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Abstract
Given a data set from a union of multiple linear sub-
spaces, a robust subspace clustering algorithm fits each
group of data points with a low-dimensional subspace
and then clusters these data even though they are grossly
corrupted or sampled from the union of dependent sub-
spaces. Under the framework of spectral clustering, re-
cent works using sparse representation, low rank rep-
resentation and their extensions achieve robust cluster-
ing results by formulating the errors (e.g., corruptions)
into their objective functions so that the errors can be
removed from the inputs. However, these approaches
have suffered from the limitation that the structure of
the errors should be known as the prior knowledge.
In this paper, we present a new method of robust sub-
space clustering by eliminating the effect of the errors
from the projection space (representation) rather than
from the input space. We firstly prove that `1-, `2-, and
`∞-norm-based linear projection spaces share the prop-
erty of intra-subspace projection dominance, i.e., the
coefficients over intra-subspace data points are larger
than those over inter-subspace data points. Based on
this property, we propose a robust and efficient sub-
space clustering algorithm, called Thresholding Ridge
Regression (TRR). TRR calculates the `2-norm-based
coefficients of a given data set and performs a hard
thresholding operator; and then the coefficients are used
to build a similarity graph for clustering. Experimental
studies show that TRR outperforms the state-of-the-art
methods with respect to clustering quality, robustness,
and time-saving.

Introduction
Subspace segmentation or subspace clustering (Vidal 2011)
fits each group of data points using a low dimensional sub-
space and performs clustering in the projection space, which
has attracted increasing interests from numerous areas such
as image analysis (Cheng et al. 2010), motion segmenta-
tion (Gear 1998), and face clustering (Ho et al. 2003). When
the data sets are clean and the subspaces are mutually inde-
pendent, several existing approaches such as (Costeira and
Kanade 1998) are able to exactly resolve the subspace clus-
tering problem. However, the data sets probably contain var-
ious noises or lie on the intersection of multiple dependent
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subspaces. As a result, inter-cluster data points (i.e., the data
points with different labels) may be wrongly grouped into
the same cluster. Errors removing aims at eliminating the ef-
fect of these errors (i.e., noises, etc.), which has lain at the
heart of subspace clustering. To achieve this so-called robust
subspace clustering, various methods have been proposed,
e.g., generalized principal component analysis (Vidal, Ma,
and Sastry 2005), local subspace affinity (Yan and Polle-
feys 2006), spectral curvature clustering (Chen and Ler-
man 2009), local best-fit flats (Zhang et al. 2012), fix rank
representation (Liu et al. 2012), Sparse Subspace Cluster-
ing (SSC) (Elhamifar and Vidal 2013; Peng, Zhang, and
Yi 2013), Low Rank Representation (LRR) (Lin, Liu, and
Su 2011; Liu et al. 2013), and Least Squares Regression
(LSR) (Lu et al. 2012).

In these approaches, representation-based spectral clus-
tering methods have achieved state-of-the-art results in face
clustering. The key of spectral clustering is to build an affin-
ity matrix W of which each entry Wij denotes the simi-
larity between the connected data points. A ‘good’ affinity
matrix is a block-diagonal matrix (sparse similarity graph),
i.e., Wij = 0 unless the corresponding data points xi and
xj belong to the same cluster. A frequently-used measure-
ment of Wij is Euclidean distance with Heat Kernel. How-
ever, this metric is sensitive to noise and cannot capture the
structure of subspace. Recently, SSC and LRR provide a
new way to construct the graph by using the sparse and low-
rank representation, respectively. Moreover, they remove er-
rors from the inputs by formulating the errors into their
objective functions. Both theoretical analysis and experi-
mental results have shown that SSC and LRR can handle
some specific errors and have achieved impressive perfor-
mance. Inspired by the success of SSC and LRR, numer-
ous approaches have been proposed and the errors-removing
method is widely adopted in this field (Liu et al. 2012;
Lu et al. 2012; Liu and Yan 2011; Wang and Xu 2013;
Deng et al. 2013). One major limitation of these approaches
is that the structure of errors should be known as the pri-
ori. Clearly, this prior knowledge is difficult to achieve and
these algorithms may fail unless the adopted assumption is
consistent with the real structure of the errors.

