems of interest in computer vision and pattern
recognition can be formulated as a problem of finding con-
sistent correspondences between two sets of features. Since
it is NP-hard, approximate relaxation methods are usually
required (Albarelli et al. 2009; Gold and Rangarajan 1996;
Cho, Lee, and Lee 2010; Zhou and la Torre 2012).

Recently, many relaxation methods have been developed
to the feature matching problem (Albarelli et al. 2009;
Cho, Lee, and Lee 2010; Leordeanu and Hebert 2005;
Leordeanu, Hebert, and Sukthankar 2009; Rodolà et al.
2013; Torresani, Kolmogorov, and Rother 2008; Pachauri
et al. 2012). Among these methods, one kind of popu-
lar relaxation methods is to solve the problem under dif-
ferent norm constraints (Albarelli et al. 2009; Leordeanu
and Hebert 2005; Rodolà et al. 2012; Liu and Yan 2010;
Rodolà et al. 2013). These methods can be well interpreted
or inspired from match selection view, i.e., aim to select
the subset of matches S∗ with some constraint (e.g. one-to-
one or one-to-many) from the potential match space C such
that the total match score is maximized. Leordeanu et al.
(Leordeanu and Hebert 2005) proposed a relaxed match se-
lection model (spectral matching, SM) under a `2-norm con-
straint. The benefit of SM is that it has a closed-form optimal
solution. As a post-selection step, SM further uses a greedy
selection strategy to select the optimal matches S∗ with
mapping constraint. One drawback is that this post-selection
step is independent with the matching problem (or match
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selection) objective, and thus may lead to weak local opti-
mum. Inspired by game theory, Albarelli et al (Albarelli et
al. 2009) proposed a relaxation matching method by replac-
ing the `2 norm constraint in SM with `1-norm. Recently,
this model has been widely used in many matching tasks
(Albarelli, Rodolà, and Torsello 2012; Liu and Yan 2010;
Rodolà et al. 2012). One important feature is that it can gen-
erate a sparse solution for the problem due to the `1 norm
constraint, and thus has a desired selective behavior in na-
ture. However, one main limitation is that the sparsity of its
solution is generally uncontrolable and usually too high to
select desired number of matches from the potential match
space. Rodolà et al (Rodolà et al. 2013) recently provided a
relaxation method with elastic net constraint and thus com-
bined SM and game-theoretic matching simultaneously. The
accuracy and sparsity can be balanced by a weighting pa-
rameter in this model (Rodolà et al. 2013).

Inspired by these works, our aim in this paper is to pro-
pose a new match selection method by exploring a local
sparse model. Our local sparse matching (LSM) is motivated
by the observations that: (1) the potential match space C has
an inherent partition property; (2) For the one-to-one match-
ing task, the optimal selected matches S∗ must be uniformly
distributed in all parts of C. Our LSM is motivated by the
desire to sparsely select matches from each part of C. An
effective algorithm can be derived to solve LSM problem.
Promising experimental results on several matching tasks
demonstrate the effectiveness of LSM method.

Problem Formulation and Related Works
Given two feature sets M, containing nM model features
and D, containing nD data features, a corresponding map-
ping is a set C of potential matches (or candidate matches)
(i, i′), where i ∈ D and i′ ∈ M. Generally, the size of C
depends mainly on how discriminative the descriptors of the
features are. When the features are non-discriminative, such
as 2D or 3D points, all possible matches should be kept as
candidate correspondences in C. If the features are discrim-
inative, such as SIFT descriptor, only small fraction of all
possible matches (i, i′) are kept in C (Leordeanu and Hebert
2005). For each match pair (a, b) in C, where a = (i, i′) and
b = (j, j′), there is an affinity W(a, b) that measures how
compatible the feature pair (i, j) in D are with the feature
pair (i′, j′) inM.
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From the point of view of match selection, the aim of the
matching problem is to find or select the subset of matches
S∗ from C that maximizes the following total matching
score,

