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Abstract

We present an unsupervised approach for abnormal event de-
tection in videos. We propose, given a dictionary of features
learned from local spatiotemporal cuboids using the sparse
coding objective, the abnormality of an event depends jointly
on two factors: the frequency of each feature in reconstructing
all events (or, rarity of a feature) and the strength by which it
is used in reconstructing the current event (or, the absolute
coefficient). The Incremental Coding Length (ICL) of a fea-
ture is a measure of its entropy gain. Given a dictionary, the
ICL computation does not involve any parameter, is compu-
tationally efficient and has been used for saliency detection
in images with impressive results. In this paper, the rarity of
a dictionary feature is learned online as its average energy,
a function of its ICL. The proposed approach is applicable
to real world streaming videos. Experiments on three bench-
mark datasets and evaluations in comparison with a number
of mainstream algorithms show that the approach is compa-
rable to the state-of-the-art.

Introduction
Video cameras that monitor round-the-clock are ubiquitous
and expanding their reach exponentially. Due to the sheer
amount of data these sensors can generate, the resources re-
quired to store, protect personal information, and analyze
them are enormous. Since anomalous events rarely occur, it
is imperative for smart sensors to detect such events which
may then be stored and decisions can be taken.

An anomalous event may be defined as one that stands
out due to some property that occurs infrequently among the
events in its neighboring spatiotemporal locations. Anomaly
detection can be posed as an outlier detection problem where
normal events are modeled and anomaly is detected as sig-
nificant deviation from the norm (Hou and Zhang 2008;
Cong, Yuan, and Liu 2013; Roshtkhari and Levine 2013;
Zhao, Fei-Fei, and Xing 2011; Borji and Itti 2012). In case of
spatiotemporal data, such as videos, it is necessary to detect
the abnormal frames (i.e. temporal anomaly) and to local-
ize the abnormal events within the detected frames (i.e. spa-
tial anomaly). The problem of anomalous event detection in
videos is difficult due to three primary reasons. First, the data
is unlabeled, so supervised training for binary classification
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(anomalous vs. not) is not an option. Second, the data size is
enormous, so storing all the data is not feasible. Finally, the
underlying data distribution is non-stationary and involves
concept drifts; consequently normality may vary over time.

Our goal is to build a fast and accurate abnormal event de-
tection algorithm for practical real-world applications. It is
desirable that a method quickly builds a model of normality
and detects anomalies while incrementally updating itself in
an unsupervised manner as new patterns are observed. The
contributions of this paper are twofold.

A new definition of anomaly. Given a dictionary of fea-
tures learned from local spatiotemporal cuboids using the
sparse coding objective (Olshausen and Field 1996; Mairal
et al. 2010), we define a data point as anomalous if it consists
of one or more features with significant strength that rarely
occur in the other observed data points. Formally, given a set
of data points X = {~xi}Ni=1, an anomalous data point ~xc is
defined as:

~xc ∈ X, ζ(~xc|X) ≥ ω (1)

where ~xi ∈ Rm, m is the dimension of each data point, ζ :
X→ R+ is a scoring function, R+ is the set of non-negative
real numbers and ω is a threshold. ζ assigns an outlier score
to each data in X based on its frequency of occurrence in
comparison to that of the other observed data. Rarer data
points are assigned higher scores. A data could be a pixel,
region, object or event, depending on the nature of the data
and the goal. For example, if the data is a video sequence, X
is a set of events ~xi defined at each point (xi, yi, ti) in the
video where (xi, yi) refers to the spatial location in a frame
and ti is the index of the frame. The crux of the problem is
to discover the function ζ such that unusual or rare data in a
dataset can be detected.

Evaluating ICL for scoring spatiotemporal data points for
anomaly detection. The Incremental Coding Length (ICL) of
a feature is a measure of its entropy gain. Given a dictionary
of features, the ICL computation does not involve any pa-
rameter, is computationally efficient and has been used for
saliency detection in images with impressive results (Hou
and Zhang 2008). In this paper, the rarity of a spatiotempo-
ral feature in the dictionary is learned online as its average
energy, a function of its ICL. No prior assumption is made
regarding the data or nature of anomaly. Due to its unsuper-
vised and online operation, the proposed approach is appli-
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cable to real world streaming videos. Experiments on three
benchmark datasets and evaluations in comparison with a
number of mainstream algorithms show that the approach is
comparable to the state-of-the-art.