Most existing methods solve the robust subspace clus-
tering problem by removing the errors from the origi-
nal data space and obtaining a good affinity matrix based
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Table 1: Notations.

Notation Definition

n data size
m the dimensionality of samples
r the rank of a given matrix
x ∈ Rm a data point
c ∈ Rn the representation of x over D
D = [d1,d2, . . . ,dn] a given dictionary
Dx ∈ D x and Dx belong to the same cluster
D−x the data points of D except Dx

on a ‘clean’ data set. Differing from these approaches, we
propose and prove that the effect of errors can be elim-
inated from linear projection space because the coeffi-
cients with small values (trivial coefficients) always cor-
respond to the projections over the errors. This prop-
erty, called intra-subspace projection dominance, is mathe-
matically trackable. Based on our theoretical result, we fur-
ther present an algorithm, Thresholding Ridge Regression
(TRR), by considering `2-norm case. TRR has a closed-form
solution and makes clustering data into multiple subspaces
possible even though the structure of errors is unknown and
the data are grossly corrupted.

Notations: Unless specified otherwise, lower-case bold
letters represent column vectors and upper-case bold ones
represent matrices. AT and A−1 denote the transpose and
pseudo-inverse of the matrix A, respectively. I denotes the
identity matrix. Table 1 summarizes some notations used
throughout the paper.

Intra-subspace Projection Dominance
Let intra-subspace data points consist of the points belong to
the same subspace and inter-subspace data points be the col-
lection of points came from different subspaces. In this sec-
tion, we show that the coefficients over intra-subspace data
points are larger than those over inter-subspace data points in
`1-, `2-, and `∞-norm-based projection space, namely, intra-
subspace projection dominance. The proofs are presented in
the supplementary material.

Let x 6= 0 be a data point in the union of subspaces SD
that is spanned by D = [Dx D−x], where Dx and D−x
consist of the intra-cluster and inter-cluster data points, re-
spectively. Note that, noise and outlier could be regarded as
a kind of inter-cluster data point of x. Without loss of gen-
erality, let SDx and SD−x be the subspace spanned by Dx

and D−x, respectively. Hence, there are only two possibil-
ities for the location of x, i.e., in the intersection between
SDx

and SD−x
(denoted by x ∈ {S|S = SDx

∩ SD−x
}),

or in SDx
except the intersection (denoted by x ∈ {S|S =

SDx
\SD−x

}).
Let c∗x and c∗−x be the optimal solutions of

min ‖c‖p s.t. x = Dc, (1)
over Dx and D−x, respectively. ‖ · ‖p denotes the `p-norm
and p = {1, 2,∞}. We aim to investigate the conditions un-
der which, for every nonzero data point x ∈ SDx

, if the `p-
norm of c∗x is smaller than that of c∗−x, then the coefficients

over intra-subspace data points are larger than those over
inter-subspace data points, i.e., [c∗x]rx,1 > [c∗−x]1,1 (intra-
subspace projection dominance). Here, [c∗x]rx,1 denotes the
rx-th largest absolute value of the entries of c∗x and rx is the
dimensionality of SD.

In the following analysis, Lemma 1 and Lemma 3 show
[c∗x]rx,1 > [c∗−x]1,1 when x ∈ {S|S = SDx