S∗ = arg max
S∈Ω

∑
a,b∈S

W(a, b) (1)

where Ω denotes some mapping constraint such as one-to-
one or one-to-many. In this paper, we focus on the one-to-
one matching problem. In this case, the affinity for any con-
flict match pair, such as a = (i, j) and b = (i, k) (j 6= k),
can be penalized with smaller value (Cho, Lee, and Lee
2010; Leordeanu and Hebert 2005). We can represent the
subset S by an indicator matrix X, such that Xii′ = 1 im-
plies that feature i in D corresponds to feature i′ inM, and
Xii′ = 0 otherwise. Then, the objective of matching prob-
lem can be formulated as finding the indicator matrix X∗ that
maximizes the following objective score,

max
X∈Ω,Xij∈{0,1}

∑
ij,kl

Wij,klXijXkl = vec (X)TW vec (X) (2)

where vec (X) = (X11...X1n, ...,Xm1...Xmn)T ∈ Rmn×1

is the vector form of X, and X is called as the matrix form
of vector vec (X) in the following. Ω denotes the mapping
constraint.

The above problem Eq.(2) with integer constraint is NP-
hard, and relaxation models are required. Here, we briefly
review some popular models that are closely to our work.

Spectral matching (SM): By relaxing both integer and
mapping constraints, Leordeanu et al. (Leordeanu and
Hebert 2005) proposed a relaxed problem as follows,

max
X

vec (X)
TW vec (X) s. t. ‖X‖2 = 1, (3)

where ‖X‖2 = (
∑
ij X2

ij)
1/2. It has a closed-form solution

which is the leading eigenvector of W.
Game-theoretic matching (GameM): From game-

theoretic perspective, Albarelli et al. (Albarelli et al. 2009)
have proposed a matching model by replacing the `2 norm
constraint in SM with `1 norm, i.e.,

max
X

vec (X)
TW vec (X) s. t. ‖X‖1 = 1,X ≥ 0. (4)

where ‖X‖1 =
∑
ij |Xij |. It can generate a sparse solu-

tion for the problem due to the `1 norm constraint, and thus
has a desirable match selective behavior in nature. However,
one drawback is that the selectivity (sparsity of the solution)
demonstrated by this method is usually uncontrolable and
too strong to select desired number of the matches.

Elastic net matching (EnetM): Rodolà et al. (Rodolà et
al. 2013) recently introduced an elastic net model for match
selection problem by combining both SM and GameM si-
multaneously as follows,

max
X

vec (X)
TW vec (X) (5)

s. t. (1− α)‖X‖1 + α‖X‖22 = 1,X ≥ 0,

where α ∈ [0, 1] is balanced parameter. One important bene-
fit of EnetM method is that the optimality of SM and sparsity
of GameM can be balanced via the weighting parameter α
in this model.

Local Sparse Matching
LSM model
In this section, we present our local sparse matching (LSM)
model, which is motivated by the following observations.

(1) The potential assignment space C, C = {(i, i′)|i ∈
D, i′ ∈M} can be divided as,

C =
m⋃
i=1

Ci, (6)

where Ci = {(i, k)|i ∈ D, k ∈ M and k = 1, 2 · · ·n} and
Ci ∩ Cj = Ø(i 6= j).

(2) For the one-to-one matching task, the optimal selected
matches in S∗ must be uniformly distributed in each subset
Ci(i = 1, 2 · · ·m).

In both GameM (Albarelli et al. 2009) and EnetM (Rodolà
et al. 2013), they just globally select S∗ from C and thus
ignore the uniform distribution constraint of S∗. Our aim in
this paper is to further incorporate this inherent distribution
constraint in match selection. This motivates us to develop
a local sparse model for the problem. Specifically, from the
solution perspective, our LSM is motivated by the desire to
encourage each row of converged solution X∗ to be sparse
while maximize the total matching score. This is achieved
by using a mixed norm constraint.

