Proceedings of the Sixth Symposium on Educational Advances in Artificial Intelligence (EAAI-16)

An Online Logic Programming Development Environment

Christian Reotutar,! Mbathio Diagne,> Evgenii Balai,> Edward Wertz,?
Peter Lee,* Shao-Lon Yeh, ° Yuanlin Zhang?
! Department of Computer Science, Johns Hopkins University, USA
2Department of Mathematics, Minneapolis Community and Technical College, USA
3Department of Computer Science, Texas Tech University, USA
4Department of EECS, University of California, Berkeley, USA
5Lubbock High School, Lubbock, Texas, USA
Lereotut] @jhu.edu, 2rv6793jp @ go.minneapolis.edu, {evgenii.balai, edward.wertz, y.zhang} @ttu.edu,
“4peter.lee @berkeley.edu, shaolonyeh @yahoo.com

Abstract

Recent progress in logic programming, particularly an-
swer set programming, has enabled us to teach it to un-
dergraduate and high school students. We developed
an online answer set programming environment with
simple interface and self contained file system. It is ex-
pected to make the teaching of answer set programming
more effective and help us to reach more students.

Introduction

Answer Set Programming (ASP) (Gelfond and Kahl 2014)
becomes a dominating language in knowledge representa-
tion community because it has offered elegant and effec-
tive solutions not only to the classical Artificial Intelligence
Problems but also many challenging application problems.
Thanks to its simplicity and clarity in both informal and for-
mal semantics, Answer Set Programming provides natural
modeling of many problems.

ASP has been taught to undergraduate students, in the
course of Artificial Intelligence, at Texas Tech for more than
a decade. We believe ASP has become mature enough to be
a language for us to introduce programming and problem
solving to high school students. We had offered 4 sessions
to students at New Deal High School and a three week long
ASP course to high school students involved in TexPREP
program (http://www.math.ttu.edu/texprep/). In our teaching
practice, we found that ASP is well accepted by the students
and the students were able to focus on the problem solv-
ing, instead of the language itself. The students were able
to write programs to answer questions about the relationship
(e.g., parent, ancestor) among family members and to find
solutions for Sudoku problems.

However, we have some major issues with the use of the
existing tools: installation of the tools to computers at lab
or home is complex and the existing tools are sensitive to
local settings of a computer. As a result, the flow of the class
teaching were often interrupted by the problems associated
with the use of the tools. The aim of the work reported here
is to develop an easy to use ASP tool for teaching ASP.

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

4130

Background

Answer set programming is variation of Logic Program-
ming, whose semantics is based on stable models (Gel-
fond and Kahl 2014). To show the ease of representation
of some interesting problems, we consider the map color-
ing problem here. We have a few states such as Texas, New
Mexico and Colorado. We use neigbor (X, Y) to denote
that state X is a neighbor of state Y. We can represent our
knowledge of the connectedness of states as fact such as
neighbor (texas, newMexico) . We noted that X is
a neighbor of Y if Y is a neighbor X. This knowledge is
represented as an ASP rule

neighbor (X, Y) :- neighbor (Y, X).

where : - is read as if. To express the intention that we
would like to assign a color for r, g, b to a state, we
introduce a relation colorO f (S, C') which denotes that the
color of state S is C'. The knowledge that a color is assigned
to a state is represented as an ASP rule

color(S,r) | color(S,g) | color(s,b).

where | is read as or. The rule reads, for any state S, S
has a color of r, g, or b.

To express the fact that no two neighbors have the same
color, we use the rule

-color(sS2, Cl) :- color(si, C1l),

neighbor (S1, S2), S1 S2.

where — is the classical negation. The rules says for any
distinct states S1 and S2, if the color of S1 is C1, the color
of S2 is not C1, i.e., its color is different from that of S1.
Now we finish the full ASP program for map coloring. As
one can see, the rule is close to the specification of the prob-
lem in English. A stable model of the program is a set of
relations that is believed by a rational agent in terms of
the program. For example, a rational agent has to believe
neighbor (texas, newMexico) becauseitis afact. An
example of a stable model the program is tt {color(texas,r),
color(newMexico,g), color(colorado,b), ...} where we list
only color information while ignoring the neighbor relations
among the three states. We can prove that the mapping col-
oring problem for these states has a solution if and only if
the program has a stable model.