\SD−x
} and

x ∈ {S|S = SDx
∩ SD−x

}, respectively. And Lemma 2 is
a preliminary step toward Lemma 3.
Lemma 1 For any nonzero data point x in the subspace
SDx except the intersection between SDx and SD−x , i.e.,
x ∈ {S|S = SDx\SD−x}, the optimal solution of (1)
over D is given by c∗ which is partitioned according to the

sets Dx and D−x, i.e., c∗ =

[
c∗x
c∗−x

]
. Thus, we must have

[c∗x]rx,1 > [c∗−x]1,1.
Lemma 2 Consider a nonzero data point x in the intersec-
tion between SDx and SD−x , i.e., x ∈ {S|S = SDx ∩
SD−x}. Let c∗, zx, and z−x be the optimal solution of

min ‖c‖p s.t. x = Dc (2)

over D, Dx, and D−x. c∗ =
[
c∗x
c∗−x

]
is partitioned accord-

ing to the sets D = [Dx D−x]. If ‖zx‖p < ‖z−x‖p, then
[c∗x]rx,1 > [c∗−x]1,1.
Lemma 3 Consider the nonzero data point x in the inter-
section between SDx and SD−x , i.e., x ∈ {S|S = SDx ∩
SD−x}, where SDx and SD−x denote the subspace spanned
by Dx and D−x, respectively. The dimensionality of SDx is
rx and that of SD−x is r−x. Let c∗ be the optimal solution
of

min ‖c‖p s.t. x = Dc (3)

over D = [Dx D−x] and c∗ =

[
c∗x
c∗−x

]
be partitioned ac-

cording to the sets Dx and D−x. If
σmin(Dx) ≥ r−x cos θmin‖D−x‖1,2, (4)

then [c∗x]rx,1 > [c∗−x]1,1. Here, σmin(Dx) is the smallest
nonzero singular value of Dx, θmin is the first principal an-
gle between Dx and D−x, ‖D−x‖1,2 is the maximum `2-
norm of the columns of D−x and [c]r,1 denotes the r-th
largest absolute value of the entries of c.

According to the property of intra-subspace projection
dominance, the coefficients over intra-subspace are always
larger than those over the errors. Hence, we can eliminate the
effect of the errors by keeping k largest entries and zeroing
the other entries of the `p-norm-based representation, where
k is the dimensionality of the corresponding subspace.

Figure 1 gives a toy example to illustrate the intra-
subspace projection dominance in the `2-norm-based pro-
jection space, where the data points are sampled from two
dependent subspaces corresponding to two clusters in R2.
We plot the similarity graph (Figure 1(b) and Figure 1(d)
) using the visualization toolkit NodeXL. In this example,
the errors (i.e., the intersection between two dependent sub-
spaces) lead to the connections between the inter-cluster data
points and the weights of these connections are smaller than
the edge weights between the intra-cluster data points.
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Figure 1: A toy example of the intra-subspace projection dominance in `2-norm-based projection space. (a) A given data sets
come from two clusters, indicated by different shapes. Note that each cluster corresponds to a subspace, and the two subspaces
are dependent. (b, c) The coefficients of a data point x and the similarity graph in `2-norm-based projection space. The first and
the last 25 values in (c) correspond to the coefficients (similarity) over the intra-cluster and inter-cluster data points, respectively.
(d, e) The coefficients of x and the similarity graph achieved by our method. For each data point, only the 2 largest coefficients
are nonzero, corresponding to the projection over the base ofR2. From (b) and (d), the inter-cluster data points connections are
removed and the data are successfully separated into respective clusters.

Thresholding Ridge Regression for Robust
Subspace Clustering

The property of intra-subspace projection dominance holds
for `1, `2, and `∞ cases. However, we only present an
algorithm by considering `2-norm case because `2-norm-
minimization problem has a closed form solution.

