
WWDS APIs: A
for Efficient Manipula

Hanumant Redkar1, Sudh
Neha Prabhugao

1Indian

{hanumantredka
{nehapgaonk

Abstract 
WordNets are useful resources for natu
processing. Various WordNets for different l
been developed by different groups. Re
WordNet Database Structure (WWDS) was
Redkar et. al (2015) as a common platform 
different WordNets. However, it is underutiliz
of programming interface. In this paper, we p
APIs, which are designed to address this short
WWDS APIs, in conjunction with WWDS, ac
that enables developers to utilize Word
worrying about the underlying storage struct
are developed in PHP, Java, and Python, a
preferred programming languages of most d
researchers working in language technologie
can help in various applications like machi
word sense disambiguation, multilingual
retrieval, etc. 

 Introduction 
WordNet is a lexical resource primarily 
natural language processing applications. O
time, WordNets for many languages have b
Some of these are individual language 
Princeton WordNet (Miller, 1990), H
GermaNet, Japanese WordNet, etc. an
WordNets viz., EuroWordNet (Vossen 
IndoWordNet (Bhattacharyya, 2010), etc
World WordNet Database Structure (Redk
has been introduced to store WordNet data
and efficient manner. However, this is not b
full potential due to unavailability 
programming interfaces.  Hence, we prese
APIs1 to efficiently manipulate this WWD
APIs will facilitate proper utilization of
                                                 
1 http://www.cfilt.iitb.ac.in/wwds/ 
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World WordNet Data
WWDS is an efficient storage 
multiple databases to accommodat
design is based on IndoWord
(Prabhu et al., 2012). The 
information such as semantic rel
etc. is stored in a single m
wordnet_master. The language dep
as synsets, words, lexical relat
language specific databases named

WWDS Application Progr
WWDS APIs are developed 
IndoWordNet APIs (Prabhugaonka
objective of these APIs is to facilit
manipulation of WordNet data of a
WWDS. These are developed fo
Python. Each API has two la
Application Layer and Data Layer
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 Developers can call only the methods of application 
layer in their source code. These methods are equipped to 
access and manipulate WWDS information such as 
synsets, words, semantic and lexical relations, etc. 
However, the application layer cannot access the stored 
data directly, and has to rely on the data layer. The data 
layer provides underlying storage aware mechanisms that 
can directly access and manipulate the stored data. In 
object oriented terminology, the application layer abstracts 
the data layer. This segregation enables administrators to 
change the data layer according to changes in storage 
mechanisms, while keeping the application layer uniform.  
 Table 1 lists some of the major classes of WWDS APIs. 
For more details of these classes and the corresponding 
methods, please refer to the documentation2. Figure 2 
shows sample usage snippets in all three languages.  
 

Application Layer 
Classes Description 

WWDSAPI initializes the WWDS API library 
WWDSLanguage selects the language WordNets 
WWDSSynset represents a single synset 
WWDSSynsetCollection represents a collection of synsets 
WWDSWord represents a word 
WWDSWordCollection represents a collection of words in a synset 
WWDSExampleCollection represents a collection of examples in a 

synset 
WWDSOntology represents an ontology node 
WWDSOntologyCollection represents a collection of ontology nodes 
WWDSException encapsulates exceptions  

Data Layer 
WWDSDb represents a database 
WWDSCon represents a connection to a database 
WWDSStatement represents data manipulation statements 

required by the application layer 
WWDSResult represents returned results  

Table 1. Major classes of WWDS API 

Advantages 
• A single interface to access multiple WordNets, each of 

which could potentially be in different formats. 
• Availability in popular programming languages viz., 

PHP, Java and Python ensures greater coverage of 
developer and researcher base. 

• Data layer is adaptable to different storage mechanisms. 

Limitations 
• Actual usage depends on the availability (and licensing) 

of WordNets that developers want to use. 
• Lack of authentication techniques for data modifications. 

                                                 
2 http://www.cfilt.iitb.ac.in/wwds/wwdsapi/documentation/ 

Conclusion and Future Work 
Multiple WordNets use various data organization and 
storage methods. WWDS was developed to provide a 
common platform to work with multiple WordNets. 
However, lack of programming interface prevented its 
proper utilization. WWDS APIs were developed to address 
this shortcoming. Modular design and availability across 
preferred languages such as PHP, Java and Python, are 
some of the salient features of these APIs. However, their 
support of WordNet manipulation is unchecked. In the 
future, we would like to implement a crowd-sourcing 
module that can score manipulations done by the APIs, 
thereby resolving this limitation.  
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Figure 2. WWDS API usage snippets in PHP, Java and Python 
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