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Abstract 

We investigated Parameterized Poker Squares to 
approximate an optimal game playing agent. We organized 
our inquiry along three dimensions: partial hand 
representation, search algorithms, and partial hand utility 
learning. For each dimension we implemented and 
evaluated several designs, among which we selected the 
best strategies to use for BeeMo, our final product. BeeMo 
uses a parallel flat Monte-Carlo search. The search is 
guided by a heuristic based on hand patterns utilities, 
which are learned through an iterative improvement 
method involving Monte-Carlo simulations and optimized 
greedy search. 

Introduction  
This paper describes the design of BeeMo, a 
Parameterized Poker Squares agent we developed to 
participate in the EAAI-2016 student-faculty research 
challenge. We present an overview of our inquiry as well 
as the most important aspects of algorithm and agent 
design: implementation of flat Monte Carlo search, state 
space representation, and use of Monte Carlo simulations 
for feedback learning. To facilitate the reproducibility of 
our results and to encourage further work on 
Parameterized Poker Squares, we made the Java source 
code of the agent available at:  
https://github.com/MrMagaw/Beemo. 

Parameterized Poker Squares 
The 2016 EAAI NSG Challenge asks participants to 
submit agents to play Parameterized Poker Squares 
(Neller 2014). Poker Squares, a variation of Solitaire, is 
played by placing cards in a 5×5 grid, where each row and 
column is a poker hand. The aim of the game is to 
maximize the total points of the ten hands, according to a 
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given scoring policy, usually the American or the British 
system. Poker Squares is a stochastic single player game, 
with a very large search tree size. 

Parameterized Poker Squares is a variation of the game 
in which the scoring system is non standard and revealed 
right at the beginning of the game. The lack of initial 
knowledge about the scoring system and the wide range 
of possible scoring systems have important consequences 
for the agent design. For example, the American scoring 
system, which values royal flushes highly and single pairs 
minimally, necessitates the placement of flushes in either 
columns or rows exclusively.  However, a scoring system 
that rewards only high cards and penalizes all hands 
requires the avoidance of any hand. This forces agents to 
use more generalized algorithms and approaches and 
prevents the implementation of simple heuristic based 
agents.  

The guidelines of the competition specify a limited 
training time for the agent to learn the scoring system and 
a limited play time per game. 

Agent design 
We identified three axes along which to design our 

Parameterized Poker Square agent: hand representations, 
search algorithms, and partial hand utility learning 
algorithms. Initially we investigated the choices for each 
axis independently, without considering possible inter 
axes interactions. After selecting the best approaches 
along each axis we investigated the performance of 
complete agents by combining the selected approaches 
and comparing their overall score. 

Hand Pattern and Board Context Encoding 
We used a straightforward representation of the board, 
enhanced with a bit packed representation of the 
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remaining deck of cards which allows fast search and 
comparison. 

The simplistic representation of a hand as a list of cards 
is undesirable due to its size and inconsistency: similar 
hands (for example one pair) have many different 
representations.  Therefore, we implemented a new hand 
encoding scheme based on the concept of hand patterns. 
Each partial hand was reduced to an abstract 
representation, referred to as a hand pattern, which 
retained only the important information. The patterns are 
based on the following principles:  
• The order of the cards is irrelevant 
• The rank of the cards is irrelevant, with the only 

exception being the possibility of pairs, three or four of 
a kind and straights 

• The suit of the cards is irrelevant as long as enough 
information is retained to determine whether a flush is 
possible.  

Therefore, the information used to represent a pattern is:  
• If it has a flush – 1 bit 
• If it has a straight – 1 bit 
• The number of cards without a pair – 3 bits 
• Number of pairs – 2 bits 
• If it has three of a kind  - 1bit 
• If it has four of a kind – 1bit 
• If it is a row or a column – 1 bit.   
Notice that our hand pattern encoding does not identify a 
royal flush. We chose not to include this information 
because our experiments indicated that the marginal 
performance increase it creates is significantly 
outweighed by the additional computational time. This is 
due to the extreme rarity of royal flushes.  

This hand pattern encoding is too coarse as it misses 
context information. For example, a three of a kind with 
the possibility of becoming a four of a kind is encoded 
exactly the same as a three of a kind with no possibility of 
becoming a four of a kind. These two hands have different 
values and should be identified accordingly. We extended 
the basic pattern encoding to incorporate the following 
information about the cards left in the deck:  
• Number of cards of the primary rank – 2 bits 
• Number of cards of the secondary rank – 2 bits 
• Number of cards that can lead the hand to be a flush – 2 

bits representing: 0 if there are not enough cards left of 
the relevant suit to complete a flush, 1 if there are just 
enough cards left to complete a flush, and 2 if there is 
an excess of cards left to complete a flush. 