Let X = {x1,x2, . . . ,xn} be a collection of data
points located on a union of dependent or disjoint
or independent subspaces {S1, S2, . . . , SL} and Xi =
[x1, . . . ,xi−1,0,xi+1, . . . ,xn], (i = 1, · · · , n) be the dic-
tionary for xi, we aim to solve the following problem:

min
ci

1

2
‖xi −Xici‖22 + λ‖ci‖22, (5)

where λ is a positive real number.
(5) is actually the well known ridge regression (Hoerl

and Kennard 1970), whose optimal solution is (XT
i Xi +

λI)−1XT
i xi. However, this solution requires O(mn4) for

n data points with dimensionality of m. To solve (5) effi-
ciently, we rewrite it as

min
ci

1

2
‖xi −Xci‖22 + λ‖ci‖22, s.t. eTi ci = 0. (6)

Using Lagrangian method, we have

L(ci) =
1

2
‖xi −Xci‖22 + λ‖ci‖22 + γeTi ci, (7)

where γ is the Lagrangian multiplier. Clearly,

∂L(ci)

∂ci
=
(
XTX+ λI

)
ci −XTxi + γei. (8)

Let ∂L(ci)
∂ci

= 0, we obtain

ci =
(
XTX+ λI

)−1 (
XTxi − γei

)
. (9)

Multiplying both sides of (9) by eTi , and since eTi ci = 0,
it holds that

γ =
eTi
(
XTX+ λI

)−1
XTxi

eTi (XTX+ λI)
−1

ei
. (10)

Algorithm 1: Robust Subspace Clustering via Thresholding
Ridge Regression
Input: A collection of data points X = {xi}ni=1 sampled

from a union of linear subspaces {Si}Li=1, the balance
parameter λ and thresholding parameter k;

1: Calculate P =
(
XTX+ λI

)−1
and Q = PXT and

store them.
2: For each point xi, obtain its representation ci via (11).
3: For each ci, eliminate the effect of errors in the projec-

tion space via ci = Hk(ci), where the hard thresholding
operatorHk(ci) keeps k largest entries in ci and zeroes
the others.

4: Construct an affinity matrix by Wij = |cij |+ |cji| and
normalize each column of W to have a unit `2-norm,
where cij is the jth entry of ci.

5: Construct a Laplacian matrix L = D−1/2WD−1/2,
where D = diag{di} with di =

∑n
j=1 Wij .

6: Obtain the eigenvector matrix V ∈ Rn×L which con-
sists of the first L normalized eigenvectors of L corre-
sponding to its L smallest nonzero eigenvalues.

7: Perform k-means clustering algorithm on the rows of V.
Output: The cluster assignment of X.

Substituting γ into (10), the optimal solution is given by

c∗i = P

[
XTxi −

eTi Qxiei
eTi Pei

]
, (11)

where Q = PXT , P =
(
DTD+ λI

)−1
, and the union of

ei (i = 1, · · · , n) is the standard orthogonal basis of Rn,
i.e., all entries in ei are zeroes except the i-th entry is one.

After projecting the data set into the linear space spanned
by itself via (11), the proposed algorithm, named Threshold-
ing Ridge Regression (TRR), handles the errors by perform-
ing a hard thresholding operatorHk(·) over ci, whereHk(·)
keeps k largest entries in ci and zeroing the others. Gen-
erally, the optimal k equals to the dimensionality of corre-
sponding subspace. Algorithm 1 summarizes our approach
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and steps 5–7 are normalized spectral clustering (Ng, Jor-
dan, and Weiss 2002).

Related Works
Our work is related to several existing representation-based
subspace clustering methods mainly including Sparse Sub-
space Clustering (SSC) (Elhamifar and Vidal 2013) and Low
Rank Representation (LRR) (Liu et al. 2013).

SSC constructs a similarity graph using the sparse repre-
sentation of a given data set. To handle the errors that prob-
ably exist in the data set, SSC formulates the errors into its
objective function as follows:

min
C,E,Z

‖C‖1 + λE‖E‖1 + λZ‖Z‖F

s.t. X = XC+E+ Z,C1T = 1,diag(C) = 0, (12)

where C ∈ Rn×n is the sparse representation of the data set
X ∈ Rm×n, E corresponds to the sparse outlying entries, Z
denotes the reconstruction errors owing to the limited rep-
resentational capability, and the parameters λE and λZ bal-
ance the terms of the objective function. If the data located
into the linear subspace, then the affine constraint C1T = 1
could be removed.

