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Abstract
Pedestrian detection is a challenging problem in com-
puter vision. Especially, a major bottleneck for current
state-of-the-art methods is the significant performance
decline with increasing occlusion. A common technique
for occlusion handling is to train a set of occlusion-
specific detectors and merge their results directly. These
detectors are trained independently and the relation-
ship among them is ignored. In this paper, we consider
pedestrian detection in different occlusion levels as dif-
ferent but related problems, and propose a multi-task
model to jointly consider their relatedness and differ-
ences. The proposed model adopts multi-task learning
algorithm to map pedestrians in different occlusion lev-
els to a common space, where all models corresponding
to different occlusion levels are constrained to share a
common set of features, and a boosted detector is then
constructed to distinguish pedestrians from background.
The proposed approach is evaluated on the challenging
Caltech pedestrian detection benchmark, and achieves
state-of-the-art results on different occlusion-specific
test sets.

Introduction
Pedestrian detection is a challenging problem in computer
vision, and has attracted a lot of attention for decades, since
reliable detection of pedestrians is important in practical ap-
plications such as video surveillance, driving assistance and
robot navigation. Thanks to more powerful features, more
sophisticated models and more effective detection strategies,
pedestrian detection has achieved impressive progress in re-
cent years (Dollár et al. 2012). However, occlusion is still
a major obstacle for satisfactory detection. Most state-of-
the-art methods assume that pedestrians are fully visible or
little occluded, and their performances decline significantly
with increasing occlusion level. For example, the mean miss
rate of the best detector nowadays achieves 36% for pedes-
trians with no occlusion on the Caltech pedestrian detec-
tion benchmark (Dollár et al. 2012), while increasing sig-
nificantly to 49% for pedestrians with no more than 35% oc-
cluded, and further increasing drastically to 79% for pedes-
trians with 35%-80% occluded. Occlusions occur frequently
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in real world scenes such as in street scenes or crowded
places. For example, according to the Caltech pedestrian
benchmark, over 70% of its pedestrians appear occluded in
at least one frame of a video sequence and 19% are occluded
in all frames, where the occlusion was categorized as heavy
(35%-80% occluded) in nearly half of these cases. There-
fore, a pedestrian detector capable of handling occlusions is
preferred to yield more robust detection results.

One kind of common method for occlusion handling is
to estimate the visibility of body parts of pedestrians. This
is particularly effective for those approaches based on de-
formable part-based models (DPM) (Felzenszwalb et al.
2010). DPM sums the scores of all the part detectors within
a given window, and identifies the window as positive pedes-
trian if the summed score is higher than a pre-defined thresh-
old. In the case of occlusion happens, some parts of pedestri-
ans are occluded, resulting in very low scores for the corre-
sponding part detectors, and consequently the summed score
will also be low, leading to false negatives. Visibility estima-
tion of parts could help the detection of occluded pedestri-
ans, since it identifies which body parts are visible and which
body parts are occluded, where the effects of occluded parts
are reduced in the summed score. Usually additional infor-
mation is required for visibility estimation, e.g., motion in-
formation, depth information or segmentation results (En-
zweiler et al. 2010). However, such information is not al-
ways available.

Another kind of common method for occluded pedestrian
detection is to train a set of occlusion-specific detectors, one
for each occlusion level. At test time, if the occlusion level
is known (a priori or estimated), a corresponding occlusion-
specific detector will be applied to detect occluded pedes-
trians; otherwise, all the occlusion-specific detectors will be
applied, and their detection results will then be merged di-
rectly. The disadvantages of this method lie in two aspects:
on one hand, training such a number of detectors is costly,
and the efficiency requirement will be critical as the scale
of data or number of classes grows; on the other hand, these
occlusion-specific detectors are trained independently, while
the relationship among them is ignored.

