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Introduction
In supervised machine learning, we usually assume the train-
ing data is independently and identically distributed (I.I.D.)
with the testing data. We then use the trained model to gen-
erate predictions when receiving new data with the implicit
assumption that they are I.I.D. with the training set, even
though it could be untrue in many applications. Unfortu-
nately, model performance can decrease significantly when
the distribution generating the new data varies from the dis-
tribution that generated the training data. This situation can
arise when labeled training data is missing, hard to get ac-
cess to or just very expensive to uniformly collect. For in-
stance, in a medical study it may be impossible to collect
certain disease data in a certain area when the task is predict-
ing that disease across many areas. Similarly, in pool-based
active learning, the labeled data is naturally distributed dif-
ferently from the pool since they are selectively sampled in
each iteration from the pool. Therefore, methods that can
deal with the discrepancy in training and testing distribu-
tions are highly desired.

Covariate shift (Shimodaira 2000) is a setting that as-
sumes the source data distribution for training Psrc(x, y)
is different with the target data distribution for testing
Ptrg(x, y), but the difference only comes from Psrc(x) �=
Ptrg(x), which means P (y|x) is the same between train-
ing and testing. The assumption of an equal “labeling func-
tion” between source and target comes from a very natural
idea that we are given a biased set of data to learn from but
when given all the possible data, the “global” function that
labels the data remains the same. This is a looser assump-
tion than I.I.D. and there are a lot of situations like that. In
medical study, whether a patient will suffer from certain dis-
ease given features, like a brain image, is independent with
whether the training data is sampled from certain distribu-
tion. In pool-based active learning, labeled data is originally
selected from the pool, where all the data share the same
P (y|x), which is also the true labeling function we are ac-
tively learning.

All (probabilistic) classifiers will suffer from covariate
shift (Fan et al. 2005). This motivates our research. Gen-
erally, we try to answer this question: how can we deal with
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covariate shift and generate predictions that are robust and
reliable? We propose to develop a general framework for
classification under covariate shift that is robust, flexible and
accurate. By “robust,” we mean the classifier should provide
reasonable performance even when confronted with large
distribution discrepancy. By “flexible,” we mean the classi-
fier should handle different requirements of loss minimiza-
tion. And by “accurate,” it is essential that the prediction
performance satisfies application demands as much as pos-
sible. The problems we are faced with include, but are not
limited to:
• On the methodology: how to robustly minimize different

loss functions subject to covariate shift, the ways to im-
prove the performance or efficiency;

• On the application: how to use the framework for applica-
tions in different fields in AI, like active learning;

• On the analysis: how to prove the performance guaran-
tees of the framework, like the ability to generalize under
covariate shift.

Related Work
A previously preferred approach to correct covariate shift
is to use importance weighting to estimate the predic-
tion loss under the target distribution by reweighting the
source samples according to the target-source density ra-
tio, Ptrg(x)/Psrc(x) (Shimodaira 2000; Zadrozny 2004).
Machine learning research has primarily investigated co-
variate shift from this perspective, with various techniques
for estimating the density ratio (Sugiyama et al. 2008;
Huang et al. 2006). Despite asymptotic guarantees of mini-
mizing target distribution loss, importance weighting is of-
ten extremely inaccurate for finite sample datasets, when
distributions are very different. The reweighted loss will of-
ten be dominated by a small number of data points with large
importance weights. Additionally, the specific data points
with large importance weights vary greatly between random
source samples, often leading to high variance model es-
timates. Theoretically, generalization bounds using impor-
tance weighting under covariate shift have only been es-
tablished when the second moment of sampled importance
weights is bounded (Cortes, Mansour, and Mohri 2010).

Existing approaches to active learning generally assumes
the unknown datapoint labels follow the inductive biases of
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the active learner. However, as previously stated, data pro-
duced from an active learner violates the I.I.D. data property
broadly assumed by supervised machine learning techniques
(Settles 2012). It poses serious pitfalls for active learning
methods both in theory and in practice that have not yet been
resolved. Current solutions using random labeled seed ex-
amples to start with or sampling from mixed strategies usu-
ally aim to make label solicitation more random, which un-
dermines the advantages of active learning.

Current Progress
We proposed a novel approach to classification that em-
braces the uncertainty resulting from covariate shift (Liu
and Ziebart 2014). Based on minimax robust estimation
(Topsøe 1979; Grünwald and Dawid 2004), our approach is
the worst-case distribution possible for a given loss function.
We first focused on expected logarithmic loss minimization
under covariate shift. The resulting robust bias-aware (RBA)
classifier robustly minimizes the logarithmic loss of the tar-
get prediction task subject to known properties of data from
the source distribution. The parameters of the classifier are
optimized via convex optimization to match statistical prop-
erties measured from the source distribution.

Active learning, as an important application where natural
covariate shift exists, is one of the main components in my
research. The RBA classifier is applied to active learning by
considering the problem as a covariate shift prediction task
and adopting pessimism about all uncertain properties of
the conditional label distribution (Liu, Reyzin, and Ziebart
2015). Theoretically, this aligns model uncertainty with pre-
diction loss on remaining unlabeled data points, better jus-
tifying the use of the model’s label estimates within active
learning label solicitation strategies. Moreover, thanks to the
cost sensitive method developed recently (Asif et al. 2015),
the active learning framework using adversarial prediction is
tractable in the 0-1 loss minimization under covariate shift.
So it is also applied to active learning in a workshop paper
(Liu et al. 2015), even though further effort to improve the
performance is still required.

Future Plans
We plan to further develop this robust classification frame-
work under covariate shift in the following three directions
followed by problems we would want to solve:

• The methodology: We are now extending the method us-
ing kernel representation of features. And we would also
like to develop the methodology of the framework in two
aspects: a) The RBA classifier depends on a density ratio
Psrc(x)/Ptrg(x) to control how much the features from
source data generalizes to the target and scale certainty
of the prediction. Apart from using ad-hoc density esti-
mation methods, we will study different ways to obtain
density ratio and figure out the requirement for the den-
sity ratio. b) We would also adapt the method to slightly
different problem settings. For example, when we have
multiple sources data, how can we utilize connections be-
tween them to deal with covariate shift in that case?

• The application: We will continue exploring more sophis-
ticated label strategies that will benefit us in both prac-
tice and theory in active learning. In addition, we will ex-
plore applications in other areas in broader context of AI
to which our robust framework could contribute.

• The analysis: We would like to figure out the generaliza-
tion error analysis under covariate shift setting because
the expected target error no longer relates with the train-
ing error in the same way in the I.I.D. setting. We are also
curious about relation between our model performance
and the source-target discrepancy in theory.
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