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Abstract

Complex event detection is a retrieval task with the
goal of finding videos of a particular event in a large-
scale unconstrained internet video archive, given exam-
ple videos and text descriptions. Nowadays, different
multimodal fusion schemes of low-level and high-level
features are extensively investigated and evaluated for
the complex event detection task. However, how to ef-
fectively select the high-level semantic meaningful con-
cepts from a large pool to assist complex event detec-
tion is rarely studied in the literature. In this paper, we
propose two novel strategies to automatically select se-
mantic meaningful concepts for the event detection task
based on both the events-kit text descriptions and the
concepts high-level feature descriptions. Moreover, we
introduce a novel event oriented dictionary representa-
tion based on the selected semantic concepts. Towards
this goal, we leverage training samples of selected con-
cepts from the Semantic Indexing (SIN) dataset with
a pool of 346 concepts, into a novel supervised multi-
task dictionary learning framework. Extensive experi-
mental results on TRECVID Multimedia Event Detec-
tion (MED) dataset demonstrate the efficacy of our pro-
posed method.

Introduction

Complex event detection in unconstrained videos has re-
ceived much attention in the research community recently
(Tamrakar et al. 2012; Ma et al. 2013; Natarajan et al. 2012).
It is a retrieval task with the goal of detecting videos of a par-
ticular event in a large-scale internet video archive, given an
event-kit. An event-kit consists of example videos and text
descriptions of the event. Unlike traditional action recogni-
tion of atomic actions, such as ‘walking’ or ‘jumping’ from
videos, complex event detection aims to detect more com-
plex events such as ‘Birthday party’, ‘Changing a vehicle
tire’, etc.

An event is a higher level semantic abstraction of video
sequences than a concept and consists of many concepts.
For example, a ‘Birthday party’ event can be described by
multiple concepts, such as objects (e.g., boy, cake), actions
(e.g., talking, walking) and scene (e.g., at home, in a restau-
rant). A concept can be detected in a shorter video sequence
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or even in a single frame but an event is usually contained in
a longer video clip.

Traditional approaches for complex event detection rely
on fusing multiple low-level features classification outputs
(Tamrakar et al. 2012), i.e. SIFT, STIP, MOSIFT (Chen
and Hauptmann 2009). Recently, representing videos using
high-level features, such as concept detectors (Snoek and
Smeulders 2010), appears promising for the complex event
detection task. However, the state-of-the-art concept detec-
tor based approaches (Jiang, Hauptmann, and Xiang 2012;
Snoek and Smeulders 2010; Ma et al. 2013; Sun and Neva-
tia 2013) for complex event detection have not considered
which concepts should be included in the training concept
list. This always conducts the redundancy of concepts (Ma
et al. 2013; Sun and Nevatia 2013) in the concept list for
the vocabulary construction. For example, it is highly im-
possible for some concepts to help detect certain event, e.g.
‘cows’, ‘football’ are not helpful to detect events like ‘Land-
ing a fish’ or “Working on a sewing project’. Therefore, re-
moving the uncorrelated concepts from the vocabulary con-
struction inclines to eliminate such redundancy and boost
the complex event detection performance.

Intuitively, it is highly expected to be more accurate and
faster for complex event detection when we build specific
dictionary representation for each event. In this paper, we in-
vestigate how to learn a concept-driven event oriented repre-
sentation for complex event detection. There are mainly two-
fold important issues to be considered to accomplish this
goal. The first issue is which concepts should be included
in the vocabulary construction of the learning framework.
Since we want to learn an event oriented dictionary repre-
sentation, how to properly select qualified concepts for each
event in the learning framework is the key issue. This raises
the problem of how to optimally select necessary and mean-
ingful concepts from a large pool of concepts for each event.
The second issue is how can we design an effective dictio-
nary learning framework to seamlessly learn the common
knowledge from both the low-level features and the high-
level concept features.

To facilitate reading, we first describe some abbreviations
used in the paper. SIN stands for Sematic Indexing which
is a dataset! containing 346 different categories (concepts)

"http://www-nlpir.nist.gov/projects/tv2013/tv2013 html#sin
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Figure 1: Illustration of our event oriented dictionary learning framework. Top: Different complex video events with their
high-level concept feature and the corresponding event-kit text description. Middle left: Different types of low-level features
extraction for events. Middle right: Event specific concept pool construction based on (i) the high-level concept feature de-
scriptions using Elastic-Net concept selection, (ii) the MED events-kit text descriptions using linguistic knowledge. Bottom:
Supervised multi-task dictionary learning. (Figure is best viewed in color and under zoom).

of images, such as car, adult, efc. SIN-MED stands for the
high-level concept features using the SIN concept list repre-
senting each MED video by a 346-dimensional feature (each
dimension represents a concept).

