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Abstract

Advances in sensing and imaging have provided psychol-
ogy researchers new tools to understand how the brain cre-
ates the mind and simultaneously revealed the need for a new
paradigm of mind-brain correspondence– a set of basic theo-
retical tenets and an overhauled methodology. I develop ma-
chine learning methods to overcome three initial technical
barriers to application of the new paradigm. I assess candi-
date solutions to these problems using two test datasets rep-
resenting different areas of psychology: the first aiming to
build more objective Post-Traumatic Stress Disorder (PTSD)
diagnostic tools using virtual reality and peripheral physi-
ology, the second aiming to verify theoretical tenets of the
new paradigm in a study of basic affect using functional
Magnetic Resonance Imaging (fMRI). Specifically I address
three technical challenges: assessing performance in small,
real datasets through stability; learning from labels of varying
quality; and probabilistic representations of dynamical sys-
tems.

Introduction

Improvements in neuroimaging technology enable psychol-
ogists to consider how the brain creates the mind with a
degree of complexity that has been inaccessible to date.
Increasingly, however, existing theory is unable to explain
the observed phenomena, revealing the need for a new
paradigm: core theoretical tenets and methodology. In a joint
research effort we have developed a candidate paradigm
for psychology research, the Unified Framework for Brain-
Mind Modeling (UFBMM) (Barrett et al. 2015). In my the-
sis, I develop machine learning solutions to enable prelimi-
nary analysis of data in light of the new paradigm. First we
consider the task of re-analyzing old, likely undersized data
sets for preliminary result and to guide experimental design.
Second, we take such an intermediate step in a Post Trau-
matic Stress Disorder diagnosis setting using traditional fea-
tures but relaxing constraints and interpreting the result as a
proof of preliminary concept. Finally, we consider time se-
ries analysis in light of some of the core theoretical tenets of
the new paradigm.

We approach these problems through two specific exper-
imental data sets. The first is an exploratory experiment to-
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ward a PTSD Diagnosis system that scores patients while
they view Virtual Reality videos using peripheral (distant
from the brain) physiological measures. The second data
set considers basic affect, but innovates from standard fMRI
data sets by presenting subjects with 900 images instead of
the typical 30 to enable the study of dynamics and inter-
actions. The solutions provided by algorithms must be un-
derstood by clinical and psychological researchers to enable
further hypothesizing and support decision making.

Stability as a Performance Measure

Re-analysis of existing datasets in light of new theoreti-
cal tenets is a convenient method for validating the new
paradigm and generating preliminary results to facilitate de-
sign of new experiments. These datasets may be statistically
small relative to the class of analysis techniques suggested
by the new paradigm, so differentiating between a weak sig-
nal and an overfit model is an important capability for pro-
motion of the new paradigm. Intuitively motivated, stability
has served as a useful heuristic for similar settings in un-
supervised learning (Von Luxburg, Ben-david, and Luxburg
2005) and feature selection (Kalousis, Prados, and Hilario
2005). We relate these empirical applications as a perfor-
mance measure to theoretical results for stability as a guar-
antee for good generalization (Bousquet and Elisseeff 2002)
to position stability as a framework for deriving application-
appropriate performance measures. First, I design a general
framework for defining and comparing machine learning ap-
plications of stability and show how to recover definitions
from the literature. This framework reveals necessary ana-
lytical gaps to extend and relate the theoretical and practical
uses, thus enabling theoretical analysis of the empirical ap-
plications. I am working to fill these theoretical gaps and
anticipate results by February. I will apply stability-based
performance metrics derived from this template to each of
the subsequent analyses.

Learning from a catch-all label

Virtual reality has been used for PTSD treatment (Rizzo
et al. 2010) and a number of physiological measures have
been shown to vary with PTSD diagnosis (Orr, Metzger,
and Pitman 2002; Webb et al. 2013). Combined, these tech-
nologies present an opportunity for closed-loop treatment
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monitoring: updated diagnosis during the treatment proto-
col. A necessary prerequisite to such a diagnostic system
is a physiologically computed PTSD score that agrees with
the clinical gold standard. The gold standard diagnostic tool,
Clinician Administered PTSD Scale (CAPS) is a structured
clinical interview designed to rank people above or near
a threshold, and assigns a zero to patients with no symp-
toms (Blake et al. 1995; American Psychiatric Association
2013). Therefore, the CAPS can be interpreted as a sever-
ity score (1-140) or a healthy label (0). This mixed compo-
sition poses a problem for standard regression models, so
we develop a novel learning formulation, Sparse Combined
Regression-Classification (SCRC) (Brown et al. 2015), to
learn a function from this ambiguous training data that com-
putes a severity score from standard psycho-physiological
features. A scoring function learned with SCRC outperforms
that of a naive computational method on metrics designed to
assess diagnostic validity, parsimony, and generalizability.

Time Series Analysis

The UFBMM posits a state space model for the brain where
physiological and behavioral measurements are partial ob-
servations of the brain state. The two groups of measure-
ments share some information, but are not equivalent or even
noisy representations of one another. We therefore formulate
analysis of psychological experimental data as an unsuper-
vised, multi-observation task. I propose Bayesian nonpara-
metric models for structure discovery (Duvenaud et al. 2013;
Fox and Dunson 2012; Saria, Koller, and Penn 2010) and
modeling latent component structure (Griffiths and Ghahra-
mani 2011) to interpret data. To capture temporal structure
we leverage the expressivity and flexibility of Gaussian Pro-
cesses. For the PTSD dataset, I will develop a multichannel
model that discovers latent components that each express in
a subset of the measurement channels. For the fMRI dataset,
in a collaborative effort, we will add spatial and network
structure to the physiological observation model. The resul-
tant models will identify latent components that express both
physiologically and behaviorally, without enforcing a causal
relationship from one measurement to the other.

Conclusion

My thesis provides machine learning methods catered to an-
swering a new class of research questions in psychology.
I develop methods that are context sensitive for extracting
insight from psychology experimental data, by adopting a
model based approach with simple recommendations in or-
der to promote interpretable solutions. Motivated by prac-
tical challenges associated with interpreting data in a tran-
sient mode of science, I provide a framework for design of
context-appropriate performance measures that can be re-
used in a broad variety of applications. I formulated an ap-
plication appropriate task and leveraged features familiar to
clinicians to produce an interpretable proof of concept score
in physiological PTSD diagnosis. After a collaborative effort
to design an abstract mathematical model for a new theory of
brain-mind mapping, I have developed computational tech-
niques that allow for re-analysis of experiments designed in

the current tradition for interpretation in the context of a new
paradigm.
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