Rest of this paper is organized as follows. In the next
section, prior related work is reviewed. Then the proposed
framework is described followed by experimental results
on a number of benchmark datasets and comparison with
a number of mainstream anomaly detection algorithms. Fi-
nally, the paper ends with conclusions.

Related Work
Typically, anomalous event detection involves three opera-
tions: preprocessing of input data to extract low-level repre-
sentation, learning abstractions of this representation to ex-
tract mid-level features, and scoring the data points with ref-
erence to these features to detect anomalies. Execution order
of these operations often depends on whether the approach
is online or not. In case of videos, it is common to represent
a spatiotemporal cuboid of fixed size as a data point. Ex-
amples of preprocessing methods include histogram of opti-
cal flow (Adam et al. 2008), spatiotemporal gradient (Kratz
and Nishino 2009), social force model (Mehran, Oyama,
and Shah 2009), chaotic invariant (Wu, Moore, and Shah
2010). Mid-level features have been learned using different
methods, such as dimensionality reduction (e.g. PCA, ICA,
clustering), sparse coding (Zhao, Fei-Fei, and Xing 2011;
Cong, Yuan, and Liu 2013; Lu, Shi, and Jia 2013), Gaussian
mixture model (Kim and Grauman 2009), mixtures of dy-
namic textures (Li, Mahadevan, and Vasconcelos 2014), hid-
den Markov model (Kratz and Nishino 2009), Markov ran-
dom field (Benezeth et al. 2009), latent Dirichlet allocation
(Wu, Moore, and Shah 2010). A hierarchy of mid-level fea-
tures can also be learned using deep learning. A number of
methods for scoring the data points have been explored, in-
cluding reconstruction error (Zhao, Fei-Fei, and Xing 2011;
Cong, Yuan, and Liu 2013; Lu, Shi, and Jia 2013), predic-
tion error (Banerjee and Dutta 2013a; 2013b; 2014), rar-
ity index (Hou and Zhang 2008; Borji and Itti 2012), in-
formation content (Li, Mahadevan, and Vasconcelos 2014),
and density-based scoring (Wu, Moore, and Shah 2010;
Kim and Grauman 2009).

In particular, three approaches reported in the literature
bear resemblance to our proposed approach. Zhao, Fei-Fei,
and Xing (2011) preprocessed cuboids at interest points to
compute histograms of gradient and optical flow. A dictio-
nary is learned by minimizing the reconstruction error regu-
larized by sparsity and smoothness constraints. The saliency
score of an event is the minimum value of this objective
function. Cong, Yuan, and Liu (2013) preprocessed cuboids
to extract multi-scale histogram of optical flow (MHOF) fea-
tures. A subset of input cuboids are selected by minimizing
the reconstruction error with sparsity constraint to form a
dictionary. Each dictionary element is assigned a cost based
on its frequency of occurrence. The saliency score of an
event is its sparse reconstruction cost. Lu, Shi, and Jia (2013)
used cuboids at multiple spatial scales and learned multiple
dictionaries. The saliency score of an event is the minimum
reconstruction cost over all the dictionaries.

Proposed Framework
The idea behind the proposed framework is as follows.
First, a video is divided into an ensemble of maximally-
overlapping clips of M frames and each clip is processed
in an online manner. Then local spatiotemporal volumes are
extracted and represented as a sparse linear combination of
dictionary features. Abnormal events can be defined in terms
of rarity of the features. Rarely occurring features are more
abnormal than the frequently occurring ones. Each feature
is assigned an ICL score, which is defined as the ensemble’s
entropy gain during the activity increment of corresponding
feature (Hou and Zhang 2008). Finally, anomaly is obtained
by the weighted summation of the absolute activity by the
energy of all features.