The overview of our framework is shown in Fig.1. Firstly,
we design two novel methods to automatically select seman-
tic meaningful concepts for each MED event based on both
MED events-kit text descriptions and SIN-MED high-level
concept feature representations. Then we leverage training
samples of selected concepts from the SIN dataset into a
jointly supervised multi-task dictionary learning framework.
An event specific semantic meaningful dictionary is learned
through embedding the feature representation of original
datasets (both MED dataset and SIN dataset) into a hidden
shared subspace. We add label information in the learning
framework to facilitate the event oriented dictionary learn-
ing process. Therefore, the learned sparse codes achieve in-
trinsic discriminative information and naturally lead to the
effectiveness of complex event detection.

To summarize, the contributions of this paper are as fol-
lows: (i) We propose two novel approaches of concept se-
lection strategies and present one of the first works to make
a comprehensive evaluation for automatic concept selec-
tion for event detection. (ii) We are the first to propose the
event oriented dictionary learning for event detection. (iii)
We firstly construct a supervised multi-task dictionary learn-
ing framework which is capable of learning an event ori-
ented dictionary via leveraging information from selected
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semantic concepts. (iv) The proposed learning framework
is a generic one which can be easily generalized into other
computer vision and pattern recognition problems.

Related Work

Complex Event Detection. With the success of event detec-
tion in structured scenarios, complex event detection from
general unconstrained videos, such as those obtained from
internet video sharing web sites like YouTube, has been
receiving increasing attention in recent years. Tamrakar et
al. (Tamrakar et al. 2012) evaluated different low-level ap-
pearance as well as spatio-temporal features, appropriately
quantized and aggregated them into Bag-of-Words (BoW)
descriptors for complex event detection. Natarajan et al.
(Natarajan et al. 2012) evaluated a large set of low-level
audio and visual features as well as high-level information
from object detection, speech and video text OCR for com-
plex event detection. They combined multiple features us-
ing a multi-stage feature fusion strategy with feature level
early fusion using multiple kernel learning, score level fu-
sion using Bayesian model combination and weighted aver-
age fusion using video specific weights. Vahdat et al. (Vah-
dat et al. 2013) presented a compositional model for com-
plex event detection that leveraged a novel multiple kernel
learning algorithm to incorporate structured latent variables.
However, to the best of our knowledge, there are still few
research works on how to automatically select useful high-
level concepts for the complex event detection.



Dictionary Learning. Dictionary Learning has been veri-
fied to be able to find succinct representations of stimuli
and model data vectors as a linear combination of a few
elements from a dictionary. Dictionary learning has been
successfully applied to a variety of problems in computer
vision analysis recently, e.g. image classification (Yang et
al. 2009), image denoising (Elad and Aharon 2006) and
image segmentation (Mairal et al. 2008). Different opti-
mization algorithms (Aharon, Elad, and Bruckstein 2006;
Lee et al. 2006) have also been proposed to solve dictionary
learning problems. However, so far as we know, there is no
research work on how to learn the dictionary representation
at the event level for event detection and there is no research
work on how to simultaneously leverage the semantic infor-
mation to learn an event oriented dictionary.

Multi-task Learning. Multi-task learning (Argyriou, Evge-
niou, and Pontil 2007) methods aim to simultaneously learn
classification/regression models for a set of related tasks.
This typically leads to better models as compared to sep-
arately consider each task without accounting for task re-
lationships. The goal of multi-task learning is to improve
the performance of learning algorithms by learning classi-
fiers for multiple tasks jointly. This works particularly well
if these tasks have some commonality while are all slightly
under-sampled. The effectiveness of multi-task Learning has
been demonstrated in several applications in computer vi-
sion, such as headpose classification (Yan et al. 2013a) and
action recognition (Yan et al. 2013b). However, there is few
work on multi-task learning used for dictionary learning
problem. Maurer et al. (Maurer, Pontil, and Paredes 2013)
only provides theoretical bounds to evaluate the generaliza-
tion error of dictionary learning for multi-task learning and
transfer learning.