We believe that the relationship among different occlu-
sion levels should be explored for robust occluded pedes-
trian detection. For example, heavy occluded samples suffer
a serious missing of useful pedestrian information, and the
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noisy information extracted from the occluded regions may
mislead the detector in the training phase. The information
contained in less occluded samples can help regularize it. To
this end, we consider pedestrian detection in different oc-
clusion levels as different but related problems, and propose
a multi-task model to jointly consider their relatedness and
differences. Particularly, we extend the Aggregated Channel
Features (ACF) detector (Dollár et al. 2014) to Multi-Task
ACF (MT-ACF), which adopts multi-task learning algorithm
to map pedestrians in different occlusion levels to a common
space, where all models corresponding to different occlusion
levels are constrained to share a common set of features, and
a boosted detector is then constructed to distinguish pedes-
trians from background.

To evaluate the proposed approach, we carry out ex-
periments on the challenging Caltech pedestrian detection
benchmark (Dollár et al. 2012), and achieve state-of-the-art
performances on the most popular “Reasonable” and three
occlusion-specific test sets.

Related Work
The great progress has been achieved for pedestrian detec-
tion over the last years by the application of different clas-
sification approaches, more powerful features and more so-
phisticated pedestrian models. Nevertheless, limited atten-
tion has been paid to address the issue of occlusion han-
dling in the literature. Generally, they can be categorized
into two kinds: visibility estimation based and occlusion-
specific classifier based.

In order to estimate the visibility of pedestrian parts, vari-
ous approaches have been proposed (Wu and Nevatia 2005;
Leibe, Seemann, and Schiele 2005; Wang, Han, and Yan
2009; Enzweiler et al. 2010; Gao, Packer, and Koller 2011;
Ouyang and Wang 2012; 2013; Ouyang, Zeng, and Wang
2013). Some of them adopt detection scores of blocks or
parts as input for visibility estimation. In (Wang, Han, and
Yan 2009), the authors use a property of HOG features on
the human class to infer occluded pixels in a detection win-
dow. In (Ouyang and Wang 2012), the authors use a de-
formable part-based model to obtain the scores of part detec-
tors and the visibilities of parts are modeled as hidden vari-
ables. In (Gao, Packer, and Koller 2011), the authors propose
a set of binary variables each of which corresponds to a cell
indicating the visibility of the cell, i.e., whether the pixels in
the cell belong to the object. Some utilize other cues such
as segmentation results (Leibe, Seemann, and Schiele 2005;
Enzweiler et al. 2010) or depth information (Enzweiler et al.
2010) for visibility estimation. Some apply the recently de-
veloped deep learning for visibility estimation. In (Ouyang
and Wang 2012), instead of treating visibilities of parts inde-
pendently, a discriminative deep model is used for learning
the visibility relationship among overlapping parts at multi-
ple layers. In (Ouyang, Zeng, and Wang 2013), the authors
focus on the situation when several pedestrians overlap in
images and occlude each other, and propose a mutual vis-
ibility deep model that jointly estimates the visibility sta-
tus of overlapping pedestrians. However, most of these ap-
proaches deal with occlusion handling separately from other

components like feature extraction and deformation model-
ing. In (Ouyang and Wang 2013), the authors explore the
interactions among these components, and propose a joint
deep learning framework to maximize their strengths.

Other researchers have proposed approaches for handling
occlusions by using occlusion-specific classifiers (Wojek et
al. 2011; Tang, Andriluka, and Schiele 2012; Mathias et al.
2013). The basic idea is that when applying a fully visible
classifier on an occluded detection window, the features ex-
tracted from the occluded regions may be miss-leading. In
contrast, when training specific classifiers for different oc-
clusion levels, the feature extraction can focus only on the
visible regions, thus resulting in improved detection perfor-
mance. In (Wojek et al. 2011), the authors propose to train
a set of classifiers, each one for a specific occlusion. At test
time, occlusions are first identified by some techniques, e.g.,
using segmentation results or depth information, and appro-
priate classifiers are applied. Despite better detection quality
for each case, training many classifiers is costly. This issue
is addressed in (Mathias et al. 2013). The authors introduce
the idea of spatially biasing feature selection during classi-
fier training. Starting from one biased classifier trained for
full-body detection, they reuse training time operations to
efficiently build a set of occlusion-specific classifiers, and
reduce the computation time by one order of magnitude. In
(Tang, Andriluka, and Schiele 2012), the authors propose to
train specific detectors for pairs of occluding and occluded
objects, and obtain good results for pairs of pedestrians.
However, all these approaches train occlusion-specific clas-
sifiers independently, while the relationship among them is
ignored. On the contrary, in this paper, we consider pedes-
trian detection in different occlusion levels as different but
related problems, and successfully obtained better detection
quality by jointly considering their relatedness and differ-
ences via a boosted multi-task model.