Video Representation
The proposed framework uses local spatiotemporal volumes
around detected interest points in each clip as an input rep-
resentation. Here, we adopt a spatiotemporal interest point
detector (Dollár et al. 2005) to extract cuboids which con-
tain the spatiotemporally windowed pixels. Before learning
the dictionary, each cuboid is converted to a vector and nor-
malized to have a unit `2 norm. The proposed framework
can also be applied over other video descriptors. Figure 1
shows some of the frames from different datasets with de-
tected spatiotemporal interest points within each frame.

Online Sparse Dictionary Learning
Notation. In this paper, matrices are denoted by bold upper-
case letters, while lowercase letters with vector sign denote
column vectors. The columns of a matrix are represented by
corresponding lowercase letters. The elements of a vector
are denoted by letters without vector sign. ~0 denotes a zero
vector with size depending on the context. The elements of
a matrix are denoted using subscript where row and column
indices are separated by a comma. Time indices are denoted
in a parenthesis after the variable.

Let ~x ∈ Rm be a data point. It admits a sparse represen-
tation ~γ ∈ Rk over a dictionary of k features, D ∈ Rm×k,
if ~x can be represented as a linear combination of κ features
in D and κ� k.

The dictionary learning task is to train a dictionary such
that it is well adapted for reconstructing a set of data points.
Given a set of N data points X = [~x1, ..., ~xN ], a dictionary
of k features with a sparsity constraint can be learned by
solving the following optimization problem:

min
Γ,D

1

2

N∑
i=1

‖~xi −D~γi‖22 subject to ‖~γi‖0 ≤ κ ∀i (2)

where Γ = [~γ1, ..., ~γN ] ∈ Rk×N is a sparse representation
matrix, ‖.‖0 denotes the `0 pseudo-norm, the number of non-
zero elements. κ is the maximum number of non-zero ele-
ments allowed in each ~γi and κ� k. Each element ~dj ∈ D
(j = 1, ..., k) is constrained to have a unit `2 norm.

An online dictionary learning algorithm draws one input,
~x(t), or a small batch of inputs, X(t) = [~x1(t), ..., ~xn(t)] ∈
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Figure 1: Examples of detected spatiotemporal interest points (best viewed in color) using the method in (Dollár et al. 2005).

Rm×n, at any time t, followed by two steps: sparse coding
and dictionary update.
Sparse coding: Given a fixed dictionary D ∈ Rm×k and a
data point ~x ∈ Rm, the sparse linear representation ~γ ∈ Rk
is obtained by solving the following sparse approximation
problem:

min
~γ

1

2
‖~x−D~γ‖22 subject to ‖~γ‖0 ≤ κ (3)

This sparse approximation problem can be efficiently solved
using Orthogonal Matching Pursuit (OMP) (Pati, Rezaiifar,
and Krishnaprasad 1993) which is a greedy forward selec-
tion algorithm. Since at any instant t, multiple cuboids can
be extracted from the detected interest points within the clip,
we use the Batch-OMP (Rubinstein, Zibulevsky, and Elad
2008), which speeds up the process considerably.
Dictionary update: At any time t, the optimal dictionary is
the solution to the following optimization problem:

D(t) = argmin
D

1

t

t∑
i=1

(
1

2
‖~x(t)−D~γ(t)‖22

)
= argmin

D

1

t

(
1

2
Tr(DTDA(t))− Tr(DTB(t))

)
This paper follows the online dictionary update al-
gorithm reported in (Mairal et al. 2010) which uses
block-coordinate descent with warm restarts (Bertsekas
1999) for updating the dictionary. This procedure reduces
the memory requirements by storing only the matrices
A(t) =

∑t
h=1 ~γ(h)(~γ(h))

T ∈ Rk×k and B(t) =∑t
h=1 ~x(h)(~γ(h))

T ∈ Rm×k rather than storing all the in-
put signals and their sparse representations. Mini-batch ex-
tension of this algorithm is used here, as we have multiple
cuboids at any time. It has been shown that the mini-batch
extension improves the convergence speed of this online dic-
tionary update algorithm (Mairal et al. 2010). The matrices
are initialized to zeros and are updated as follows:

A(t) = A(t− 1) +
1

n

n∑
i=1

~γi(t)(~γi(t))
T (4)

B(t) = B(t− 1) +
1

n

n∑
i=1

~xi(t)(~γi(t))
T (5)

The pseudo-code for dictionary update is presented in Algo-
rithm 1.