Building Event Specific Concept Pool

The concepts, which are related to objects, actions, scenes,
attributes, efc. are usually basic elements for the description
of an event. There are usually a large pool of concept de-
tectors exsited for event descriptions since the availability of
large labeled training collections such as ImageNet (Berg et
al. 2011) and TRECVID (Smeaton, Over, and Kraaij 2006).
However, selecting important concepts are the key issues
for concept vocabulary construction. For example, the event
‘Landing a fish’ is composed of the most important concepts
such as ‘adult’, ‘waterscape’, ‘outdoor’ and ‘fish’. If we
can get these concepts intrinsically related to the interested
event, the concept redundancy problem tends to be amelio-
rated and the complex event detection performance inclines
to be further boosted. In order to select useful concepts for
the specific event, we propose two novel concept selection
strategies in this section, which are (i) Text-based semantic
relatedness from linguistic knowledge of MED event-kit text
description and (ii) Elastic-Net feature selection from visual
high-level representation.

Linguistic: Text-based Semantic Relatedness

“http://www.nist.gov/itl/iad/mig/med12.cfm
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Figure 2: Linguistic-based concept selection strategy with an
example of ‘E007: Changing a vehicle tire’ in MED event-
kit text description and a corresponding example video pro-
vided by NIST (Figure is best viewed under zoom).

The most widely used resources in Natural Language Pro-
cessing (NLP) to calulate the semantic relateness of con-
cepts are WordNet (Fellbaum 1998) and Wikipedia (Strube
and Ponzetto 2006). There are detailed event-kit text de-
scriptions for each MED event provided by NIST?. In this
paper, we explore the semantic similarity between each term
in the event-kit text description and SIN 346 visual concept
names based on WordNet. Fig.2 shows an example of event-
kit text description for ‘Changing a vehicle tire’.

As illustrated in Fig.2, we calculate the similarity between
each term in event-kit text descriptions and the SIN 346 vi-
sual concept names based on the similarity measurement
proposed in (Lin 1998). This measurement defines the simi-
larity of two words wy; and wy; as:

27(les)

Slm(w1i7w2j) = ’/T(wli) + 7T(U)2j)

where wi; € {event-kit text descriptions}, i =
1,...,Nevent-Fit and wy; € {SIN visual concept names},
j=1,...,346. .5 denotes the lowest common subsumer of

two words in the WordNet hierarchy. 7 denotes the informa-
tion content of a word and is computed as m(w) = log p(w),
where p(w) is the probability of encountering an instance of
w in a corpus. The probability p(w) can be estimated from
the relative corpus frequency of w and the probabilities of
all words that w subsumes (Resnik 1995). In this way, we
expect to properly capture the semantic similarity between
subjects (e.g. human, crowd) and objects (e.g. animal, vehi-
cle) based on the WordNet hierarchy. Finally, we construct
a 346-dimensional event-level feature vector representation
for each event (each dimension corresponds to an SIN vi-
sual concept name) using the MED event-kit text description
from linguistic knowledge. A threshold is set (thr = 0.5 in
our experiments) to select useful concepts into our final se-
mantic concept list.
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Figure 3: Visual high-level semantic representation with
Elastic-Net concept selection.

Visual High-level Representation: Elastic-Net
Concept Selection

Concept detectors provide a high-level semantic represen-
tation for videos with complicated contents, which incline
to benefit for developing powerful retrieval or filtering sys-
tems for consumer media (Snoek and Smeulders 2010). In
our case, we firstly use the SIN dataset to train 346 se-
mantic concept models. In the meanwhile, we adopt (Luo,
Papin, and Costello 2009) to extract keyframes from the
MED dataset. The trained 346 semantic concept models are
used to predict the 346 semantic concepts existing in the
keyframes of MED videos. Once we have the prediction
score of each concept on each keyframe, the keyframe can
be represented as a 346-dimensional SIN-MED feature in-
dicating the determined concept probabilities. Finally, the
video-level SIN-MED feature is computed as the average of
keyframe-level SIN-MED feature.

To select the useful concepts for each specific event, we
adopt the Elastic-Net (Zou and Hastie 2005) concept selec-
tion as illustrated in Fig.3, given the intuition that the learner
generally would like to choose the most representative SIN-
MED feature dimensions (concepts) to differentiate events.
Elastic-Net is formulated as follows:

min|[1 - Ful|* + eq [[uly + az[u]®

where 1 = {0,1}™ € IR" indicates the event labels, F €
IR™*? is the SIN-MED feature matrix (n is the number
of samples and b is the SIN-MED feature dimension) and
u € IR? is the parameter to be optimized. Each dimension of
u corresponds to one semantic concept if F is the high-level
SIN-MED feature. 1 and vy are the regularization param-
eters. We use Elastic-Net instead of LASSO due to the high
correlation between concepts in the SIN concept lists. While
LASSO (when oy = 0) tends to select only a small number
of variables from a group and ignore the others, Elastic-Net
is capable of automatically taking such correlation informa-
tion into account through adding a quadratic term ||ul|? to
the penalty. We can adjust the value of «; value to control
the sparsity degree, i.e., how many semantic concepts are
selected in our problem. The concepts to be selected are the
corresponding dimensions with non-zero vaules of u.