By imposing a `1,2-norm constraint on solution X, our
LSM can be formulated as,
max

X
vec (X)

TW vec (X) s. t. ‖X‖1,2 = 1,X ≥ 0. (7)

where ‖X‖1,2 =
(∑

i(
∑
j |Xij |)2

)1/2
. Note that the `1-

norm on each row of X encourages sparsity in each row.
Also, the `2-norm on rows of matrix encourages that there
is no zero row in the solution matrix. Thus, the optimal
solution X∗ of LSM can be local sparse due to both `1
and `2 norms, which is desirable for the matching prob-
lem. Our LSM has three main benefits: (1) comparing with
EnetM, it is a parameter-free balanced model between SM
and GameM. Thus, the selectivity (sparsity of the solution)
can be more stable and controlable than GameM; (2) It in-
corporates more mapping constraint in the match selection;
(3) An simple and effective update algorithm can be derived
to solve it.

Computational algorithm
The proposed LSM can be effectively solved by an iterative
algorithm. The algorithm iteratively updates a current solu-
tion X(t) as follows,

X(t+1)
ij = X(t)

ij

√√√√ K(t)
ij

λ
∑
j X(t)

ij

, (8)

where matrix K(t) ∈ Rm×n is the matrix form of the vector
[W(t) vec (X(t))], and λ is computed as,

λ = vec (X(t))
T

W vec (X(t)). (9)

The iteration starts with an initial X(0) and is repeated until
convergence. Since W is a real nonnegative matrix for the
matching problem, the nonnegativity of X(t) is guaranteed
in each iteration.
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Theoretical analysis
The optimality and convergence of the algorithm is guaran-
teed by Theorem 1 and Theorem 2, respectively.
Theorem 1 Update rule of Eq.(8) satisfies the first-order
Karush-Kuhn-Tucker (KKT) optimality condition.
Proof Since the constraint ‖X‖1,2 = 1 can be replaced by
‖X‖21,2 = 1, the Lagrangian function is

L(X) = vec (X)
TW vec (X)−λ(

∑
i

(
∑
j

Xij)2−1). (10)

The KKT complementary slackness condition is
∂L
∂Xkl

Xkl = 2
[
(W vec (X))kl − λ

∑
j

Xkj
]
Xkl = 0. (11)

Summing over index l, we obtain,

2
∑
l

[
(W vec (X))klXkl

]
− 2λ(

∑
l

Xkl)2 = 0. (12)

Because
∑
k(
∑
l Xkl)2 = 1, summing over index k, we can

obtain the value for λ as,

λ = vec (X)
TW vec (X). (13)

Note that, at convergence of update rule Eq.(8),

X∗kl = X∗kl

√
K∗kl

λ
∑
l X∗kl

, (14)

or
(
K∗kl−λ

∑
l X∗kl

)
X∗kl = 0, where K is the matrix form of

[W vec (X)]. This is the KKT condition of Eq.(11). Substi-
tuting λ from Eq.(13), we can obtain the update rule Eq.(8).
Theorem 2 Under the update rule Eq.(8), the Lagrangian
function L(X) Eq.(10) is monotonically increasing.
Proof We use the auxiliary function method (Ding, Li, and
Jordan 2010; Lee and Seung 2001). An auxiliary function
function Z(X,X′) of Lagrangian function L(X) satisfies

Z(X,X) = L(X),Z(X,X′) ≤ L(X). (15)

In the following, we define

X(t+1) = arg max
X

Z(X,X(t)). (16)

Then, we have

L(X(t)) = Z(X(t),X(t)) ≤ Z(X(t+1),X(t)) ≤ L(X(t+1)) (17)

This proves that L(X(t)) is monotonically increasing.
We rewrite Eq.(10) as

L(X) =
∑
ij

∑
kl

Wij,klXijXkl − λ(eTXTXe− 1), (18)

where e = (1, 1, · · · 1)T ∈ Rn×1. We can show that one
auxiliary function of L(X) is

Z(X,X′) =
∑
ij

∑
kl

Wij,klX′ijX
′
kl

(
1 + log

XijXkl
X′ijX

′
kl

)
− λ

∑
i

∑
j

(X′eeT)ijX2
ij

X′ij
. (19)

