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Introduction
Markov Logic Networks (Domingos and Lowd 2009)
(MLNs) use a few weighted first-order logic formulas to
represent large probabilistic graphical models and are ide-
ally suited for representing both relational and probabilistic
knowledge in a wide variety of application domains such as,
NLP, computer vision, and robotics. However, inference in
them is hard because the graphical models can be extremely
large, having millions of variables and features (potentials).
Therefore, several lifted inference algorithms that exploit re-
lational structure and operate at the compact first-order level,
have been developed in recent years. However, the focus of
much of existing research on lifted inference is on marginal
inference while algorithms for MAP and marginal MAP in-
ference are far less advanced. The aim of the proposed thesis
is to fill this void, by developing next generation inference
algorithms for MAP and marginal MAP inference.

Progress to Date
Fast Scalable MAP Inference
A key inference task in MLNs used in computer vision and
NLP is maximum-a-posteriori (MAP) inference which is de-
fined as the task of finding the maximum probability assign-
ment. One can solve this task by grounding the MLN, yield-
ing a Markov network and then using propositional infer-
ence algorithms, such as those developed in the graphical
models literature, over the Markov network. To scale these
algorithms further and to take advantage of relational struc-
ture, one can lift them by looking into each of their various
steps and checking whether symmetries can be exploited in
order to improve its computational efficiency. However, this
requires significant modifications to be made to the proposi-
tional algorithm. This is time consuming, as one has to lift
decades of advances in propositional inference.

To circumvent this problem, we (Sarkhel et al. 2014b) ad-
vocate using the “lifting as pre-processing” paradigm. The
key idea is to apply lifted inference as pre-processing step
and construct a Markov network that is lifted in the sense
that its size can be much smaller than the ground Markov
network and a complete assignment to its variables may rep-
resent several complete assignments in the ground Markov
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network. We observe that for non-shared MLN s(i.e., MLNs
where first-order formulas have no shared terms), one of the
MAP state can be found using ‘uniform assignment’, i.e.,
all ground atoms of a predicate are either true or false. We
proposed to solve the MAP problem on these MLNs by first,
creating a Markov network defined over only the predicates
of the MLN and then using existing solvers to solve them.
Our experiments on both synthetic and real-world MLNs
demonstrated the scalability of our approach.

Unfortunately, this approach does not use existing re-
search on lifted inference to the fullest extent and is effi-
cient only for non-shared MLNs. Hence, in our next paper
(Sarkhel et al. 2014a), we propose a novel lifted MAP in-
ference approach which is also based on the “lifting as pre-
processing” paradigm and is at least as powerful as proba-
bilistic theorem proving (Gogate and Domingos 2011), an
advanced lifted inference algorithm. The key idea in our ap-
proach is to reduce the lifted MAP inference problem to an
equivalent Integer Polynomial Program (IPP). Each variable
in the IPP potentially refers to an assignment to a large num-
ber of ground atoms in the original MLN. Hence, the size of
the search space of the generated IPP can be significantly
smaller than the ground Markov network. To solve the IPP
generated from the MLN we convert it to an equivalent Inte-
ger Linear Program (ILP) using a classic conversion method
outlined in (Watters 1967). A desirable characteristic of our
reduction is that we can use any off-the-shelf ILP solver to
get exact or approximate solution to the original problem.
Experimental results show that our approach is superior to
existing approaches in terms of scalability and accuracy.