Multi-Task Aggregated Channel Features with
Occlusion Handling

Generally there are two intuitive strategies to handle oc-
cluded pedestrian detection. One is to combine samples from
different occlusion levels to train a single detector, and the
other is to train a set of independent detectors for different
occlusion levels. They both have disadvantages of their own.
The former strategy considers the commonness between dif-
ferent occlusion levels, while their differences are ignored.
Samples from different occlusion levels would increase the
complexity of detection boundary, which is probably be-
yond the ability of a single detector. On the contrary, the
latter strategy considers pedestrian detection in different oc-
clusion levels as independent problems, and the relationship
among them are missing. The noisy information from heavy
occluded pedestrians may mislead the learned detector and
degrade the final detection performance.

In this section, we present a robust pedestrian detection
method with occlusion handling by considering the rela-
tionship of samples from different occlusion levels, includ-
ing their relatedness and differences, which are captured by
a multi-task strategy simultaneously. To deal with the dif-
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ferences of different occlusion levels, we adopt multi-task
learning algorithms to map pedestrians from different oc-
clusion levels to a common subspace, where all models cor-
responding to different occlusion levels are constrained to
share a common set of features. A shared boosted detector is
then constructed in the subspace to capture the relatedness.

Particularly, we apply the idea to the popular ACF detec-
tor (Dollár et al. 2014) and propose a multi-task extension
of ACF. Here we consider two common occlusion levels:
partial occlusion (no more than 35% occluded) and heavy
occlusion (35%-80% occluded), as advised in (Dollár et al.
2012). The extension of the strategy for more occlusion lev-
els is straightforward.

Aggregated Channel Features (ACF) Detector
We apply Aggregated Channel Features (ACF) detector as
a baseline detector, because of its state-of-the-art detection
quality and speed. This approach can be seen as a combina-
tion of the classic VJ work (Viola and Jones 2004) and HOG
work (Dalal and Triggs 2005). Given an input image, several
image channels are first computed, and pixels in every block
of each channel are then summed. Features are single pixel
lookups in the aggregated channels. Totally 10 image chan-
nels are used, including 1 normalized gradient magnitude
channel, 6 histogram of oriented gradients channels and 3
LUV color channels.

For detector training, boosting is used to train and com-
bine decision trees over these features to distinguish pedes-
trians from background. Specifically, ACF uses depth-two
decision trees as weak classifiers, where the nodes of the
trees are decision stumps, defined by a rectangular region in
one of the channels described above together with a thresh-
old over the sum of values over the region. AdaBoost (Fried-
man, Hastie, and Tibshirani 2000) is then applied to train
and combine weak classifiers to obtain a strong classifier. At
each training iteration, one weak classifier is built, and the
trees are built in a greedy fashion, learning one node at a
time. For each node in the weak classifier, a set of candidate
nodes are built using a predefined set of regions, and the op-
timal threshold values are searched exhaustively. The node
with the minimum classification error is selected. The train-
ing starts with a set of random negative samples and then
bootstraps twice, adding additional hard negative samples
each time.

For pedestrian detection, the learned strong classifier is
applied on the test image using a multi-scale sliding window
strategy. The default step size used in the detector is 4 pixels
and 8 scales per octave. To obtain the final detections, a non-
maximal suppression is used.