Algorithm 1 Online Dictionary Update

1: Input: Dictionary D = [~d1, ..., ~dk] ∈ Rm×k, A =

[~a1, ...,~ak] ∈ Rk×k, B = [~b1, ...,~bk] ∈ Rm×k
2: Output: Updated dictionary D ∈ Rm×k
3: while convergence criterion not met do
4: for j = 1, 2, ..., k do
5: ~uj ← 1

A[j,j] (
~bj −D~aj) + ~dj

6: ~dj ← 1
‖~uj‖2 ~uj

7: end for
8: end while

Abnormal Event Detection

The rarity of dictionary features is computed using ICL (Hou
and Zhang 2008). At any time t, the sparse linear coeffi-
cient vectors Γ = [~γ1, ..., ~γn] ∈ Rk×n for input cuboids,
X(t) = [~x1(t), ..., ~xn(t)] ∈ Rm×n with respect to a learned
dictionary D are computed using Batch-OMP. The activity
ratio, pj(t) for jth feature over the inputs at time t is com-
puted as:

pj(t) =

∑n
h=1 |Γj,h(t)|∑k

i=1

∑n
h=1 |Γi,h(t)|

(6)

The summary activity ratio ~q(t) at any time t be incremen-
tally updated as follows:

~q(t) = (1− α(t))~q(t− 1) + α(t)~p(t) (7)

where α(t) is a parameter, a function of time, and 0 <
α(t) ≤ 1 ∀t. Thus, in order to determine the new estimate
~q(t), the prior estimate ~q(t−1) is weighted by 1−α(t) while
the new outcome ~p(t) is weighted by α(t). If α(t) = 1/t,
~q(t) is the mean of the activity ratio since the beginning of
time. If α(t) = 1/t1 where t1 is a constant, a positive inte-
ger, ~q is a soft moving average of the activity ratio for the
last t1 time instants. It does not discard everything before
the last t1 instants but assigns them much less weight in the
estimation process. The latter case is particularly useful if
the data distribution changes over time. The summary activ-
ity ratio of each dictionary atom is initialized to 1/k. It is
obvious because at the beginning, all the dictionary atoms
are equally likely to be used for reconstruction.

Given the summary activity ratio at any time t, ICL can
be defined as (Hou and Zhang 2008):
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ICL(qj) =
∂H(~q)

∂qj

= −H(~q)− qj − log qj − qj log qj

After calculating ICL score, salient feature set at any time t
is defined as: S(t) = {j | ICL(qj(t)) > 0}. The amount of
energy received by each salient feature at any time t, θj(t)
where j ∈ S(t) is calculated as:

θj(t) =


ICL(qj(t))∑

i∈S(t) ICL(qi(t))
, if j ∈ S(t)

0, otherwise

(8)

The value of θj(t) indicates how rarely the jth feature is
used to represent an input signal in some temporal neighbor-
hood, the size of the neighborhood is determined by α(t).
For a suitable α(t), this value will be high for rarely used
features and low for the features used very often. Finally,
given a data point ~x and its coefficient vector ~γ with respect
to a learned dictionary D, the anomaly score g is defined as:

ζ(~x) = g = |~γ|T ~θ (9)

Here, sampling is sparse in space but dense in time. An
anomaly map is generated for the current frame (except at
the temporal boundaries) taking into account all frames in
the temporal window of which the current frame is the last.
Each cuboid, extracted by a spatiotemporal interest point de-
tector (Dollár et al. 2005), receives an anomaly score which
is shared by all pixels in the cuboid in the current frame. This
image of scores is then blurred with an appropriate Gaussian
filter to generate the final anomaly map for the current frame.

Experimental Results
The proposed approach is evaluated on a number of bench-
mark datasets using multiple evaluation criteria. No prior as-
sumption is made regarding the data or nature of anomaly.
Results obtained from this extensive experimentation show
that the proposed rarity-based approach is comparable to the
state-of-the-art.