To sum up, we combine the semantic concepts selected
from both human linguistic as described in section and vi-
sual high-level semantic representation as described in sec-
tion to form the final list of selected concepts for each MED
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event.

Event Oriented Dictionary Learning

After we select semantic meaningful concepts for each
event, we can leverage training samples of selected concepts
from the SIN dataset into a supervised multi-task dictionary
learning framework. In this section, we investigate how to
learn an event oriented dictionary representation. To accom-
plish this goal, we firstly propose our multi-task ditionary
learning framework and then introduce its supervised set-
ting.

Multi-task Dictionary Learning

Given K tasks (e.g. K = 2 in our case, one task is the MED
dataset and the other task is the subset of SIN dataset where
samples are collected from specified selected concepts for
each event), each task consists of data samples denoted by
Xk = {xt,x2,....,xp*} € R™*4 (k = 1,...,K), where
xi € IR is a d-dimensional feature vector and ny, is the
number of samples in the k-th task. We are going to learn a
shared subspace across all tasks, obtained by an orthonormal
projection W € IR%**, where s is the dimensionality of the
subspace. In this learned subspace, the data distribution from
all tasks should be similar to each other. Therefore, we can
code all tasks together in the shared subspace and achieve
better coding quality. The benefits of this strategy are: (i) we
can improve each individual coding quality by transferring
knowledge across all tasks. (ii) we can discover the relation-
ship among different datasets via coding analysis. Such a
purpose can be realized through the following optimization
problem:

K K
k; [ X1 — CiDxcll3 + M ’;1 | Cully

min
Dy ,Cx,W,D
K 2
+A2 37 [|[XkW — CiD||
k=1
WITW =1
s.t. (Dw);.(Dw)fF <1, Vji=1,..,1

Vi=1,..,1

)
where Dy, € IR'4 is an overcomplete dictionary (I > d)
with [ prototypes of the k-th task, (Dy);. in the constraints
denotes the j-th row of Dy, and Cy € Rt corresponds
to the sparse representation coefficients of Xy. In the third
term of Eqn.(1), Xk is projected by W into the subspace to
explore the relationship among different tasks. D € IR'® is
the dictionary learned in the datasets shared subspace. Dj.
in the constraints denotes the j-th row of D. I is the iden-
tity matrix. (-)7 denotes the transpose operator. A; and o
are the regularization parameters. The first constraint guar-
antees the learned W to be orthonormal, and the second and
third constraints prevent the learned dictionary to be arbi-
trarily large. In our objective function, we learn a dictionary
Dy for each task k and one shared dictionary D among &
tasks. Since one task in our model uses samples from the
SIN dataset of selected semantic meaningful concepts, the
shared learned dictionary D is the event oriented dictionary.



When Ay = 0, Eqn.(1) reduces to the traditional dictionary
learning on separated tasks.

Supervised Multi-task Dictionary Learning

It is well-known that the traditional dictionary learning
framework is not directly available for classification and
the learned dictionary has merely been used for signal re-
construction (Mairal et al. 2008). To circumvent this prob-
lem, researchers have developed several algorithms to learn
a classification-oriented dictionary in a supervised learning
fashion by exploring the label information. In this subsec-
tion, we extend our proposed multi-task dictionary learning
of Eqn.(1) to be suitable for event detection.

Assuming that the k-th task has my classes, the label in-
formation of the k-th task is Yk = {yr,¥2,....yp<} €
Rexme (g =1,...,K),yl =10,...,0,1,0, ..., 0] (the posi-
tion of non-zero element indicates the class). @y € IR!X™
is the parameter of the k-th task classifier. Inspired by
(Zhang and Li 2010), we consider the following optimiza-
tion problem:

K

>

min
Dy Ck,Ox,W.D i

K K
+X2 3 [|XeW = CkD||% + As 3 [ Yk — Ci®xll%
k=1 k=1

¥

Compared with Eqn.(1), we add the last term into Eqn.(2)
to enforce the model involving discriminative information
for classification. This objective function can simultane-
ously achieve a desired dictionary with good representation
power and support optimal discrimination of the classes for
multi-task setting.