The primary rank is the rank with the most number of 
repetitions in a hand and the secondary rank is the rank 
with the second highest number of repetitions. Hands in 
which there are more than 3 ranks, and therefore have no 
possibility of becoming a full house or four of a kind, 
have the number of cards in the secondary rank set to 0 to 

reduce complexity. Empirical evidence shows that the 
contextual information increases the number of unique 
patterns from 60 to around 550. Our experiments with 
several search algorithms and learning approaches 
indicate that the added contextual information leads to 
more consistent training and results in better overall 
performance. 

The hand pattern uses only 16 bits but, for simplicity, 
we represented it as a 32 bit integer in our final Java 
implementation. 

Search Algorithms 
We developed several classes of search algorithms: 
simple rule based, expectimax, optimized greedy (OG), 
and Monte Carlo variations (Brown et al. 2012). For 
comparing the algorithms we employed a set of hand 
pattern utilities derived from our own experience with the 
game of poker under the American scoring system.  
Rule Based Search 
It uses if-else statements in order to direct the search 
along a specific game play path and/or strategy. The 
strategy employed was custom suited to the ‘expert 
knowledge’ we could extract from our own experience 
playing the game on the American scoring system. 
Despite being very fast, the agent is extremely rigid and 
non-adaptable to new scoring systems. The algorithm 
scored an average of less than 100 points taking almost 1 
second to complete 10,000 games. This algorithm was 
also used to guide Monte Carlo simulations.  
Expectimax Tree Search 
Our implementation of the algorithm evaluates all nodes 
at a fixed depth and back propagates the values up to the 
top node. When a chance node is encountered, values of 
all child nodes are averaged and the result is propagated 
up. When a choice node is encountered, the value of the 
best child is propagated up. This approach achieved a 
score of 119.1, at a search depth of 2, taking 30 minutes to 
play 10,000 games.  
Optimized Greedy 
This is a simple greedy algorithm that uses hand pattern 
values to evaluate, compare and choose play positions. 
Any new card taken from the deck can be placed in up to 
25 positions. The value of each position depends on only 
two hands, one row and one column, which intersect at 
that position. The contribution of each of these hands to 
the position’s value is the difference between the utilities 
of the hands after and before placing the card. The sum of 
these two differences is used to express the value of each 
position.  The new card is placed at the highest valued 
position. The pattern utilities are stored in a hash, so the 
main computational load of the algorithm is the encoding 
of the hands into patterns, which is done efficiently 
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through bit manipulations. The algorithm plays tens of 
thousands games per second, and scores an average of 
119 points on 10,000 games. Its speed and adaptability to 
different scoring systems make it an excellent choice for 
guiding Monte Carlo simulations.  
Monte Carlo 
Monte Carlo techniques have been proved useful for 
stochastic, large state-space problems like Poker Squares. 
They produce a fairly accurate model of the state-space 
without analyzing every single node. Thus, we used 
Monte Carlo methods for searching as well as learning 
hand pattern utilities.  
Flat Monte Carlo 
The simplest form of Monte Carlo search we 
implemented was modeled after the Imperfect 
Information Monte Carlo algorithm (Furtak and Buro 
2013). The algorithm explores a given choice node by 
playing a large number of simulated games from each of 
its children, estimating the value of a child as the average 
score of the corresponding simulations, and selecting the 
move which results in the highest value child.  The flat 
characteristic of the algorithm stems from the uniform 
distribution of games among child nodes. Any of the 
algorithms described above can be used to guide the 
simulated games provided they are reasonably fast 
(expectimax is thus unsuitable). We implemented flat MC 
search with a random player, a rule based search, and an 
optimized greedy search.  While fast, the random player 
based variant had poor performances; half the score of the 
other approaches.  The rule based search MC and the 
optimized greedy based MC had comparable 
performances, but different time requirements (see Table 
i).  
UCT Monte Carlo 
One of the most powerful and widely implemented 
improvements of the classic Monte Carlo approach is the 
Upper Confidence Threshold (UCT) (Kocsis and 
Szepesvari 2006). It alters the uniform distribution of 
node selection by trying to balance the exploitation of 
nodes with high average score and the exploration of 
nodes with low average score. The flat Monte Carlo 
algorithm described above is, in this respect, entirely 
exploratory as it visits each node the same number of 
times. For example, suppose that after 400 simulations for 
each node, one of them has an average score of 50 while 
all the others have scores above 100. The low score node 
is an obvious non-contender. Despite this information, flat 
MC search will distribute the remaining simulations 
uniformly among all nodes.  UCT allows the search 
algorithm to focus on higher score nodes without 
completely disregarding lower score ones. However, our 
own implementations of UCT turned out to be more 
problematic than expected as they always resulted in 

lower scores than flat MC. Moreover, evaluating all nodes 
before every simulation (to decide which one to explore) 
significantly increased the running time and complicated 
the parallelization of simulations.  
BeeMo 
For our final implementation we decided to use the flat 
Monte Carlo search with simulated games guided by the 
optimized greedy search. The main factors in our decision 
were: superior performance, reasonable running time and 
flexibility of adapting the algorithm to other scoring 
systems.  Additionally, BeeMo’s speed was significantly 
improved through parallelization which was deeply 
integrated due to the simple nature of flat MC search. 
BeeMo takes full advantage of multi core processors, by 
creating several threads for game simulations, which are 
then run in parallel on the available cores. In Table i, we 
present a comparison of average scores of some algorithm 
implementations using the American score system on a 
test batch of 10,000 games.  For MC search variations 100 
games were simulated at each node. 
 

