
Using Convolutional Neural Networks
to Analyze Function Properties from Images

Yoad Lewenberg
The Hebrew University of

Jerusalem, Israel

Yoram Bachrach
Microsoft Research

Cambridge, UK

Ian Kash
Microsoft Research

Cambridge, UK

Peter Key
Microsoft Research

Cambridge, UK

Abstract

We propose a system for determining properties of
mathematical functions given an image of their graph
representation. We demonstrate our approach for two-
dimensional graphs (curves of single variable functions)
and three-dimensional graphs (surfaces of two variable
functions), studying the properties of convexity and
symmetry. Our method uses a Convolutional Neural
Network which classifies functions according to these
properties, without using any hand-crafted features. We
propose algorithms for randomly constructing functions
with convexity or symmetry properties, and use the im-
ages generated by these algorithms to train our network.
Our system achieves a high accuracy on this task, even
for functions where humans find it difficult to determine
the function’s properties from its image.

Introduction
Consider the case when an experiment has been performed
for determining the influence of a single or multiple pa-
rameters on an outcome of interest. For example, we wish
to determine the impact of parameters of an algorithm on
its performance, or the influence of various parameters of
a simulation model on the result. In many cases one wants
to determine whether the relation between the parameters
and outcome exhibits various properties, such as convexity
or symmetry. One may present the results of the experiment
in a figure, however any additional parameter value would
result in a different figure. It would be very difficult, costly
and time consuming to manually examine each figure to de-
termine whether it exhibits the desired properties, so an au-
tomated method of achieving this is very desired.

The recent surge in research on neural networks has un-
covered many domains where they have excellent perfor-
mance. Approaches based on Deep Convolutional Neural
Networks (CNNs) (LeCun et al. 1998; Simard, Steinkraus,
and Platt 2003) do well on many image and video clas-
sification tasks (Krizhevsky, Sutskever, and Hinton 2012;
Ciresan, Meier, and Schmidhuber 2012; Karpathy et al.
2014), without relying on hand-crafted features.

In contrast to the above research, which focuses on im-
ages of real-world objects, we demonstrate a CNN based

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approach to classifying functions, abstract mathematical ob-
jects, given their representation in the form on an image.

We provide algorithms for generating random functions
with properties of convexity and generalized symmetry, and
generate a large image dataset of function images, consisting
of 4,000 single-variable functions and 10,000 two-variable
functions. We then use the dataset to train a CNN-based clas-
sifier and show it achieves a high performance.

To generate two-dimensional graphs, we first draw n
random numbers from some distribution, which are used as
the values of the function at n points. Once we set the val-
ues of the function at these points, we use a linear interpo-
lation to define the function on the rest of a interval [a, b].
To make the function smoother, we integrate the obtained
function twice.

We consider two mathematical properties:
Convexity: A twice-differentiable function f : [a, b] →

R is convex iff for all x ∈ [a, b] it holds that f ′′ (x) ≥ 0. By
drawing the values of the second derivative from a positive
support distribution (e.g. U (α, β) where 0 < α < β), we
are guarantied that f is convex.

Generalized Symmetry: We consider symmetric func-
tions which are stretching or translated. Let feven and fodd
be random generated even and odd functions. For some
θ ∈ (−π, π) and a function f , the stretching of f by θ is
fθ (x) = f (x) + x · tan (θ). Finally, given an even function
feven we define f∗

even,θ as

f∗
even,θ(x) =

{
feven (x) x ≤ 0

fevenθ (x) x ≥ 0

f∗
odd,θ is defined similarly.

Our process for generating two-variable functions f :
R× R→ R is more elaborate. We cannot simply randomly
draw values multiple points and perform linear interpolation
and integration, as the numerical integration is sensitive to
the direction of integration, resulting in “unnatural” func-
tions. Instead, we randomly draw values for n2 points from
a distributionD. Next, we repeatedly smooth the function by
applying Gaussian kernel to achieve a more natural function,
and add noise to the function to increase the variety among
the returned functions.

