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Abstract

We survey some recent research regarding strategic behaviour
in resource allocation problems, focusing on the fair division
of indivisible goods. We consider a number of computational
questions like how a single strategic agent misreports their
preferences to ensure a particular outcome, and how agents
compute a Nash equilibrium when they all act strategically.
We also identify a number of future directions like dealing
with non-additive utilities, and partial or probabilistic infor-
mation about the preferences of other agents.

Introduction

Resource allocation is a perennial problem facing society.
Economical, environmental and political pressures are forc-
ing us to try to do more with fewer resources and to do so
more fairly. One important and challenging case is the fair
division of indivisible goods. This captures a wide range of
problems including allocating workers to shifts, houses to
people, classes to students, landing slots to airlines, players
to teams, leads to salespeople, and time slots on expensive
scientific instruments to scientists.

Unfortunately, many mechanisms for allocating indivis-
ible goods are manipulable in theory, and are manipulated
in practice (see, for example, (Budish and Cantillon 2012)).
Such manipulation can cause significant welfare loss as well
as unfairness in the outcome. Recently, attention has turned
to how precisely agents might compute such strategic be-
haviour. What if it is just too computationally difficult to
compute a manipulation (Bartholdi, Tovey, and Trick 1989;
Bartholdi and Orlin 1991)? If manipulation is hard to com-
pute, perhaps agents might simply behave sincerely? Ma-
nipulation has been shown to be computationally hard to
compute in many voting situations, e.g. (Davies et al. 2011;
Narodytska, Walsh, and Xia 2011; Davies, Narodytska, and
Walsh 2012; Narodytska, Walsh, and Xia 2012; Davies et
al. 2014)). Also, it may not be just the agents being allo-
cated the goods that can behave strategically. As with voting
(Bartholdi, Tovey, and Trick 1992), can the chair also manip-
ulate the outcome? For example, what if they can remove or
add items? Or adjust the allocation mechanism? If so, how
do they compute the best strategic behaviour?
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With voting, reasoning about uncertainty is closely re-
lated to manipulation (Konczak and Lang 2005; Walsh 2007;
Pini et al. 2008; Walsh 2008). The same is true for allo-
cation. For instance, if an outcome is possible given un-
certainty in an agent’s preferences over the items, then this
agent can manipulate the allocation to ensure the given out-
come. Questions about possible or necessary outcomes thus
relate to questions about manipulation. How do we effi-
ciently compute what items an agent can possibly be allo-
cated? What items does an agent necessarily receive? In this
paper, I survey recent work in this area and identify some in-
teresting open challenges that remain. We focus on resource
allocation where money is not exchanged and fairness prop-
erties are important. If money is involved and efficiency is of
concern, there is a large and relevant literature on auctions.

An example

Suppose you are named as one of two captains and are pick-
ing a football team. You and the other captain take turns to
pick players. This is a fair division problem over indivisible
goods. Now suppose your first choice is Bob, the top goal
scorer all year. But you know the other captain has fallen
out with Bob, and so he’ll choose Carol first as she is the
best goal keeper by far. You win the toss so get to make
the first pick. You strategically pick Carol, even though she
isn’t your first choice. You know that the other captain will
leave Bob sitting on the bench so you can still pick him in
a later round. The net result is that you get a stronger team,
both the best goal scorer and the best goal keeper. If you had
been forced to pick players sincerely, you would have only
got the best goal scorer. Of course, the other captain may
also behave strategically, not picking players you will leave
on the bench till the end of the allocaton. But how do you
(and the other captain) compute your optimal strategy? By
the end of reading this paper, you will know a simple, linear
time method to do so.

Formal background

We suppose that there are n agents being allocated m items.
For simplicity, we suppose m is an integer multiple of n and
add dummy items of no utility to achieve this. An allocation
is an assignment of items to agents. A special case is house
allocation, when n = m and each agent gets exactly one
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item. As in much of the literature, we often suppose agents
have additive utilities over the items. One important chal-
lenge is to relax this assumption and consider non-additive
utilities. For insance, in many settings, we have complemen-
tarities (e.g. a left shoe is only valuable to us if we are also
allocated a right shoe) and substitutabilities (e.g. we either
wish to be allocated the car or the bicycle but not both).
Such fair division involves several subchallenges including
efficiently eliciting such complex preferences, and adapting
mechanisms to take account of this additional complexity.

Challenge 1. Develop allocation mechanisms for
the fair division of indivisible goods that efficiently
and effectively take account of complementarities and
substitutabilities.