To solve the proposed problem of Eqn.(2), we adopt the
alternating minimization algorithm to optimize it with re-
spect to D, Dy, Cy, Oy and W respectively. We summarize
our algorithm for solving Eqn.(2) as Algorithm 1.

After the optimized © is obtained, the final classification
of a test video can be obtained based on its sparse coeffi-
cient c%{, which delivers the discriminative information. We
can simply apply the linear classifier cL@k to obtain the
predicted score of the video.

K
[Xx — CkDull7 + A\t kZ:l [ICxll,

wWTw =1
(Dw);. D) <1, Vi=1,..,1
D;Df <1, Vi=1,.,1
2)

Experiments

Datasets

TRECVID MED10 (P001-P003) and MED11 (E001-E015)
datasets are used in our experiments. The datasets consist
of 9746 videos from 18 events of interest, with 100-200 ex-
amples per event, and the rest of the videos are from the
background class.

TRECVID Semantic Indexing Task (SIN) contains an-
notation for 346 semantic concepts on 400,000 keyframes
from web videos. 346 concepts are related to objects, ac-
tions, scences, attributes and non-visual concept which are
all the basic elements for an event, e.g. kitchen, boy, girl,
bus. For the sake of better understanding and easy concept
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Algorithm 1: Supervised Multi-task Dictionary Learning.

Input:

K tasks Data (X1, ..., Xk) and Label (Y41, ..., Yk);

Subspace dimensionality s, Dictionary size [, Regularization parameters A1,

A2, As.
Output:
Optimized W € R¥*, Cy, € R™**!, D, € R**,
Dc Rlxs, Gk c Rlx"lk'
Initialize W using any orthonormal matrix;
Initialize Cx with Il normalized columns;
repeat
Compute D using Algorithm 2 in (Mairal et al. 2009);
fork=1:K

Compute Dy using Algorithm 2 in (Mairal et al.
2009);

Adopting FISTA (Beck and Teboulle 2009) to solve
Cy;

O = (CECL)'CEY

end for
Compute W by eigen decomposition of
XT(1-c(cTo)tchHX;

until Convergence;

W

selection, we manually divide the 346 visual concepts into
15 groups.

Experiment Setup

There are 3104 videos used for training and 6642 videos
used for testing in our experiments. We use three representa-
tive features which are SIFT, Color SIFT (CSIFT) and Mo-
tion SIFT (MOSIFT) (Chen and Hauptmann 2009). SIFT
and CSIFT describe the gradient and color information of
images. MOSIFT describes both the optical flow and gra-
dient information of video clips. Finally, 768-dimensional
SIFT-BoW, CSIFT-BoW, MOSIFT-BoW features are ex-
tracted respectively to represent each video. We set the regu-
larization parameters in the range of {0.01,0.1,1, 10, 100}.
The subspace dimensionality s is set by searching the grid
from {200, 400, 600}. For the experiments in the paper, we
try three different dictionary sizes from {768, 1024, 1280}.

Comparison Method

‘We compare our proposed event oriented dictionary learning
method with the following important baselines:

e Support Vector Machine (SVM): SVM has been widely
used by several research groups for MED and has shown
its robustness (Lan et al. 2013; Oneata et al. 2012), so we
use it as one of the comparison algorithms;

e Single Task Supervised Dictionary Learning (ST-SDL):
Performing supervised dictionary learning on each task
separately;

e Pooling Tasks Supervised Dictionary Learning (PT-SDL):
Performing single task supervised dictionary learning by
simply aggregating data from all tasks;

e Multiple Kernel Transfer Learning (MKTL) (Jie, Tom-
masi, and Caputo 2011): A method which incorporates
prior features into a multiple kernel learning framework;
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Figure 4: Comparision of different methods of AP performance for each MED event.

Table 1: AP performance for each MED event using Text
(T), Visual (V) and Text+Visual (T+V) information for con-
cept selection. The last column shows the number of con-
cepts that are coincided with groundtruth in top 10 concepts.