Using the inequality z ≥ 1 + log z and setting z =
XijXkl

X′
ijX′

kl
,

the first term in Eq.(19) is a lower bound of the first term in
Eq.(18). Also, for any positive matrices A,B,S and S′ with
A and B symmetric, the following inequality always holds
(Ding, Li, and Jordan 2010),

∑
i

∑
j

(AS′B)ijS2
ij

S′ij
≥ Tr(STASB) = Tr(SBSTA). (20)

Using this general equality, we can have,

∑
i

∑
j

(X′eeT)ijX2
ij

X′ij
≥ Tr(XeeTXT) = eTXTXe. (21)

Thus, the second term in Eq.(19) is a lower bound of the
second term in Eq.(18). Therefore, Z(X, X̃) is an auxiliary
function of L(X).

According to Eq.(16), we need to find the global maxi-
mum of Z(X,X′) for X. The gradient is

∂Z(X,X′)
∂Xkl

= 2
[ (W vec (X′))klX′kl

Xkl
− λ (X′eeT)klXkl

X′kl

]
Note that W = WT and the second derivative is

∂2Z(X,X′)

∂Xkl∂Xij

= −
[ (

W vec (X′
)
)
kl

X′
kl

X2
kl

+ λ
(eeTX′)kl

X′
kl

]
δkiδlj ≤ 0

where δuv = 1 if u = v, othewise 0. Therefore, Z(X,X′)
is a concave function in X. Thus, it has a global maximum,
which can be obtained by setting the first derivative to 0, i.e.,

Xkl = X′kl

√(
W vec (X′)

)
kl

λ(X′eeT)kl
. (22)

Because (X′eeT)kl =
∑
l X′kl, thus we obtain update Eq.(8)

by setting X(t+1) = X and X(t) = X′.

Sparsity and Desired Selectivity
As discussed before, one important benefit of LSM is that
it can generate a local sparse solution and thus performs
match selection naturally. Figure 1 (c) shows solution X(t)

(top row) and associated selected matches S(t) (bottom row)
across different iterations under LSM algorithm Eq.(8). All
possible assignments are included in C in this example. The
ground truth selection and its matrix solution are shown in
Figure 1(a) and (b), respectively. Here, the selected matches
S(t) are obtained by follows. Firstly, set threshold δt =

0.001×mean(X(t)). Then, define S(t) as S(t) = {(i, j)|i ∈
D, j ∈ M and X(t)

ij > δt}. Intuitively, we note that as the
iteration increases, the solution X(t) of LSM becomes more
and more sparse and approximates the ground truth matrix
solution more and more closely, which clearly indicates the
ability of LSM to select the desired matches S∗ from the
potential match space C, as shown in bottom row of Figure
1(c).
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Figure 1: (a-b) Correct match, and its solution. (c) solution
X(t) (upper row) and associated matches S(t) (lower row)
at 5 iterations; (d) solution X(t) at several iterations; TOP:
starting from SM solution; BOTTOM: starting from RRWM
solution; (e) converged solution X∗ of GameM, EnetM and
LSM, respectively. In GameM and EnetM, some rows of X∗
become zero (undesirably), marked by yellow rectangles; (f)
objective, sparsity and orthogonality of X(t) for LSM.

Corollary 3 Under LSM algorithm, as the iteration in-
creases, the selected matches S(t) satisfies,

C = S(0) ⊇ · · · S(t) ⊇ S(t+1) · · · ⊇ S∗, t = 1, 2, · · · .
Proof Assume that there exists a match (i0, j0), where
(i0, j0) ∈ S(t+1) and (i0, j0) /∈ S(t), i.e., X(t)

i0j0
→ 0

and X(t+1)
i0j0

9 0. From update Eq.(8), one can note that if

X(t)
i0j0
→ 0, then X(t+1)

i0j0
→ 0, i.e., (i0, j0) /∈ S(t+1). This

leads to a contradiction. Thus, we have S(t) ⊇ S(t+1).
Figure 1 (d) shows solution X(t) across iterations with dif-

ferent initializations. Figure 1 (e) shows the converged solu-
tion X∗ of the match selection method GameM, EnetM and
LSM, respectively. Comparing with GameM and EnetM, we
can note that (1) the number of non-zero elements (sparsity)
in LSM solution X∗ is desirable in general, indicating that
LSM can select the desired number of the matches. (2) More