Multi-Task ACF Detector
Now we present the multi-task extension of ACF detector
for occlusion handling. We consider two binary classifica-
tion tasks: classifying pedestrians in partial occlusion (de-
noted as TP ), and classifying pedestrians in heavy occlusion
(denoted as TH ). The single task TP is defined as follows
(also similarly for TH ). Let XP be the instance space, DP

be a distribution over XP , and fP : XP → YP be the target
function, given a sample SP = {(x, fP (x)) | x ∈ XP }, the

goal is to find an hypothesis function hP which minimizes
the error Prx∼DP

[hP (x) 6= fP (x)].
By considering two tasks simultaneously, the multi-task

learning problem is defined as follows. Let D be a distribu-
tion over X = XP ∪XH , given a sample S = SP ∪SH , the
goal is to find an hypothesis h : X → YP × YH which min-
imizes the error Pr<x,i>∼D[hi(x) 6= fi(x)], where hi(x) is
the component of h(x) and i ∈ {P,H}. The error is a com-
bination of errors for the two original single tasks. In order
to solve this multi-task learning problem by boosting algo-
rithms similar to ACF, multi-task weak classifiers must be
built at first.

Multi-Task Weak Classifiers Recall that in ACF detector,
depth-two decision trees are used as weak classifiers, where
the nodes of the trees are decision stumps, which are defined
by a root node and two prediction nodes. Obviously this kind
of decision stumps is only suitable for single classification
task. Here we follow the idea in (Faddoul et al. 2010) to
extend the decision stumps to multi-task forms, which are
capable of capturing the relatedness of different tasks.

A multi-task decision stump for two tasks has two levels.
The first level is the root node, which is a traditional deci-
sion stump for one of the two tasks, i.e., either TP or TH .
The second level are the two prediction nodes of the first
level. For each of the two prediction nodes, it is defined by a
traditional decision stump for the other task. It is easy to see
that a multi-task decision stump for two classification tasks
over the label sets YP and YH defines a function h from X
to YP×YH . Note that the partition of the input space defined
by a multi-task decision stump depends on the two classifi-
cation tasks.

In order to learn the multi-task decision stumps to build
the weak classifiers, we adopt a greedy fashion which is
similar to the original ACF detector, i.e., we exhaustively
search all possible multi-task decision stumps and keep the
one with the minimum error. More specifically, we first loop
on the two tasks because each of them can be placed as the
root node, and then loop on the three traditional decision
stumps (one root node and two prediction nodes) defined in
a multi-task decision stump, and then loop on all possible
features and all possible values for each feature. If we de-
note the number of features as N and the maximal number
of values for each feature as M , the number of the multi-
task decision stumps to be searched is at most 2(2NM)3.
The algorithm for learning the multi-task decision stumps is
presented in Algorithm 1.

MT-ACF Model Learning Once multi-task weak classi-
fiers are constructed by the approach presented in the previ-
ous section, we can learn the multi-task ACF detector model
by a straightforward adaptation of the original Adaboost
to multi-task settings (Faddoul et al. 2010). One difference
from single task Adaboost is that we consider two samples
SP and SH for two tasks TP and TH simultaneously, there-
fore we consider distributions over S = SP ∪ SH . Another
difference is that the error is calculated in the multi-task set-
tings. At each iteration t, an hypothesis ht is a multi-task
decision stump, which is a function from X to YP × YH .
Recall that the true error of ht w.r.t. target functions fP and
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Algorithm 1 Multi-Task Decision Stumps Learning
Input: the samples SP and SH for the two tasks TP and

TH , the distribution D over S = SP ∪ SH .
Output: the multi-task stump h with the minimum error.