As ASP has been applied to more and more problems,
the importance of software development tools for ASP has

1=

3 38 39 3.0

Figure 1: User Interface of the System (the red numbers in-
dicate the areas/components in the interface)

been realized recently. Some integrated development envi-
ronment (IDE) tools, e.g., ASPIDE(Febbraro, Reale, and
Ricca 2011), have been developed. They provide a graph-
ical user interface for users to carry out a sequence of task
from editing the ASP program to debugging the program,
easing the use of ASP significantly. However, we noted that
the target audience of these tools are experienced software
developers. The tools also suffer from the issues mentioned
in the introduction section.

Our Solution

By studying the issues in our teaching practice, we realize
the following obstacles.1) The existing tools are standalone
software. It is expensive to maintain those tools during and
outside the class. 2) The use of the environment needs the
students to have some knowledge of the directory structure
and how it is connected to the development tools. 3) Com-
plex user interface packed with many functions distracts the
attention of students from the key ASP concepts and prob-
lem solving. 4) Sharing of the programs (e.g., submission to
the instructors) is challenging.

To overcome these obstacles, developed an online ASP
development environment, which can get rid of installation
and maintenance once the web application is set up. It will
also get rid of most of the failures due to the settings of a
local computer. It will also make the environment accessi-
ble anywhere and anytime. We remove the connection of lo-
cal directory structure and the development environment by
providing a file system inside our online application. This
online file system also makes it easy for students to sub-
mit their programs to instructors by simply sharing them. To
make the user interface accessible to novice users, we of-
fered a new interface which is significantly different from
the existing tools.

System Design and Implementation

In this section we present the design and implementation of
the system which is avail at http://goo.gl/ukSZET.

1. User Interface (UI). The largest Ul component is the
editor with a syntax highlighting features (1 in Figure 1).
One can edit SPARC program directly here. To ask queries
to the program, one can type a query in text box (3.8) and
then press the button (3.9) to execute it. To see the stable

4131

models of the program, click the button (3.10). If a user
wants to save the program, they needs to log-in (by click-
ing button to the right of 3.10 not visible in the figure) to
the system. They can then save the program (3.5) to a file
(on the server running the online environment). To organize
files, the user can also create folders (3.4). The file system
(files/folders) can be navigated in the left panel (2) which
can be displayed or hidden by pressing button (3.3). One
can share their files/folders with another user of the appli-
cation by clicking button (3.6). A temporary button (3.7) is
provided for users to send feedback to the developers.

2. Implementation. The implementation includes three
components: front end (FE) in JavaScript, processing unit
(PU) in PHP, and back end (BE) (SPARC solver (Balai, Gel-
fond, and Zhang 2013) and MySQL database system). The
structure of the file system is implemented using database ta-
bles in BE and each file is saved as a file on the server side.
PU will pass to FE the needed folder structure and files, and
then manage the files (through MySQL and file system of
the server side) as requested by FE. When obtaining a re-
quest for query or finding a stable model from the FE, PU
will call the SPARC solver in BE with the right program and
then parse and return the results from SPARC solver to FE.
The sharing is managed by the sharing information in the
relevant database tables.

Conclusion

Most existing programming environments are proved useful
for experienced programmers, but it is still challenging to
use them in teaching students who are novice in program-
ming. Our online environment, with a carefully designed
simple interface and a self contained file system, provided
easy access and sharing, reduced the learning curve, and re-
moved the installation and maintenance expenses, by our ex-
perience of using it in our teaching in Fall 2015. We take it
as an enabler to teach ASP to more students including high
school ones.

Acknowledgment

We thank Michael Gelfond for his input on the interface
design. This work is partially supported by NSF grant IIS-
1018031 and CNS-1359359.

References

Balai, E.; Gelfond, M.; and Zhang, Y. 2013. Towards answer
set programming with sorts. In Logic Programming and
Nonmonotonic Reasoning, 12th International Conference,
LPNMR 2013, Corunna, Spain, September 15-19, 2013.
Proceedings, 135-147.

Febbraro, O.; Reale, K.; and Ricca, F. 2011. ASPIDE: in-
tegrated development environment for answer set program-
ming. In Logic Programming and Nonmonotonic Reasoning
- 11th International Conference, LPNMR 2011, Vancouver,
Canada, May 16-19, 2011. Proceedings, 317-330.

Gelfond, M., and Kahl, Y. 2014. Knowledge Representation,
Reasoning, and the Design of Intelligent Agents. Cambridge
University Press.