importantly, the non-zero elements in LSM solution X∗ are
generally located in each row of X∗, which demonstrates
that the selected matches are uniformly distributed in each
Ci, i = 1, 2, · · ·m, as discussed before. For further illustra-
tion, we introduce two measurements, namely sparsity and
orthogonality (Ding, Li, and Jordan 2010).
Sparsity measures the percentage of zero (close-to-zero) el-
ements in A. Firstly, set the threshold δ = 0.001×mean(A),
then renew Aij = 0 if Aij ≤ δ. Finally, the percentage of
zero elements in the renewed A is calculated as sparsity.
Orthogonality measures the level of the orthogonality
of A. Firstly, compute the normalized matrix Q =

C−1/2AATC−1/2, where C = diag(AAT). Then, the or-
thogonality is defined as: Orthogonality(A) = 1 −∆(Q),
where ∆(Q) denotes the average of the off-diagonal in Q.
Figure 1 (f) shows the objective, sparsity and orthogonality
of solution X(t) under LSM algorithm Eq.(8) with different
initializations. We can observe that: (1) regardless of initial-
ization, the objective of X(t) increases and converges after
some iterations, demonstrating the convergence of LSM al-
gorithm. (2) The sparsity of X(t) increases and converges to
the baseline (Sparsity = 380/400 = 0.95 in this exam-
ple) after some iterations, indicating the ability of LSM to
select the desired number of matches. (3) The orthogonality
of X(t) increases and almost converges to an orthogonal ma-
trix, i.e., Orthogonality(X∗) → 1. This is a bit interesting
because the orthogonal constraint which encodes one-to-one
mapping has been entirely ignored in LSM model, although
the affinity between two conflict matches has been penalized
(see Section 2). These observations are generally consistent
with the intuitive results shown in Figure 1 (c, d), and will
further be quantified in experiments.

Experiments
In this section, we apply LSM to some matching tasks.
We compare our LSM with the match selection method
SM (Leordeanu and Hebert 2005), GameM (Albarelli et al.
2009), and EnetM (Rodolà et al. 2013). The parameter α in
EnetM was set to obtain the solution which has the similar
sparsity with LSM solution. Also, we compare LSM with
some other matching methods including IPFP (Leordeanu,
Hebert, and Sukthankar 2009), SMAC (Cour, Srinivasan,
and Shi 2006) and RRWM (Cho, Lee, and Lee 2010).

Synthetic data
Following the experimental setting (Cho, Lee, and Lee 2010;
Leordeanu and Hebert 2005), we have randomly generated
data sets of nM 2D model point setM. The range of the x-y
point coordinates is

√
nM/10 to enforce a constant density

of 10 points over a 1× 1 region. We obtain the correspond-
ing nD data features in D by transforming the whole data
set with a random rotation and then adding Gaussian noise
N(0, σ) to the nM point positions from M. In addition to
the deformation noise, we also add nout outlier points in
bothM and D at random positions. The affinity matrix W
is computed by Wij,kl = exp(−‖rDik−rMjl ‖2F /σr), where σr
was set to 0.05 in this experiment, and rDik is the Euclidean
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Figure 2: Comparison results on sparsity and orthogonality on synthetic data. Error bars correspond to standard errors.

Figure 3: Comparison results on accuracy and objective score on synthetic data.

