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Abstract 
Reasoning does not work well when done in isolation from 
its significance, both to the needs and interests of an agent 
and with respect to the wider world. Moreover, those issues 
may best be handled with a new sort of data structure that 
goes beyond the knowledge base and incorporates aspects of 
perceptual knowledge and even more, in which a kind of an-
ticipatory action may be key. 

 Out of the Ivory Tower   
Reasoning is one of the oldest topics in artificial intelli-
gence (AI). And it has made lots of progress, in the form of 
commonsense reasoning (CSR), planning, automated theo-
rem-proving, and more. But I suspect it has hit a barrier 
that must be surmounted if we are to approach anything 
like human-level inference. Here I give evidence for such a 
barrier, and ideas about dealing with it, loosely based on 
evidence from human behavior. 
 In rough synopsis, reasoning does not work well when 
done in isolation from its broader significance, both for the 
needs and interests of an agent and for the wider world. 
Moreover, those issues may best be handled with a new 
sort of data structure that goes beyond the knowledge base 
(KB) and incorporates aspects of perceptual knowledge 
and even more, in which a kind of anticipatory action 
many be key.  
 I suspect this has ties with recent calls to “put the Sci-
ence” back in AI (Levesque 2013, Langley 2012). For 
what I am arguing, in some sense, is that reasoning should 
be regarded as “in the wild” as events unfold rather than 
confined to management of an isolated KB; and that this 
speaks to an agent interacting with the world, rather than a 
puzzle in abstract inference (yet I will also argue that even 
“pure” reasoning as in mathematics hugely benefits from 
many connections with the world). And finally, we then 
will end up studying the nature of world-embedded cogni-
tive agents, humans included. But this is very broad-
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brushed and general, whereas my main point is a technical 
suggestion about reasoning informed by meaning, especial-
ly meaning concerning experience and action. 
 One quick example at the outset: The Wason Selection 
Task (Wason 1968) shows that human inference is strongly 
aided when the details of the task at hand have real mean-
ing that the subjects can relate to in terms of things that 
matter to them, helping keep attention on what is relevant; 
and this holds even when the task in the abstract is a matter 
of so-called pure logic. While this could be seen as a defect 
in human reasoning, something computers would never trip 
up on, I think it points in the opposite direction: inference 
without broader meaning is not worth much, and not worth 
being good at.  
 I will illustrate my main points with a series of examples 
based on the activities of proving, planning, and under-
standing. 

Proving 
Mathematicians not only need to stop now and then for 
lunch or sleep. Their respite from plowing straight ahead 
with lemma upon lemma goes far beyond that. In fact, I 
would venture to claim that mathematical reasoning is 
much more a matter of assessing where one is, what one 
has done, and where one should go next, than it is single-
minded carrying out of steps in proofs. Of course, there is 
checking of ideas, seeing if a method pans out. But even 
that – except in somewhat rare cases of brute computation, 
say of an integral – is largely again a matter of looking to 
see what step to take next, whether things look as expected, 
and so on. And equally important: whether there is evi-
dence of sufficient progress to justify further effort in the 
same direction, or perhaps it is time to try something else.  
 Thus I argue that mathematical prowess tends to involve 
large amounts of broad knowledge of connections, and not 
so much sequential depth. While the end-product may be 
long, it arises from very short pieces built from fairly direct 
connections, and stitched together again by similarly direct 
(albeit sometimes not widely known) connections.  
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 So there is a (good) kind of shallow-but-broad character 
to proving theorems, and any apparent depth arises out of 
that. (Whether a future cousin of Deep Blue will show that 
the pure plowing-ahead kind of proof activity can outdo 
mathematicians remains to be seen; I am guessing not.) 
 Not only that. Actual calculational steps themselves are 
highly symbolic in nature – and by that I do not mean de-
void of meaning. On the contrary, I refer to the actual 
physical moving of symbols on a blackboard – or in simu-
lation in the mind’s eye (Landy&Goldstone 2009, Shep-
ard&Metzler 1971); it is very time-and-space oriented. 
This applies both to the symbols themselves, and to what 
they stand for; the use-mention distinction is fundamental 
in mathematical reasoning. A manifold is not just the letter 
M but a spreading multi-dimensional surface that the 
mathematician’s “eye” can peer about in, while assessing 
what to consider next about M. In addition, symbols get 
huge re-use, so M may refer to multiple things, and as-
sessment has to work out such symbol-clashes as well. 
(Miller 1993) has made an encouraging start on this latter 
issue, but in an NLP and CSR setting; see also (Gurney et 
al 1997). 
 Finally, mathematicians can and do – frequently – ques-
tion their axioms, and alter them at will. Some of the most 
important advances come from seeing that a different defi-
nition or construction provides deep insights that were ob-
scured by traditional notions. 
 Yet none of this has even a remote presence in automat-
ed proof-systems or in CSR. Our current artifacts are not 
just KB managers but even worse: clueless ones that al-
ways push straight ahead, never stopping to take stock of 
where they have been and where they are going. 