Although the aforementioned two approaches are sound,
in a vast majority of cases, they, like many other lifted
inference algorithms, are unable to identify several useful
symmetries (lifting rules are sound but not complete), ei-
ther because the symmetries are approximate or because
the symmetries are domain-specific and do not belong to a
known type. In such cases, lifted inference algorithms par-
tially ground the MLN (namely ground only a few first-order
atoms) and search for a solution in this much larger par-
tially propositionalized space. In our recent paper (Sarkhel,
Singla, and Gogate 2015), we propose a principled, approx-
imate approach for solving this partial grounding problem.
Our approach is straight-forward: partition the ground atoms
into groups and force the inference algorithm to treat all
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atoms in each group as indistinguishable (symmetric). We
prove that our proposed approach yields a consistent assign-
ment that is a lower-bound on the MAP value and show
that the quality of the MAP solution can be improved sys-
tematically by refining the partitions. We also show how to
further improve the complexity of our refinement procedure
by exploiting the exchangeability property of successive re-
finements. Specifically, we show that the exchangeable re-
finements can be arranged on a lattice, which can then be
searched via a heuristic search procedure to yield an effi-
cient any-time, any-space algorithm for MAP inference. We
demonstrate experimentally that our method is highly scal-
able and yields close to optimal solutions in a fraction of the
time as compared to existing approaches.

Advanced Counting for MLN Inference
The main computational bottleneck in MLN inference,
which specifically affects sampling-based and local-search
based inference algorithms such as Gibbs sampling and
MaxWalkSAT, is counting the true groundings of a first-
order formula f given a world ω. Existing MLN sys-
tems solve this counting problem using the following naı̈ve
generate-and-test approach: generate each possible ground-
ing and test whether it is true in ω. This naı̈ve approach is
the main reason for their poor scalability. We proposed a
novel, practical approach (Venugopal, Sarkhel, and Gogate
2015) for solving the aforementioned counting problem. The
key advantages of our approach are that it never grounds the
full MLN and in most cases is orders of magnitude better
than the “generate-and-test” approach. Specifically, we en-
code each formula (f ) as a CSP (C) such that the number
of solutions to C can be directly used to count the satisfied
groundings of f . This allows us to leverage several years
of advances in CSPs and graphical model inference and use
virtually any inference algorithm along with its associated
guarantees to efficiently solve the counting problem. Our ex-
periments clearly show that our new algorithms are several
orders of magnitude more scalable than existing systems.

Approximate Counting for Weight Learning
The main reason for the poor scalability of existing weight
learning systems in MLNs is the high polynomial complex-
ity of algorithms used for computing the gradient. Specifi-
cally, a sub-step in gradient computation is computing the
number of groundings of a first-order formula that evaluate
to true given a truth assignment to all the ground predicates.
Exact algorithms for solving this counting problem have
high polynomial complexity. Even our advanced exact algo-
rithm, mentioned in the previous sub-section, fails to scale-
up to large domains. To scale-up MLN weight learning,
in our recent paper (Sarkhel et al. 2015), we propose new
objective functions for weight learning that approximates
well known functions such as likelihood, pseudo-likelihood
and contrastive divergence by using approximate instead
of exact approaches for solving the aforementioned count-
ing problem. Our experiments on large datasets demonstrate
that our approach is both accurate and scalable compared to
state-of-the-art MLN systems like Alchemy and Tuffy.

Future Work
Dual-decomposition formulation of Lifted MAP
A popular approach for approximate MAP inference in
graphical models is to use the solution of the linear-
programming relaxation of the integer linear programming
formulation of the MAP problem. Often the Lagrangian dual
of this LP relaxation can be solved efficiently, as the problem
can be decomposed into multiple smaller ‘slave’ problems.
This dual decomposition formulation, uses message-passing
algorithms to achieve a tighter upper bound of the original
MAP problem. We plan to formulate our lifted MAP algo-
rithm with this architecture.

Lifted Marginal MAP
A major benefit of probabilistic graphical models is their
ability to use latent variables h to explain co-dependency
among the primary variables x. However, in these mod-
els the most common inference method is the marginal
MAP inference, which finds the optimal estimate of the
sub-model over just x (by summing out h). This max-sum-
product problem is significantly harder than the MAP prob-
lem and has been ignored for MLNs. We plan to combine
our lifted dual-decomposition formulation mentioned in the
previous sub-section with Lifted Belief Propagation (Singla
and Domingos 2008), to obtain a lifted marginal MAP al-
gorithm. We plan to apply our lifted formulation to learn
discriminative models with (marginalized) latent variables.
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