1: for i = 1 to 2 do
2: set task TP (if i=1) or TH (if i=2) as the root node

of the multi-task stump;
3: for each of the three decision stumps defined in the

multi-task stump do
4: for each possible feature f do
5: for each possible value θ for feature f do
6: if f > θ then
7: hj = positive;
8: else
9: hj = negative;

10: end if
11: calculate the err(hj , S,D) as in eq.(1);
12: end for
13: end for
14: end for
15: end for
16: return multi-task stump h = argminhj

err(hj , S,D).

fH is defined as Pr<x,i>∼D[hti(x) 6= fi(x)], where hti(x)
is the component of ht(x), i ∈ {P,H}. Now, given a distri-
bution Dt over S = SP ∪ SH , the empirical error is defined
as:

err(ht, S,Dt) =
∑

e∈S:pred(ht,e)6=y(e)

Dt(e) (1)

where pred(ht, e) = hti(e) if e ∈ Si and y(e) is the label of
e in Si. The empirical error εt = err(ht, S,Dt) is the sum
of the weighted error of the hypothesis ht on the two sets SP
and SH w.r.t. Dt. The algorithm for learning the multi-task
ACF model is presented in Algorithm 2.

Experimental Evaluation
The experiments are conducted on the Caltech pedestrian
detection benchmark (Dollár et al. 2012), which is by far
the largest, most realistic and challenging pedestrian dataset.
It consists of approximately 10 hours of 640 × 480 30Hz
video taken from a vehicle driving through regular traffic in
an urban environment. The data were captured over 11 ses-
sions, and are roughly divided in half for training and test-
ing. It contains a vast number of pedestrians – about 250,000
frames in 137 approximately minute long segments with a
total of 350,000 bounding boxes and 2300 unique pedestri-
ans were annotated. Evaluation is performed on every 30th
frame. This dataset is challenging for several reasons: on
one hand it contains many small pedestrians and has realis-
tic occlusion frequency; on the other hand the image quality
is lacking, including blur as well as visible JPEG artifacts
(blocks, ringing, quantization) which hurt the accuracy of
feature extraction.

Experimental Setup
We follow a common training-testing protocol as in the lit-
erature: the pedestrian detector is trained on its training set

Algorithm 2 Multi-Task ACF Model Learning
Input: the number of boosting iterations T , samples for the

two tasks SP and SH , the label of an example y, the
label w.r.t. task i for e ∈ Si pred, a function err that
calculates the error of a multi-task stump.

Output: the strong classifier H(x) for MT-ACF detector.
1: Initialization: initialize the distribution D over S =
SP ∪ SH as D1 = init(S);

2: for t = 1 to T do
3: train the multi-task stump ht by Algorithm 1;
4: calculate the error εt = err(ht, S,Dt) as in eq.(1);
5: calculate hypothesis weight αt = 1

2 ln(
1−εt
εt );

6: for e ∈ S do
7: update the distribution:
8: if pred(ht, e) = y(e) then
9: Dt+1(e) = Dt(e)·exp(−αt)

Zt ;
10: else
11: Dt+1(e) = Dt(e)·exp(+αt)

Zt ;
12: end if
13: end for
14: end for
15: return strong classifier for MT-ACF detector H(x) =

argmax(yP ,yH)

∑T
t=1 α

tht(x).

(set00-set05), and the results are reported on its test set
(set06-set10). To train the detector, we choose the image re-
gions labeled as “persons” that are greater than 50 pixels
high with different occlusion levels as positive samples, and
negative samples are chosen at random locations and sizes
from the training images without pedestrians.

For evaluation of the results, we use the bounding boxes
labels and the evaluation software (version 3.2.0) provided
by Dollár et al. on the website1. The per-image evalua-
tion methodology is adopted, i.e. all the detection results
are compared using miss rate vs. False-Positive-Per-Image
(FPPI) curves. The log-average miss rate is also used to
summarize the detection performance, and is computed by
averaging the miss rate at nine FPPI points2 that are evenly
spaced in the log-space in the range from 10−2 to 100. There
exist various experimental settings on this dataset to com-
pare detectors in different conditions. In order to validate the
effectiveness of the proposed approach, the following exper-
iments will be conducted on the most popular “reasonable”
subset (pedestrians of ≥ 50 pixels high, fully visible or less
than 35% occluded) and three different “occlusion” subsets:
“none occlusion” (pedestrians of≥ 50 pixels high, fully vis-
ible); “partial occlusion” (pedestrians of ≥ 50 pixels high,
less than 35% occluded) and “heavy occlusion” (pedestrians
of ≥ 50 pixels high, 35%-80% occluded).