Datasets
The UCSD, UMN and Subway are among the most com-
monly used benchmark datasets for abnormal event detec-
tion in videos.
UCSD dataset: The UCSD dataset (Mahadevan et al. 2010)
is organized into two sub-datasets, Ped1 and Ped2. Ped1
contains 34 training and 36 testing video clips of 158× 238
pixel resolution. Ped2 contains 16 training and 12 testing
video clips of 240 × 360 pixel resolution. The training sets
have all normal events and contain only pedestrians. Each
testing video clip contains at least one abnormal event with
the presence of non-pedestrians on the walk-way, such as
bicyclists, skaters, small cars, and people in wheelchairs.

UMN dataset: The UMN dataset (Mehran, Oyama, and
Shah 2009) contains three different crowded scenes. Nor-
mal events consists of individuals wandering around or or-
ganized in groups. Abnormal events consist of crowd escape
scenes. The total number of frames is 7740 (1450, 4415 and
2145 for scenes 1, 2 and 3 respectively) with a 320 × 240
pixel resolution.
Subway dataset: The Subway dataset (Adam et al. 2008)
includes two videos: entrance gate (1 hour 36 minutes in
duration consisting of 144,249 frames) and exit gate (43
minutes in duration consisting of 64,900 frames) with a
512 × 384 pixel resolution. Normal behaviors include peo-
ple entering and exiting the station while abnormal events
include people moving in the wrong direction, such as exit-
ing the entrance and entering the exit, or avoiding payment.

Evaluation Criteria
Following (Cong, Yuan, and Liu 2013; Li, Mahadevan, and
Vasconcelos 2014), two criteria were used for evaluation of
abnormal event detection accuracy: frame level criterion and
pixel level criterion.
• Frame-level criterion: An algorithm determines the

frames that contain abnormal events. The result is com-
pared to the frame-level ground truth annotation of each
frame and the number of true and false positive frames are
calculated.

• Pixel-level criterion: An algorithm determines the pix-
els that are related to abnormal events. If at least 40% of
the truly anomalous pixels are detected for an abnormal
frame, it is considered a correct detection.
For both the cases, true positive rate (TPR) is calculated as

the ratio between number of true positive frames and num-
ber of positive frames, and false positive rate (FPR) is cal-
culated as the ratio between number of false positive frames
and number of negative frames. TPR and FPR is calculated
for different threshold values in the range from minimum to
maximum anomaly score. Then, ROC curve is drawn as the
TPR vs. FPR. Finally, the performance is summarized using
equal error rate (EER) for frame level criterion and rate of
detection (RD) for pixel level criterion (Li, Mahadevan, and
Vasconcelos 2014). A low EER value and high RD value
indicates a better performance.

Metrics for comparison depend on the type of available
ground truth. Only frame level ground truth is available for
UMN dataset, hence we are only able to compute EER and
AUC. Only event level ground truth is available for Subway
dataset, hence we are only able to compute the event level
detection accuracy. Ground truths for both frame and pixel
level criteria are available for UCSD datasets, hence we are
able to compute both, EER and RD.

Performance Evaluation
The proposed method was tested on the described datasets
and compared with a number of state-of-the art methods,
including H-MDT (Li, Mahadevan, and Vasconcelos 2014),
Sparse (Cong, Yuan, and Liu 2013), STC (Roshtkhari and
Levine 2013), MPPCA (Kim and Grauman 2009), Social
Force (Mehran, Oyama, and Shah 2009), LMH (Adam et al.
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Figure 2: Abnormal frames and their detection result from UCSD Ped1 (top row) and UCSD Ped2 (bottom row) using our
model. The bikers, skaters and cars were detected as anomalous patterns (highlighted in red, best viewed in color). The proposed
method can detect multiple anomalous patterns within a single frame.

Figure 3: Abnormal frames from UMN dataset. Anomalous regions, as detected by our model, are highlighted in red (best
viewed in color).
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Figure 4: (a) ROC curves for pixel-level criterion on UCSD Ped1 dataset. (b) ROC curves for frame-level criterion on UMN
dataset.