Different from SSC, LRR uses the lowest-rank represen-
tation instead of the sparest one to build the graph via

min ‖C‖∗ + λ‖E‖p s.t. x = XC+E, (13)

where ‖C‖∗ =
∑
i σi(C), σi(C) is the i-th singular value

of C, and ‖ · ‖p could be chosen as `2,1-, `1-, or Frobenius-
norm. The choice of the norm only depends on which kind
of error is assumed in the data set. Specifically, `2,1-norm
is usually adopted to depict sample-specific corruption and
outliers, `1-norm is used to characterize random corruption,
and Frobenius norm is used to describe the Gaussian noise.

From (12) and (13), it is easy to find that SSC and LRR
remove the pre-specified errors from the input space. This
strategy of errors removing has been adopted by numer-
ous works such as (Liu et al. 2012; Liu and Yan 2011;
Wang and Xu 2013; Deng et al. 2013). In contrast, our ap-
proach eliminates the effect of errors from the projection
space. The proposed method takes a different way to handle
the errors and does not suffer from the limitation of estimat-
ing the structure of the errors as SSC and LRR did.

Experimental Verification and Analysis
In this section, we investigate the performance of TRR for
robust face clustering with respect to clustering quality, ro-
bustness, and computational efficiency.

Experimental Configurations
We compared TRR1 with several recently-proposed sub-
space clustering algorithms, i.e., SSC (Elhamifar and Vi-
dal 2013), LRR (Liu et al. 2013), and two variants of LSR
(LSR1 and LSR2) (Lu et al. 2012). Moreover, we used the
coefficients of Locally Linear Embedding (LLE) (Roweis

1The codes can be downloaded at the authors’ website
http://www.machineilab.org/users/pengxi/.

and Saul 2000) to build the similarity graph for subspace
clustering as (Cheng et al. 2010) did, denoted as LLE-graph.

For fair comparisons, we performed the same spectral
clustering algorithm (Ng, Jordan, and Weiss 2002) on the
graphs built by the tested algorithms and reported their best
results with the tuned parameters. For the SSC algorithm,
we experimentally found an optimal α from 1 to 50 with an
interval of 1. For LRR, the optimal λ was found from 10−6

to 10 as suggested in (Liu et al. 2013). For LSR and TRR,
the optimal λ was chosen from 10−7 to 1. Moreover, a good
k was found from 3 to 14 for TRR and from 1 to 100 for
LLE-graph.

Evaluation metrics: Two popular metrics, Accuracy
(or called Purity) and Normalized Mutual Information
(NMI) (Cai, He, and Han 2005), are used to evaluate the
clustering quality. The value of Accuracy or NMI is 1 in-
dicates perfect matching with the ground truth, whereas 0
indicates perfect mismatch.

Data sets: We used two popular facial databases, i.e.,
Extended Yale Database B (Georghiades, Belhumeur, and
Kriegman 2001) (ExYaleB) and AR database (Martinez and
Benavente 1998). ExYaleB contains 2414 frontal-face im-
ages with size 192×168 of 38 subjects (about 64 images per
subject), while the first 58 samples per subject were used and
each image was downsized to 54×48. Moreover, we tested a
subset of AR which consists of 1400 clean faces distributed
over 50 male subjects and 50 female subjects. All the AR
images were downsized and normalized from 165 × 120 to
55×40. For computational efficiency, we performed Princi-
ple Component Analysis (PCA) to reduce the dimensional-
ity of the data by reserving 98% energy.

Model Selection
TRR has two parameters, the balance parameter λ and the
thresholding parameter k. The values of these parameters
depend on the data distribution. In general, a bigger λ is
more suitable to characterize the corrupted images and k
equals to the dimensionality of the corresponding subspace.

To examine the influence of these parameters, we carried
out some experiments using a subset of ExYaleB which con-
tains 580 images from the first 10 individuals. We randomly
selected a half of samples to corrupt using white Gaussian
noise via ỹ = x + ρn, where ỹ ∈ [0 255], x denotes the
chosen sample, ρ = 10% is the corruption ratio, and n is the
noise following the standard normal distribution.