The training parameters in the proposed approach are set
as follows. 2048 weak classifiers are trained and combined
to a strong classifier, and the nodes of the decision trees are
constructed using a pool of 30,000 candidate regions from

1www.vision.caltech.edu/Image Datasets/CaltechPedestrians/
2The mean miss rate at 0.0100, 0.0178, 0.0316, 0.0562, 0.1000,

0.1778, 0.3162, 0.5623 and 1.0000 FPPI.
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Table 1: Log-average miss rate (%) of popular detection methods with occlusion handling on different subsets of Caltech.

HOG-LBP DBN-Isol DBN-Mut Franken JointDeep MT-ACF
[ICCV 2009] [CVPR 2012] [CVPR 2013] [ICCV 2013] [ICCV 2013]

Reasonable 67.77 53.14 48.22 48.68 39.32 35.81
None Occlusion 66.29 50.65 45.91 46.29 37.22 32.44
Partial Occlusion 79.94 70.71 68.41 67.57 56.82 50.72
Heavy Occlusion 96.74 85.98 80.45 88.82 81.88 82.37
Mean 77.69 65.12 60.75 62.84 53.81 50.34

image samples. The multi-scale models are used to increase
scale invariance. Two bootstrapping stages are applied with
5000 additional hard negatives each time.

Comparison with Other Occlusion Handling
Strategies
To demonstrate the effectiveness of the proposed multi-task
model for occlusion handling, we compare it with other
strategies for occluded pedestrian detection on the Caltech
benchmark. The compared methods include: (a) detector
trained only on partial occluded pedestrians; (b) detector
trained only on heavy occluded pedestrians; (c) detector
trained on both partial and heavy occluded pedestrians; (d)
detector trained on partial and heavy occluded pedestrians
independently, and their detection results are then fused.

Fig. 1 shows the detection results on pedestrians of ≥ 50
pixels high, fully visible or no more than 80% occluded.
It can be seen that: (1) Heavy occlusion model performs
poorly, which is as expected since it is hard to learn an effec-
tive pedestrian model due to large occluded portion; (2) Par-
tial occlusion model performs much better than heavy occlu-
sion model, since more useful information of pedestrian is
kept for model training; (3) The effect of combining partial
and heavy occlusion model depends on the fusion strategy:
the improvement is obtained when fusing partial and heavy
occlusion data to train a single detector, while no help is
provided when training two independent detectors and then
fusing their results; (4) The proposed multi-task model out-
performs all the other strategies by exploring the relationship
of data from different occlusion levels.

Comparison with Popular Detection Methods with
Occlusion Handling
We also compare the proposed approach with other popular
detection methods with occlusion handling in the literature,
including HOG-LBP (Wang, Han, and Yan 2009), DBN-Isol
(Ouyang and Wang 2012), DBN-Mut (Ouyang, Zeng, and
Wang 2013), Franken (Mathias et al. 2013) and JointDeep
(Ouyang and Wang 2013). Table 1 reports the log-average
miss rate of different detection methods with occlusion han-
dling on “reasonable” and three “occlusion” subsets of the
Caltech benchmark. It can be observed that the proposed ap-
proach significantly outperforms the other methods on al-
most all the subsets, except that DBN-Mut and JointDeep
are a little better on “heavy occlusion” subset. By averag-
ing the performances on four subsets, the proposed approach
outperforms the other methods by at least 3.5%.

