
WWDS APIs: A
for Efficient Manipula

Hanumant Redkar1, Sudh
Neha Prabhugao

1Indian

{hanumantredka
{nehapgaonk

Abstract
WordNets are useful resources for natu
processing. Various WordNets for different l
been developed by different groups. Re
WordNet Database Structure (WWDS) was
Redkar et. al (2015) as a common platform
different WordNets. However, it is underutiliz
of programming interface. In this paper, we p
APIs, which are designed to address this short
WWDS APIs, in conjunction with WWDS, ac
that enables developers to utilize Word
worrying about the underlying storage struct
are developed in PHP, Java, and Python, a
preferred programming languages of most d
researchers working in language technologie
can help in various applications like machi
word sense disambiguation, multilingual
retrieval, etc.

 Introduction
WordNet is a lexical resource primarily
natural language processing applications. O
time, WordNets for many languages have b
Some of these are individual language
Princeton WordNet (Miller, 1990), H
GermaNet, Japanese WordNet, etc. an
WordNets viz., EuroWordNet (Vossen
IndoWordNet (Bhattacharyya, 2010), etc
World WordNet Database Structure (Redk
has been introduced to store WordNet data
and efficient manner. However, this is not b
full potential due to unavailability
programming interfaces. Hence, we prese
APIs1 to efficiently manipulate this WWD
APIs will facilitate proper utilization of

1 http://www.cfilt.iitb.ac.in/wwds/

Application Programming Interfa
ation of World WordNet Database

ha Bhingardive1, Kevin Patel1, Pushpak Bhat
onkar2, Apurva Nagvenkar2, Ramdas Karmal
n Institute of Technology Bombay, Mumbai, India

2Goa University, Goa, India
ar, bhingardivesudha, kevin.svnit, pushpakbh}@gmail.com
ar.1920, apurv.nagvenkar, ramdas.karmali}@gmail.com

ural language
languages have
cently, World
s proposed by

m to store these
zed due to lack
present WWDS
tcoming. These
ct as a wrapper
dNets without
ture. The APIs
as they are the
developers and
es. These APIs
ine translation,
l information

used in many
Over a period of
been developed.
WordNets viz.,
indi WordNet,

nd multilingual
et al., 1997),

c. Recently, a
kar et. al, 2015)
a in a systematic
being used to its
of application
ent the WWDS
DS data. These
f WWDS. For

example, developers can potenti
from other WordNets through WW
missing in their source WordNet. T
APIs are explained in the followin

World WordNet Data
WWDS is an efficient storage
multiple databases to accommodat
design is based on IndoWord
(Prabhu et al., 2012). The
information such as semantic rel
etc. is stored in a single m
wordnet_master. The language dep
as synsets, words, lexical relat
language specific databases named

WWDS Application Progr
WWDS APIs are developed
IndoWordNet APIs (Prabhugaonka
objective of these APIs is to facilit
manipulation of WordNet data of a
WWDS. These are developed fo
Python. Each API has two la
Application Layer and Data Layer

 Figure 1. Block diagram of

aces
e Structure

tacharyya1
li2

ally extract information
WDS and its APIs that is
The WWDS and WWDS
g sections.

base Structure
mechanism which uses

te different WordNets. Its
dNet database structure

language independent
lations, ontology details,
master database named
pendent information such
tions, etc. is stored in
d wordnet_<language>.

ramming Interfaces
as an extension to

ar et al., 2012). The main
tate storage, retrieval and
all languages available in

or PHP, Java as well as
ayered architecture viz.,
, as shown in figure 1.

 f WWDS API

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

Copyright © 2016, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

4379

 Developers can call only the methods of application
layer in their source code. These methods are equipped to
access and manipulate WWDS information such as
synsets, words, semantic and lexical relations, etc.
However, the application layer cannot access the stored
data directly, and has to rely on the data layer. The data
layer provides underlying storage aware mechanisms that
can directly access and manipulate the stored data. In
object oriented terminology, the application layer abstracts
the data layer. This segregation enables administrators to
change the data layer according to changes in storage
mechanisms, while keeping the application layer uniform.
 Table 1 lists some of the major classes of WWDS APIs.
For more details of these classes and the corresponding
methods, please refer to the documentation2. Figure 2
shows sample usage snippets in all three languages.

Application Layer
Classes Description

WWDSAPI initializes the WWDS API library
WWDSLanguage selects the language WordNets
WWDSSynset represents a single synset
WWDSSynsetCollection represents a collection of synsets
WWDSWord represents a word
WWDSWordCollection represents a collection of words in a synset
WWDSExampleCollection represents a collection of examples in a

synset
WWDSOntology represents an ontology node
WWDSOntologyCollection represents a collection of ontology nodes
WWDSException encapsulates exceptions

Data Layer
WWDSDb represents a database
WWDSCon represents a connection to a database
WWDSStatement represents data manipulation statements

required by the application layer
WWDSResult represents returned results

Table 1. Major classes of WWDS API

Advantages
• A single interface to access multiple WordNets, each of

which could potentially be in different formats.
• Availability in popular programming languages viz.,

PHP, Java and Python ensures greater coverage of
developer and researcher base.

• Data layer is adaptable to different storage mechanisms.

Limitations
• Actual usage depends on the availability (and licensing)

of WordNets that developers want to use.
• Lack of authentication techniques for data modifications.

2 http://www.cfilt.iitb.ac.in/wwds/wwdsapi/documentation/

Conclusion and Future Work
Multiple WordNets use various data organization and
storage methods. WWDS was developed to provide a
common platform to work with multiple WordNets.
However, lack of programming interface prevented its
proper utilization. WWDS APIs were developed to address
this shortcoming. Modular design and availability across
preferred languages such as PHP, Java and Python, are
some of the salient features of these APIs. However, their
support of WordNet manipulation is unchecked. In the
future, we would like to implement a crowd-sourcing
module that can score manipulations done by the APIs,
thereby resolving this limitation.

References
Bhattacharyya, P. 2010. IndoWordNet. Proc. of LREC-10, Malta.
Miller, George A., R., Fellbaum, C., Gross, D., & Miller, K. J.
1990. Introduction to wordnet: An on-line lexical database.
International journal of lexicography, OUP. (pp. 3.4: 235-244).
Prabhu, V., Desai, S., Redkar, H., Prabhugaonkar, N., Nagvenkar,
A., & Karmali, R. 2012. An Efficient Database Design for
IndoWordNet Development Using Hybrid Approach. COLING
2012, Mumbai, India. (pp. 229).
Prabhugaonkar, N., Nagvenkar, A., & Karmali, Ramdas N. 2012.
IndoWordNet Application Programming Interfaces. COLING
2012, Mumbai, India. (pp. 237 - 244).
Vossen, P. 1997. EuroWordNet: A multilingual database for
information retrieval. DELOS, Zurich. (pp. 5-7).
Redkar, H., Bhingardive, S., Kanojia, D., & Bhattacharyya, P.
2015. World WordNet Database Structure: An Efficient Schema
for Storing Information of WordNets of the World. AAAI 2015,
Austin, Texas, USA. (pp. 4290-4291).

Figure 2. WWDS API usage snippets in PHP, Java and Python

4380