Planning 
Suppose 500 sheets of paper are neatly stacked together (in 
what is known as a ream). If the task is to load them into a 
printer, this can be done one sheet at a time (terrible); or 
(possibly) the entire ream at once, or some portion thereof.  
To even address this problem requires multiply represent-
ing the stack as one (a ream) and many (sheets).  Moreo-
ver, specifying the problem – if it is not to be a highly dis-
tasteful exercise in frustration – will not involve stating all 
499 “on” relationships between successive sheets. Finally, 
there might not be 500 sheets, but rather an unspecified 
stack of between (say) 400 and 600 sheets. This sort of 
problem has motivated some (Goldman 2009, Srivastava et 
al 2015) to address the need for planning systems that can 
consider loops (do-until) and other constructs that are not 
part of standard planners. 
 A sort of spatial grasp of the problem seems essential 
here, if a human is not to do most of the work in preparing 
the problem ahead of time. An agent on its own somehow 

must “see” that there is a stack of many items, and then 
assess the many possibilities for transporting them without 
considering each one in turn. 
 Here is a second example: 100 coffee cups are sitting in 
scattered locations on a table. They are to be moved to one 
end of the table. A cup can be transported safely by attach-
ing a string to its handle and pulling gently.  The string can 
be attached to as many as (say) 20 cups at a time at a very 
slight increase in cost, and pulled with no increase in cost 
or risk. It is clear that the best plan is to transport twenty 
cups at a time, over and over. But how is a planner to fig-
ure this out? Traditional planners will figure it out only by 
considering all possible scenarios, including all possible 
choices of (ordered!) subsets of up to twenty cups! This 
will overwhelm even the fastest planners today and in the 
foreseeable future.  
 Yet a system endowed with the ability to “think” in 
some suitable sense, will realize that (i) twenty cups at a 
time is optimal, and (ii) it does not matter a lot which 
twenty except that they should be reasonably close together 
to facilitate the string attachment. All this, I contend, re-
quires a rich sense of how reality works, and an ability to 
make assessments based on that. Aspects of this can be 
quite naturally handled by an appropriate KB and associat-
ed inference rules (again, see Miller 1993). But noting 
where the cups are, and that one should avoid a bumpy 
area while pulling them, have to be one-off items that no 
amount of prior experience will have prepared one for. 
This takes, among other things, reasoning about sets 
(McCarthy 1995, Perlis 1988). 

Understanding 
Patrick Winston (Winston 2011) gives an example that will 
be instructive here; I paraphrase and elaborate for present 
purposes:  A new table-saw has a red label with the warn-
ing “Don’t wear gloves when using this equipment”.  The 
owner puzzles over this, wondering whether the “don’t” is 
a typo, or if it is a macabre joke, before envisioning the 
activity of sawing a piece of wood with gloves on: as the 
gloves are imagined to approach the spinning blade, the 
finger of one glove is seen to catch on a sawtooth and be 
pulled into the blade, along with the hand trapped inside it.  
 The lesson Winston takes from this is that we are story-
tellers, and that much of our intelligence resides in that 
capacity. I do not disagree, but I also would emphasize 
another lesson: that we are imaginers, we envision circum-
stances in time and space (Fauconnier 1985, Johnson-Laird 
1986), and use that to inform our undertanding of situa-
tions. In effect, we run mental simulations to see what 
might happen.  
 It is very unlikely – and Winston makes this case – that 
we have a supply of general axioms suitable for reaching 
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the conclusion that one should not wear gloves when using 
a table-saw. Gloves after all protect ones hands from cold, 
wet, cuts, bruises and other dangers; and a table-saw is 
dangerous. Yet when we envision the situation, we can see 
details that we did not know before. We now seem to un-
derstand the red warning label, or at least have a plausible 
explanation of it. 
 But perhaps we did already know this, at least implicit-
ly? We know a sawtooth has a sharp point that can catch 
and cut flesh, wood, most materials – so why not also a 
glove? Yet a glove can be very protective around sharp 
items such as knives. But the saw spins, and so an item 
caught in a tooth could be pulled along, very fast. But did 
one know that ahead of time? And won’t the tooth simply 
rip through most materials (like skin) rather than pull on 
them? Yet gloves often have resilience, fibrous elements 
that tend not to rip fully and that can be grabbed and 
tugged. On the other hand, so does wood. There seems no 
way to figure this out from routine well-known “facts”.  
 In fact, there does not seem to be a consensus among 
woodworkers whether one should or should not wear 
gloves when using a table-saw. But one can rely on re-
called images of gloves and similar materials getting 
caught in various ways, and hands not so quickly extracted, 
to come to an understanding as to why it might be danger-
ous to do so – i.e., what the warning sign could be getting 
at. But to do this, one has to inspect those images, they are 
not already parsed into thousands (millions?) of fine details 
in a KB ready for logic-processing. And if they were, it is 
highly likely that the result would be inconsistent (Perlis 
1997). 
 So now we have seen various initial aspects of our larger 
point, that is still emerging: reasoning is made far more 
effective if it is not restricted purely to syntactic manipula-
tions of a KB, but can also avail itself of (experience-
based) simulations, which it then can assess. Indeed, rea-
soning can initially assess whether it is worth doing simu-
lating (imagining) in the first place, and then what weight 
to give it, or whether to rerun it with some changes, and so 
on. And this brings us to the next section. 