10
−2

10
−1

10
0

10
1

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
 r

a
te

 

 

87.07% HeavyOccModel

56.63% PartialOccModel+HeavyOccModel

55.14% PartialOccModel

53.51% AllOccModel

49.52% MultiTaskModel

Figure 1: Comparison of different occlusion handling strate-
gies (the numbers in the legend indicate the log-average miss
rate).

Comparison with State-of-the-art Methods
In this section, we compare the proposed approach with
the state-of-the-art detection methods in the literature, in-
cluding VJ (Viola, Jones, and Snow 2005), HOG (Dalal
and Triggs 2005), AFS (Levi, Silberstein, and Bar-Hillel
2013), ChnFtrs (Dollár et al. 2009), ConvNet (Sermanet
et al. 2013), CrossTalk (Dollár, Appel, and Kienzle 2012),
FeatSynth (Bar-Hillel et al. 2010), FPDW (Dollár, Belongie,
and Perona 2010), HikSVM (Maji, Berg, and Malik 2008),
LatSVM (Felzenszwalb et al. 2010), MultiFtr (Wojek and
Schiele 2008), MOCO (Chen et al. 2013), MT-DPM (Yan et
al. 2013), MultiResC (Park, Ramanan, and Fowlkes 2010),
pAUCBoost (Paisitkriangkrai, Shen, and van den Hengel
2013), Pls (Schwartz et al. 2009), PoseInv (Lin and Davis
2008), Roerei (Benenson et al. 2013), Shapelet (Sabzmey-
dani and Mori 2007), RandForest (Marı́n et al. 2013), Mul-
tiSDP (Zeng, Ouyang, and Wang 2013), ACF (Dollár et al.
2014), SDN (Luo et al. 2014), and the methods mentioned
in the previous section. Note that for fair comparisons, we
focus on the methods which detect pedestrians on static im-
ages, and exclude the results of using additional motion or
contextual information. We obtain the results of these meth-
ods from the same website as the evaluation software.

Fig. 2 presents the ROC curves (miss rate vs. FPPI) and
the corresponding log-average miss rate (reported in the leg-
end of the figure) of different methods on four subsets of
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80.45% DBN−Mut

78.77% SDN

(d) Heavy occlusion (35%-80% occluded)

Figure 2: Comparison with state-of-the-art methods on the Caltech benchmark.

the Caltech benchmark. Note that only the results of top
16 methods plus the classic VJ and HOG are displayed in
the figure due to the space limitation. We can clearly see
that: (1) On “reasonable” and “none occlusion” subsets,
the proposed approach outperforms all the other state-of-
the-art methods both in terms of the ROC curves and the
log-average miss rate by at least 2.06% and 4.02% respec-
tively; (2) On “partial occlusion” subset, the proposed ap-
proach achieves 50.72% in terms of the log-average miss
rate, which significantly outperforms all the other methods
except only SDN. Moreover, if we look at the ROC curves,
our approach achieves the best performances (the lowest
miss rates) among all the methods when FPPI≥ 0.32; (3) On
“heavy occlusion” subset, the proposed approach achieves
82.37% in terms of the log-average miss rate, which per-
forms better than most of the other methods except MT-
DPM, JointDeep, DBN-Mut and SDN. These approaches
are also optimized for occlusion handling either by discrim-

inative deep models (JointDeep, DBN-Mut and SDN) or by
deformable part models (MT-DPM) which are more flexible
and robust against occlusion benefiting from the deformable
parts.

Conclusions
In this paper, we consider pedestrian detection in different
occlusion levels as different but related problems, and pro-
pose a multi-task model to jointly consider their related-
ness and differences. The proposed model adopts multi-task
learning algorithm to map pedestrians in different occlusion
levels to a common space, where all models correspond-
ing to different occlusion levels are constrained to share a
common set of features, and a boosted detector is then con-
structed to distinguish pedestrians from background. The
proposed approach is evaluated on the challenging Caltech
pedestrian detection benchmark, and achieves state-of-the-
art results on different occlusion-specific test sets.
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