We say that a function f : [−a, a] × [−a, a] → R is x-
even if ∀x, y ∈ [−a, a] : f(x, y) = f(−x, y), and x-odd

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

4363

Figure 1: Convex (left) and random (right) functions

Figure 2: Stretched symmetric (left) and random (right)
functions

if ∀x, y ∈ [−a, a] : f(x, y) = −f(−x, y) + 2 · f(0, y).
In contrast to the single variable case, only requiring that
f(x, y) = −f(−x, y) implies that ∀y ∈ [−a, a] : f(0, y) =
0; such functions are trivial to identify, so we use a more
general definition. Generating x-even and x-odd function is
done by generating the values of the function at [−a, 0] ×
[−a, a] and setting the values at [0, a]× [−a, a] accordingly.
Given an angle θ and a function f , the rotation of f by θ is:

fθ(x, y) = f(x cos(θ)− y sin(θ), x sin(θ) + y cos(θ))

CNN Based Function Classification
Deep convolutional neural networks achieve good results
for real-world images, but how well do they perform on
function graphs, which are image representation of abstract
mathematical objects? We used a prominent CNN struc-
ture (Krizhevsky, Sutskever, and Hinton 2012), sometimes
referred to as AlexNet, in our experiments. For training our
CNN, we used the Caffe framework (Jia et al. 2014), a pop-
ular framework for inference with CNNs.

Empirical Results: We used an 80%-20% train-test par-
titioning on an image subset to determine the performance
of the CNN in classifying the images. We maintained a bal-
anced partitioning in creating the data, where half the gen-
erated images exhibit a property (convexity or generalized-
symmetry) and the other half does not exhibit the property.

For single-variable functions, we generated 2,000 im-
ages of convex functions and 2,000 images of non-convex
functions. The convex functions were generated by draw-
ing the second derivative from either U(0, 1) or N (12 ,

1
4)· ∈

[0, 1]. Examples of convex and non-convex function are
given in Figure 1. For this simple case the network achieved
a very high accuracy of 99.36%. We also examined general-
ized symmetry where given an image of f : [−a, a] :→ R,
we check whether there exists g : [0, a] → R and θ ∈
(−π, π) such that f = g∗even,θ or f = g∗odd,θ. We generated
a dataset of 2,000 function images (with exactly 1,000 of
them stretched symmetric ones). Figure 2 shows examples
of stretched-symmetric and random functions. In this case,
the CNN achieved an accuracy of 93.76%, which is high
considering that this problem is also difficult for humans.

For two-variable functions we used a heatmap image
representation, and trained a network to identify general-
ized symmetry. The classifier checks whether for the given

Figure 3: Rotated odd and even function (left) and random
(right) function

Trait Accuracy
Convexity (single variable) 99.36%

Generalized Symmetry 93.76%
(single variable)

Generalized Symmetry 81.84%
(two variable)

Table 1: Accuracy of CNN based function classification

f : [−a′, a′] × [−a′, a′] :→ R, there exist g : [−a, a] ×
[−a, a] → R and θ ∈ (−π, π) such that f is either x-even
or x-odd and f = gθ. We generated 10,000 two-variable
function images (with exacly 5,000 generalized-symmetric
ones). Examples of rotated odd and even functions and ran-
dom (non-symmetric) functions are given in Figure 3. The
CNN classifier in achieved an accuracy of 81.84%. This ac-
curacy is high, but this clearly indicates that this is a more
difficult for the CNN to handle than the single-variable case.

Discussion and Conclusions
We presented a CNN based architecture to identify prop-
erties of mathematical functions. The CNN is trained on a
dataset of images constructed using our algorithms for gen-
erating random functions exhibiting the studied properties.
Our empirical analysis, summarized in Table 1, shows great
promise for CNNs in studying abstract objects, but also in-
dicates that in some cases the predictions are imperfect.

References
Ciresan, D.; Meier, U.; and Schmidhuber, J. 2012. Multi-column
deep neural networks for image classification. In Computer Vi-
sion and Pattern Recognition (CVPR), 2012 IEEE Conference on,
3642–3649. IEEE.
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick,
R.; Guadarrama, S.; and Darrell, T. 2014. Caffe: Convolutional
architecture for fast feature embedding. In ACM Multimedia, 675–
678. ACM.
Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.;
and Fei-Fei, L. 2014. Large-scale video classification with convo-
lutional neural networks. In Computer Vision and Pattern Recog-
nition (CVPR), 2014 IEEE Conference on, 1725–1732. IEEE.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In Ad-
vances in neural information processing systems, 1097–1105.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
based learning applied to document recognition. Proceedings of
the IEEE 86(11):2278–2324.
Simard, P. Y.; Steinkraus, D.; and Platt, J. C. 2003. Best prac-
tices for convolutional neural networks applied to visual document
analysis. In null, 958. IEEE.

4364