The 5th Dimension 
So, where are we? It appears that reasoning about the eve-
ryday world necessarily involves a substantial amount of 
information about the 4-dimensional spatial and temporal 
structure of that world: what is near what, above what, and 
so on, and how things behave over time. And it gets very 
complicated, apparently more than can be accommodated 
fully in any sort of KB that we can construct. (CYC would 
be an apparent counterexample, but this author maintains 
that even CYC (see Lenat 1995) is not up to the Winston 
task in a general way, for reasons given above.) On the 

other hand, as the saying goes, a picture is worth a thou-
sand words. Alas, computer vision is not in such a good 
state either. The two clearly can help each other out; and 
this is a topic of ongoing research. 
 But there is another point, also present in the three case 
studies above (proving, planning, understanding): an agent 
needs to know not only what is what, there in front of it, so 
to speak, but also what could be what if changes were 
made. This is key to creating proofs, making plans, under-
standing risks, and so on. And that – seeing into possible 
futures – is one of the most effortless things we do, all day 
long. We are not speaking of magical predictions here, but 
rather of simple awareness of how things are likely to go 
under fairly ordinary circumstances. And so I want to add 
one more dimension, and suggest a set of hypotheses. 

1. Our brains are geared not so much for perception 
per se, but rather for anticipation or imagination of 
alternatives; what could be called envisioning. (Note 
that many people do very well indeed, with quite 
poor vision, hearing, and other deficits.) 

2. This envisioning involves special data structures 
with some of the 4-dimensional qualities of the ac-
tual world. 

3. Our brains run very fast simulations with those 
structures, based in part on high-level (KB) infor-
mation and in part on perceptual data, to anticipate 
what might happen under various conditions. 

4. We specify those conditions, and even specify addi-
tional details (traditionally regarded as belonging to 
different “levels”): pure sensory data (red spots), 
shapes, items not perceived, areas of high attention, 
interpretations and speculations (is that blood?), etc. 
And all this is part of these same structures, encod-
ed in what might be called an imaginative-
reasoning markup language (IRML).  

IRML Structures 
 These additional notations are a critical 5th element in 
our reasoning, and – I  claim – in any real-world agent that 
is broadly effective at a human level. We “see” not only 
what is there in front of us but also (in our reasoning) 
whatever we want to see, groupings that interest us, ele-
ments that are not even there but that we wonder about, 
and so on. We switch our thoughts and speculations at will 
(Perlis 1987). 
 Such hypothesized IRML structures could be a bit like 
drawings with many added elements, e.g., some items cir-
cled, arrows and notes, and so on, not unlike a cartoon. The 
vision community sometimes refers to a cartoon-level or 
mid-level structure, as a halfway step in processing image 
data from pixel (low-level) to scene understanding (KB, or 
high-level). But I am suggesting that the real understanding 
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comes at the ongoing active IRML level, not at the KB 
level.  
 Consider the word “house” that may appear within a KB 
item. It has no meaning in itself, and could just as well be 
replaced with any generic symbol, e.g., 42akb3#0. It is 
only when an agent imaginatively relates such KB items to, 
for instance, walls, rooms, distances, space one can move 
about in, that a kind of house understanding arises. What 
makes a KB different from any other collection of sentenc-
es? Surely how it is used. And the use that I am suggesting 
is one of the KB being used in augmentation of an internal 
dynamic simulation which is populated with very many 
scanning processes that constantly calculate what is going 
on. 
 One understands a scene not simply when one has the 
abstract knowledge that there are three people playing 
cards; that is useful and an aspect of the scene, but for 
many purposes far too thin. Are they seated? Men? Wom-
en? Children? Smiling? Close enough to touch each other? 
How many cards are on the table? Are the cards touching 
each other? Does the table have straight-edge sides? Is 
there some discoloration halfway along the nearest side? 
And so on, and on. There is no seeming end to the list of 
details that are available. Of course, computer vision re-
searchers would be thrilled to be able to provide just “three 
people playing cards”; but that merely skims the surface. 
 Consider simply a rectangular table. What happens when 
one “sees” it? What does it mean to now know that, for 
instance, the closest edge is straight? It cannot be simply 
that an “image” is stored somewhere – the image data has 
to be suitably processed for the straightness to be deter-
mined. And indeed there are algorithms – and neural as-
semblies – that can do this.  
 So, what I propose is that instead of having this infor-
mation simply passed up to a KB, the algorithms keep at it, 
reiterating the processing as long as attention is on the ta-
ble. Let’s call these processes “fast crawlers” – they 
“crawl” over the image again and again, and there are 
many of them, akin to the “quick and inflexible” modules 
of (Pollock 1995). They take measurements in time, dy-
namically triangulating like busy little surveyors. As soon 
as attention moves away, they stop and we are left with a 
mostly abstract and thin KB version that we had been look-
ing at a straight edge.  Yet the KB is hardly inactive in all 
this. It does a perpetual tango with – indeed I think is best 
thought of as part of – the IRML structures, informing and 
guiding what should be imagined next. 
 But doesn’t all this speak to more evidence of poor de-
sign in the human case? Why not keep a veridical image in 
memory, that can be inspected again later on? Indeed that 
can be done – and we do it with external aids such as pho-
tographs. But any agent will still have to rerun the fast 
crawlers all over again. There is no other way to “see”, and 