Figure 2 shows that: 1) while λ increases from 0.1 to 1.0
and k ranges from 4 to 9, Accuracy and NMI almost re-
main unchanged; 2) the thresholding parameter k is help-
ful to improve the robustness of our model. This verifies the
correctness of our claim that the trivial coefficients corre-
spond to the codes over the errors. 3) a larger k will impair
the discrimination of the model, whereas a smaller k cannot
provide enough representative ability. Indeed, the optimal
value of k can be found around the intrinsic dimensional-
ity of the corresponding subspace. According to (Costa and
Hero 2004), the intrinsic dimensionality of the first subject
of Extended Yale B is 6, which shows that the optimal k of
TRR equals to the dimension of the corresponding subspace.
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Figure 2: The influence the parameters of TRR. (a) The influence of λ, where k = 7. (b) The influence of k, where λ = 0.7.
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Figure 3: The clustering quality (Accuracy and NMI) of different algorithms on the first L subjects of AR data set.

Clustering on Clean Images
In this section, we evaluate the performance of TRR using
1400 clean AR images (167 dimension). The experiments
were carried out on the first L subjects of the data set, where
L increases from 20 to 100. Figure 3 shows that: 1) TRR is
more competitive than the other examined algorithms, e.g.,
with respect to L = 100, the Accuracy of TRR is at least,
1.8% higher than that of LSR1, 2.7% higher than that of
LSR2, 24.5% higher than that of SSC , 8.8% higher than that
of LRR and 42.5% higher than that of LLE-graph. 2) With
increasing L, the NMI of TRR almost remain unchanged,
slightly varying from 93.0% to 94.3%. The possible reason
is that NMI is robust to the data distribution (increasing
subject number).

Clustering on Corrupted Images
Our error removing strategy can improve the robustness of
TRR without the prior knowledge of the errors. To verify
this claim, we test the robustness of TRR using ExYaleB
over 38 subjects. For each subject of the database, we ran-
domly chose a half of images (29 images per subject) to

Figure 4: The samples with real possible corruptions. Top
row: the images with white Gaussian noise; Bottom row: the
images with random pixel corruption. From left to right, the
corruption rate increases from 10% to 90% (with an interval
of 20%).

corrupt by white Gaussian noise or random pixel corruption
(see Figure 4), where the former is additive and the latter is
non-additive. In details, for the image x, we added white
Gaussian noise and increased the corruption ratio ρ from
10% to 90%. For the random pixel corruption, we replaced
the value of a percentage of pixels randomly selected from
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Table 2: The performance of TRR, LSR (Lu et al. 2012), SSC (Elhamifar and Vidal 2013), LRR (Liu et al. 2013), and LLE-
graph (Roweis and Saul 2000) on the ExYaleB (116 dimension). ρ denotes the corrupted ratio; The values in the parentheses
denote the optimal parameters for the reported Accuracy, i.e., TRR (λ, k), LSR (λ), SSC(α), LRR (λ), and LLE-graph (k).

Corruption ρ
TRR LSR1 LSR2 SSC LRR LLE-graph

Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI Accuracy NMI

Clean Data 0 86.78(1.0,5) 92.84 76.50(1e-3) 80.59 74.59(1e-4) 79.05 68.60(8) 75.04 85.25(10) 91.19 51.82(3) 61.61
10 89.25(1e-4,6) 92.71 72.28(1e-2) 78.36 73.19(1e-4) 78.52 68.38(8) 74.25 87.79(0.7) 92.12 47.82(5) 69.40

White 30 88.70(0.7,6) 92.18 71.14(1e-4) 75.93 74.55(1e-4) 78.30 66.02(10) 71.50 81.31(5.0) 86.05 46.51(6) 59.84
Gaussian 50 86.57(0.7,4) 90.43 63.61(1e-2) 70.58 63.16(1e-4) 71.79 55.85(22) 61.99 84.96(0.4) 79.15 37.48(5) 52.10