Algorithm Average 
Score 

Running time for 
10,000 games 

Rule Based <100 ~1 second 

Expectimax 117  30 minutes 

OG 119  ~ 1 second 

Flat MC + Rule Based 123  ~ 7 hours 

Flat MC + OG 125.3  ~ 8 hours 
BeeMo (Parallel Flat MC + 
OG) 125.3 ~ 4 hours 

Table i.  Relative performance of search algorithms. 

Learning 
Due to the unknown scoring scheme, learning the partial 
hands’ utilities is highly important to the performance of 
the agent.  The Monte Carlo simulation was used for 
learning, albeit from a slightly different angle: the 
simulations were employed to estimate the utility of each 
partial hand pattern. The learning algorithm uses rounds 
of 10,000 Monte Carlo simulations. Each round consists 
of a training phase followed by an evaluation phase.  

In the training phase, 5,000 simulated games are played, 
through which the hand pattern utilities are produced. At 
the beginning of the training phase all pattern utilities are 
arbitrarily set to zero. In every simulated game, the utility 
of each partial hand is set to the corresponding final hand 
value. For example, if a partial hand consisting of only a 
5H, results (at the end of the game) in a flush with a score 
of 20, its utility is set to 20 points. At the end of a 
simulated game, each pattern utility is computed as the 
average of the scores of complete hands that resulted from 
hands which matched the pattern. The updated set of 
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pattern utilities is used to guide the greedy search in the 
next simulated game. This leads to a positive feedback 
loop which greatly improves the score of the agent. This 
feedback loop is the most potentially novel component of 
the agent. In Table ii, we present a comparison of average 
scores with and without feedback loop on tests batches of 
10,000 games. With the only exception of custom scoring 
system, which alternates negative and positive scores, and 
has a large penalty for high cards, the feedback loop 
improves the average scores.  

 

 
Table ii. Average scores of training with and without feedback. 

In the evaluation phase 5,000 games are played, using 
the set of hand pattern utilities produced during the 
training phase. The overall score of a set of hand pattern 
utilities is estimated as the average of the evaluation 
games’ score. The set of pattern utilities with the 
maximum overall score is kept for the final playing agent. 
Flat Monte Carlo training 

Due to the advantages presented above, we chose flat 
Monte Carlo simulation as our first training approach.  It 
created hand pattern utilities which resulted in average 
scores comparable to our hand crafted values. For the 
American score system parallel flat MC with OG 
guidance obtained an average score of 125 points when it 
used the crafted hand pattern utilities and  an average 
score of 120 points when it used the flat MC learning. The 
running time was reduced from about 7 seconds to just 
below 1 second. The accuracy of this utility estimation 
scheme depends on the number and frequency of hands 
that are matched to a certain pattern. Some low frequency 
but possibly high utility patterns are only rarely updated, 
which may result in unreliable utility estimations.  

 

 
Table iii. Training results of Flat MC and UCB1 simulations. 

 Flat UCT training 
To check the accuracy of these estimations we 

implemented a UCT evaluation scheme inspired by the 
UCB1 variation of the Upper Confidence Bound class 
(Auer, Cesa-Bianchi, and Fischer 2002.), with a small 

exploration term parameter (Cp), which we optimized 
empirically. 

As shown in Table iii, UCB1 slightly increased the 
number of patterns seen. However its influence on 
performance was positive for some scoring systems and 
negative for others.  
BeeMo’s training 
To benefit from both approaches, BeeMo uses both 
evaluations schemes; one in three simulated games uses 
UCB1. The interplay between alternating searching and 
training components produces an initially random-like 
behavior which becomes more robust as patterns’ utility 
estimations become more accurate. As Figure 1 illustrates, 
BeeMo’s learning algorithm belongs to the class of 
iterative improvement methods.  

 

 
�Figure 1. Pattern Utility Estimation Feedback Loop 

Conclusions 
We implemented an optimized greedy search algorithm 
guided by learned hand pattern utilities. Based on our own 
implementation and testing of various search algorithms, 
flat Monte Carlo search guided by optimized greedy was 
determined to be the most effective approach. For utility 
learning we used a combination of flat Monte Carlo 
simulations and modified UCB1 scheme which 
effectively improved the performance of the final agent. 
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 Flat MC UCB1 
# patterns seen 350 352 
American Score 120.2 121.5 
British Score 47.8 47.8 
Custom 160.1 153.0 
High Card 83.1 89.9 
Hyper Corner -0.53 -0.63 

Score System Without Feedback With Feedback 
American 93.7 115.3 
British 40.5 43.4 
Custom 157.9 154.4 
High Card 8.9 14.3 
Hyper Corner -0.97 -0.61 
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