2008), Chaotic Invariant (Wu, Moore, and Shah 2010), Lo-
cal Statistical Aggregates (Saligrama and Chen 2012), Dy-
namic SC (Zhao, Fei-Fei, and Xing 2011), and SCL (Lu, Shi,
and Jia 2013). In our experiments, the videos were presented
randomly and the frames in each video were presented se-
quentially in order.

UCSD dataset: The entire test set was used for the evalua-
tion of our model on Ped1 and Ped2 datasets. The anomaly
maps are generated based on the input cuboids of size
13×13×10 pixels. The proposed model could detect bikers,

skaters, small cars as abnormal events. It could also detect
multiple anomalous patterns within a single frame. A few of
the results are shown in Figure 2. The ROC curves in Figure
4a and Table 1 compare our model with others’. These com-
parisons reveal that the performance of our model is at par
with the state-of-the-art.

UMN dataset: For the UMN dataset, the first 400 frames of
each scene were used to learn the dictionary and energy for
each dictionary feature. The other frames were used for test-
ing. Figure 3 shows a few of the results. A comparison with
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Figure 5: Anomaly detection in Subway dataset. Top row represents entrance gate and bottom row represents exit gate. Anomaly
detection includes detection of wrong direction events and no payment events. Anomalies detected by our model are highlighted
in red (best viewed in color).

Table 1: Anomaly detection performance on USCD Ped1
and Ped2 datasets.

Method EER RD EER RD
(Ped1) (Ped1) (Ped2) (Ped2)

Ours 19.8 69.5 22.3 67.5
H-MDT 17.8 75 18.5 70
Sparse 19 46 X X
STC 15 73 13 74

MPPCA 35.6 23.2 35.8 22.4
Social Force 36.5 40.9 35 27.6

LMH 38.9 32.6 45.8 22.4

prior results reported in the literature, under the frame-level
criterion, is presented in Figure 4b and Table 2. Performance
of our model is comparable to the state-of-the-art in the lit-
erature.

Table 2: Quantitative comparison between different methods
on UMN dataset.

Method AUC EER
Ours 99.5 3.65

Chaotic Invariant 99.4 5.3
Sparse 99.6 2.8

Social Force 94.9 12.6
Local Statistical Aggregates 99.5 3.4

H-MDT 99.5 3.7

Subway dataset: For the Subway dataset, each frame was
resized to 320 × 240 pixel resolution. The dictionary was
learned using cuboids of size 13×13×10 pixels. The first ten
minutes of each video were used to learn the dictionary and
energy for each dictionary features. Figure 5 shows a few
detection results which include detection of wrong direc-
tion events as well as no payment events. Table 3 compares
the performance of our model with other existing models. It
shows that our model is comparable to the state-of-the-art
models reported in the literature.

Table 3: Performance analysis on the Subway dataset.

Method Dataset Abnormal False
events alarm

Ours Entrance 60/66 5
Exit 19/19 2

STC Entrance 61/66 4
Exit 19/19 2

MPPCA Entrance 57/66 6
Exit 19/19 3

Dynamic SC Entrance 60/66 5
Exit 19/19 2

Sparse Entrance 27/31 4
Exit 9/9 0

SCL Entrance 57/66 4
Exit 19/19 2

Conclusions
A rarity-based approach for anomaly detection in streaming
videos was presented. Given a dictionary of features learned
from local spatiotemporal cuboids using the sparse coding
objective, we define a data point as anomalous if it consists
of one or more features with significant strength that rarely
occur in the other observed data points. The rarity of each
feature was approximated online using ICL. The anomaly
score for an input data was computed as the sum, over all
features, of the average energy multiplied by absolute coef-
ficients. Finally, the anomaly map was generated from this
image of anomaly scores.

The proposed approach was extensively experimented
with a number of benchmark datasets and evaluated in com-
parison to a number of mainstream algorithms. No prior as-
sumption was made regarding the data or nature of anomaly.
The unsupervised and online operation of the proposed
method allows it to deal with space- and time-varying data
and is useful to real-time applications. Experimental results,
reported in this paper, showed that the proposed rarity-based
approach is comparable to the state-of-the-art.
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