with it to figure out plausible outcomes. Envisioning can-
not be retained except by continuing to envision. 
 How might this work? One thought is that an agent can 
have stored “videos” of past experiences, and then as need-
ed modify and stich them together to suit present purposes. 
One has seen spinning sawblades, one has seen gloves, and 
one creates a little internal movie that runs according to 
learned (and possibly some inborn) rules of how the world 
works (physical simulation). The result will have gaps and 
confusions, but may be enough to provide a rich set of pos-
sibilities that can then be further explored. 
 Here is another example, modified from (Levesque 
2013): Can a crocodile jump over a hedge? This would be 
very hard for a KB to provide any sort of answer to, unless 
specially doctored for that purpose. Levesque argues that a 
great deal of work knowledge is needed to answer general 
questions, and I would not disagree. But I think the case is 
even harder than that, and here I have presented the view 
that very often what is needed is the ability to run virtual 
reality shows internally: one “sees” the crocodile scuttle 
toward the hedge, and either it does or does not manage to 
jump over, based on one’s current grasp of how things 
work – or indeed it may fail to give an unambiguous an-
swer. But this grasp is not entirely given in the form of 
explicit propositional knowledge; rather much of it is im-
plicitly embedded in the agent’s fund of experience in the 
form of stored videos, and processed by virtual fast crawl-
ers. Indeed, it will be a mix of explicit reasoning and visu-
alized reasoning, which is what the IRML idea is aimed at 
– though as yet still very underfleshed! 
 Applying these ideas to, for instance, the coffee-cup 
planning problem above, might allow an agent to visualize 
the attachment of string to many cups, and this could then 
facilitate such things as realizing that it is best to start with 
the cups easiest to reach – and to see which cups those are. 
This assumes experience with attaching strings, and with 
cups sliding on a table, as well as general physical “unfold-
ing” of events in time and space. So there is a lot of work 
involved, but well worth it in my view. 

Related work 
Of course, much work has been done on hypothetical rea-
soning, and even in connection with planning and percep-
tion; see for instance (Gelfond & Lifschitz 1993, Lifschitz 
1999, and Baral et al 1997). However, as far as I can tell, 
this does not address the issues in the Winston problem, 
nor does it appear to lend itself to simulational (real-time 
dynamic) reasoning. 
 There appears to be very limited work on image-
processing related to reasoning in the fashion I am describ-
ing; see (Glasgow 1998, Chang et al 2014, Mohan et al 
2012). 
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 NLP is an area where some potential overlap with these 
ideas is starting to show up, partly borrowed from linguis-
tics; indeed, there is an exciting mix of these and neurosci-
ence.  See for instance (Feldman 1985, O’Regan & Noe 
2001, Bergen & Chang 2005, and Lau et al 2008). 
 In the planning area, in addition to work already men-
tioned, there are (Riddle et al 2015, Traverso et al 2015, 
and the much older Nirkhe 1994), all of which consider the 
need for more realistic representations and methods for 
real-world planning. 

Conclusion 
I suspect that AI – CSR and planning and vision of course, 
but also many other areas such as NLP and even machine 
learning – will not approach human-level intelligence until 
we take far more seriously the real-world dynamic connec-
tion of agent and environment.  On the other hand, I think 
much of the work is clear enough for us to begin to tackle. 
A suitable form of dynamic movement-based envisioning 
may be part of the solution. 
 The new AI watchwords could be – instead of the tradi-
tional generate and test – envision and assess. 
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