Noise 70 74.32(0.6,7) 77.70 52.72(1e-3) 63.08 51.54(1e-4) 63.02 49.00(30) 58.64 60.66(0.7) 69.57 32.76(5) 44.96
90 56.31(0.6,7) 63.43 43.15(0.1) 55.73 42.33(1e-4) 55.64 44.10(36) 51.79 49.96(0.2) 57.90 29.81(5) 42.90
10 82.76(1.0,4) 88.64 72.35(1e-3) 77.09 72.35(1e-4) 77.11 64.97(48) 68.40 78.68(0.3) 87.19 46.82(6) 59.26

Random 30 68.97(0.7,7) 75.89 56.48(1e-4) 63.19 56.48(1e-2) 63.28 56.13(49) 59.96 60.80(0.6) 67.47 33.26(5) 42.33
Pixels 50 48.15(1.0,6) 56.67 42.15(1e-4) 50.53 43.16(0.4) 53.09 45.60(39) 51.69 38.61(0.2) 49.93 19.51(5) 27.77

Corruption 70 34.98(1e-2,5) 45.56 27.86(1e-3) 35.88 27.50(1e-2) 35.73 34.71(48) 41.14 30.54(0.2) 38.13 13.39(6) 18.82
90 30.04(1e-4,4) 38.39 19.78(1e-3) 28.00 19.19(0.1) 28.22 20.78(47) 30.03 19.01(0.2) 29.16 14.07(6) 23.04

Table 3: Average running time (seconds).

Algorithms
Total costs Time for building graph

AR ExYaleB AR ExYaleB

TRR 307.69 230.78 10.69 28.76
LSR1 1190.38 653.91 1.39 1.25
LSR2 1255.98 641.49 1.21 0.50
SSC 1299.41 584.14 67.49 242.71
LRR 1295.6 849.66 44.74 118.45

LLE-graph 2030.51 527.71 1.10 1.41

the image with the values following a uniform distribution
over [0, pmax], where pmax is the largest pixel value of x.
To avoid randomness, we produced ten data sets beforehand
and then performed the evaluated algorithms over these data
partitions.

From Table 2, we have the following conclusions: (1)
all the investigated methods perform better in the case of
white Gaussian noise. The result is consistent with a widely-
accepted conclusion that non-additive corruptions are more
challenging than additive ones in pattern recognition. (2)
TRR is more robust than LSR1, LSR2, SSC, LRR and LLE-
graph by a considerable performance margin. For example,
with respect to white Gaussian noise, the performance gain
in Accuracy between TRR and LSR2 varied from 14.0% to
22.8%; with respect to random pixel corruption, the perfor-
mance gain varied from 5.0% to 13.2%.

Running Time
In this section, we report the time costs of these algorithms
for clustering and building the similarity graph. Table 3 re-
ports the time costs obtained by averaging the elapsed CPU
time over 5 independent experiments for each algorithm. We
carried out the experiments using 2204 images from Ex-
tended Yale Database B over 38 subjects and 1400 samples
from AR database over 100 subjects. From the result, TRR
is remarkably faster than the other methods to get the clus-
tering results.

Conclusions
Under the framework of graph-oriented learning (Yan et al.
2007), most of the recent approaches achieve the robust clus-
tering result by removing the errors from the original space
and then build the neighboring relation based on a ‘clean’
data set. In contrast, we propose and prove that it is possible
to eliminate the effect of the errors from the linear projection
space (representation). Based on this mathematically trace-
able property, we present a simple but effective method for
robust subspace clustering. Extensive experimental results
validate the good performance of our approach.

The work might be extended or improved from the fol-
lowing aspects. Except subspace clustering, similarity graph
is also a fundamental problem in subspace learning. There-
fore, the proposed method can be extended for feature ex-
traction. Moreover, it is interesting to develop supervised or
semi-supervised method based on our framework.
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