Figure 4: Matching results across image sequences (TOP: CMU sequence; BOTTOM: YORK sequence).
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distance between two points. We have generated 200 random
point sets for each noise level and then computed the average
performances. Figure 2 shows the average and standard error
of sparsity and orthogonality of the converged solution for
different match selection methods. Here, we only compare
our LSM with GameM and EnetM, because the methods,
such as SM, RRWM and IFPF, generally return either con-
tinuous (non-sparse) or strictly discrete orthogonal solution.
Here we note that (1) when the noise is large, the solution of
GameM is generally too sparse to select desired number of
matches, and its sparsity is usually changeable and uncon-
trolable. (2) Comparing with GameM, the sparsity of EnetM
solution is more stable and controlable. However, the or-
thogonality of EnetM is lower than GameM, indicating that
the one-to-one mapping constraint has been dropped more
in EnetM. (3) Our LSM generally returns the most desirable
sparse and (approximate) orthogonal solution for the prob-
lem. Figure 3 summarizes the comparison results on match-
ing accuracy and objective score. Noted that: (1) comparing
with SM, GameM and EnetM, LSM returns the highest ob-
jective score and accuracy, which clearly indicates that LSM
can find the solution more optimal that these methods. (2)
LSM also performs better than SMAC, RRWM and IPFP,
demonstrating the effectiveness of LSM method.

Feature point matching across image sequence
In this section, we perform feature matching on CMU and
YORK sequences (Zhou and la Torre 2012; Cho, Lee, and
Lee 2010; Luo and Hancock 2001). For CMU sequence,
there are 111 images of a toy house captured from mov-
ing viewpoints. For each image, 30 landmark points were
manually marked with known correspondences and 5 outlier
points were randomly generated. We have matched all im-
ages spaced by 10, 20, · · · 90 frames and computed the av-
erage performance per separation gap. YORK sequence con-
tains 18 images and the adjacent images were obtained ac-
cording to the rotation of 5 degree. For each image, 35 land-
mark points were manually marked with known correspon-
dences. We have matched all images spaced by 1, 2 · · · 10
frames. The coordinates of their landmark points have been
first normalized to the interval [0, 1], then the affinity matrix
has been computed by Wij,kl = exp(−‖rDik − rMjl ‖2F /σr),
where rDik is the Euclidean distance between two points, σr
was set to 0.025. Here, we can note that as the separation
increases, the sparsity and orthogonality of LSM are more
stable and desirable than GameM and EnetM. Also, LSM
generally returns the best performance on matching accu-
racy and objective score, showing the optimality of LSM so-
lution. These are consistent with the results on the synthetic
data and further demonstrate the practicality and benefits of
the proposed LSM method.

Real-world image matching
In this section, we first evaluate our method on the im-
age pairs (30 pairs) selected from Caltech-101 and MSRC
datasets (Cho, Lee, and Lee 2010). Following the experi-
mental setting (Cho, Lee, and Lee 2010), the candidate cor-
respondences have been generated using the MSER detec-

tor and SIFT feature descriptors. For each candidate match
(i, j) and (k, l), the affinity Wij,kl has been computed as
Wij,kl = exp(−sij,kl/1500), where sij,kl denotes the mu-
tual projection error function used in (Cho, Lee, and Lee
2010). Our second evaluation has been performed on the
image pairs (20 pairs) selected from Zurich Building Image
Database (ZuBud) (Ng and Kingsbury 2010). Feature points
and candidate correspondences have been detected and gen-
erated using the SIFT descriptor (Ng and Kingsbury 2010).
The ground truths (correct matches) have been manually la-
beled for each image pair. The affinity matrix Wij,kl has
been computed as Wij,kl = exp(−|dik−djl|/1500), where
dik is the Euclidean distance between the feature points i and
k.For all image pairs in these two datasets, the average per-
formances including true positive and false positive are com-
puted. The comparison results are summarized in Fig. 5 (c),
and some examples are shown in Fig. 5 (a-b) ((a) Caltech-
101-MSRC image, (b) ZuBud image). Here, we can note
that LSM returns higher true positive while maintains lower
false positive value than other comparison methods, which
further demonstrates the effectiveness of LSM method on
conducting real-world image matching tasks.

Figure 5: Matching results on two real-world image datasets.

Conclusions
In this work, we first formulate the matching problem to a
match selection problem, and then develop a local sparse
matching (LSM) method to the problem. The key point of
LSM is that a `1,2-norm constraint has been imposed and
thus generates a desired local sparse solution for the match-
ing problem. Experimentally, our LSM based solution incor-
porates more matching constraints in match selection pro-
cess. A simple and effective algorithm has been derived.
Promising results show the benefits of LSM method.
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