Event T \ T+V || #in Top 10
PO0T: A shelter 0.0331 [ 0.0532 [ 0.0613 5
P002: Batting a run 0.4432 [ 0.4653 [ 0.4837 7
P003: Making a cake 0.0502 | 0.0514 | 0.0658 9
EO001: Attempting board trick 0.1457 | 0.1675 | 0.1883 6
E002: Feeding animal 0.0355 [ 0.0361 [ 0.0402 5
E003: Landing fish 0.1721 | 0.1801 | 0.1938 5
E004: ‘Wedding ceremony 0.3777 | 0.3831 | 0.4104 10
E005: | Working wood working project || 0.1352 | 0.1542 | 0.1625 9
E006: Birthday party 0.0308 | 0.0331 | 0.0475 5
E007: Changing a vehicle tire 0.0509 | 0.0512 | 0.0771 7
E008: Flash mob gathering 0.2433 | 0.2653 | 0.2709 8
E009: Getting a vehicle unstuck 0.1652 | 0.1765 | 0.1876 9
EO010: Grooming an animal 0.1234 | 0.1193 | 0.1308 5
EOIT: Making a sandwich 0.014 ] 0.0213 | 0.0285 4
E012: Parade 0.0761 | 0.0876 | 0.1052 4
E013: Parkour 0.1769 [ 0.1981 [ 0.22 7
EO014: Repairing an appliance 0.1742 | 0.1951 | 0.2167 8
EO15: Working on a sewing project 0.071 | 0.0909 | 0.1051 7

Dirty Model Multi-Task Learning (DMMTL) (Jalali et al.
2010): A state-of-the-art multi-task learning method im-
posing ¢; /¢;-norm regularization;

Multiple Kernel Learnig Latent Variable Approach
(MKLLVA) (Vahdat et al. 2013): A multiple kernel learn-
ing latent variable approach for complex video event de-
tection;

Random Concept Selection Strategy (RCSS): Performing
our proposed supervised multi-task dictionary learning
without involving concept selection strategy (leveraging
random samples).

Results

To exploit the effectiveness of our proposed concept selec-
tion strategy, we compare our selected top 10 concepts with
the groundtruth (we use human labeled concepts ranking list
as the groundtruth for each MED event). The results are
listed in the last column of Table 1, which shows the num-
ber of concepts that are coincided with groundtruth in top 10
concepts. Moveover, the AP performance for event detection
based on text information, visual information and their com-
binations are also shown in Table 1. The benefit of using
both text and visual information for concept selection can
be concluded from Table 1.

Fig.4 shows the AP results for each MED event. Our pro-
posed method achieves the best performance for 13 events
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Table 2: Comparision of different methods for average de-
tection accuracy of SIFT feature.

Method MAP

SVM 0.0883

ST-SDL 0.1037

PT-SDL 0.1336

MKTL (Jie, Tommasi, and Caputo 2011) | 0.1191
DMMTL (Jalali et al. 2010) 0.1180
MKLLVA (Vahdat et al. 2013) 0.1132
RCSS 0.1201

Proposed 0.1664

out of a total of 18 events. It is also interesting to notice
that the larger improvements in Fig.4, such as ‘E004: Wed-
ding ceremony’, ‘E005: Working wood working project’” and
‘E009: Getting a vehicle unstuck’ usually correspond to the
higher number of selected concepts that are coincided with
groundtruth as shown in Table 1. This gives us the evidence
of the effectiveness of proposed automatical concept selec-
tion strategy.

Table 2 shows the average detection results of the 18
MED events for different comparison methods. We have the
following observations: (1) Comparing ST-SDL with SVM,
we observe that performing supervised dictionary learning
is better than SVM which shows the effectiveness of dic-
tionary learning for MED. (2) Comparing PT-SDL with ST-
SDL, leveraging knowledge from the SIN dataset improves
the performance for MED. (3) Our concept selection strat-
egy for semantic dictionary learning performs the best for
MED among all the comparison methods. (4) Our proposed
method outperforms 8% AP compared with SVM. (5) Con-
sidering the difficulty of MED dataset and the typically low
AP performance of MED, the absolute 8% AP improvement
is very significant.

Conclusion

In this paper, we have firstly investigated the possibility of
automatically selecting semantic meaningful concepts for
complex event detection based on both the MED events-kit
text descriptions and the high-level concept feature descrip-
tions. Then we attempt to learn an event oriented dictionary
representation based on the selected semantic concepts. To
this aim, we leverage training samples of selected concepts
from the SIN dataset into a novel jointly supervised multi-
task dictionary learning framework. Extensive experimental
results on MED dataset show the efficacy of our proposed



semantic concept selection strategy and the event oriented
dictionary learning method for complex event detection.
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