When allocating goods, efficiency is one of several de-
sirable properties. An allocation Pareto improves another iff
each agent has at least the same utility in the first, and there
is at least one agent where the utility is greater. An alloca-
tion is Pareto efficient iff there is no allocation which Pareto
improves it. Fairness notions like envy freeness are also im-
portant. An allocation is envy free is no agent strictly has
greater utility for another agent’s allocation. An allocation
is proportional if each of the n agents assigns at least 1

n th
of their total utility to their allocation. It is also important
to understand the role that strategic behaviour can play. A
mechanism is manipulable if an agent can misreport their
preferences and improve their utility. A mechanism that is
not manipulable is strategy-proof. Finally, a mechanism is
nonbossy if an agent cannot change the allocation without
changing their own allocation.

All the mechanisms we consider are ordinal. That is, they
only require agents to declare ordering over items. Ordi-
nal mechanisms have a number of advantages over cardi-
nal mechanisms that require agents to declare their actual
utilities. These include simplicity, low communication com-
plexity, and a more limited action space for behaving strate-
gically Many of the mechanisms we consider are also non-
deterimistic, returning a probability distribution over alloca-
tions. Non-determinism allows us to break ties fairly. If two
agents both want an item, we can toss a coin to decide which
one has it. We therefore consider both ex post and ex ante
properties. An ex post outcome is any allocation an agent re-
ceives with non-zero probability. By comparison, an ex ante
outcome is what an agent receives in expectation. For ex-
ample, a mechanism is proportional ex ante if every agent
assigns at least 1

n th of their total utility to their allocation in
expectation.

We also consider other orderings over outcomes that work
with ordinal preferences and lotteries besides the order-
ing that comes from comparing (expected) utilities. For in-
stance, the SD (stochastic dominance) ordering prefers an
allocation p to an agent over q if the probability for the agent
to get the top i items in p is at least as large as in q for all
i ∈ [1,m]. If an allocation to an agent is SD-preferred over
another then it has greater or equal expected utility for all
utilities consistent with the agent’s ordinal preferences. No-
tions like SD-efficiency, SD-envy freeness and SD-strategy
proofness can be defined from the SD-preference ordering.

Serial dictatorship

We first consider serial dictatorship mechanisms like ran-
dom serial dictator (RSD). This is also known as random
priority. RSD randomly orders the agents, and agents then
take turns to pick their allocation of items all at once. RSD
has been widely used in school choice, university housing
and many other settings. Serial dictatorships can also use
other criteria to order the agents (for example, seniority or
exam results). Serial dictatorships are some of the few strat-
egy proof mechanisms available. Indeed, any strategy proof,
nonbossy and neutral1 mechanism is necessarily a serial dic-
tatorship (Svensson 1999).

Unfortunately the strategy proofness of serial dictatorship
comes at a price in welfare, fairness and computational cost.
The price in welfare is that, whilst the allocation returned
by a serial dictatorship is ex post efficient, it may not be ex
ante efficient. There is also a price in terms of fairness. Serial
dictatorships will often return allocations in which one agent
(e.g. an agent at the end of the priority order) envies another
agent (e.g. an agent at the start of the priority order). There is
also a computational price. For instance, whilst it is easy to
execute the RSD mechanism, it has recently been shown that
it is intractable to compute the actual probability distribution
over outcomes.

Theorem 1. (Aziz et al. 2014; Sabán and Sethuraman 2013)
Computing the probability that an agent gets an item with
RSD is #P-complete.

On the other hand, computing the RSD probabilities is ef-
ficient if we have a bounded number of items, or agent types
(Aziz and Mestre 2014).

This analysis of serial dictatorship mechanisms suggests
a second challenge.

Challenge 2. Identify or propose new allocation
mechanisms which are computationally difficult to
manipulate with good welfare and fairness proper-
ties.

Sequential allocation

Another popular class of mechanisms are those based on se-
quential allocation (Brams and Taylor 1996). In a sequen-
tial allocation mechanism, agents simply take turns to pick
items. This leaves open the particular order used to take turns
(the so called “policy”). For example, with the balanced al-
ternation policy 123321, agent 1 picks first, then agent 2,
then agent 3 before we repeat in reverse. There are real
world settings like course allocation at the Harvard Busi-
ness School where the policy is chosen at random from a
space of balanced alternating policies as a means of ensur-
ing (procedural) fairness. Whilst sequential allocation is not
strategy proof (see the example in the introduction to this pa-
per), it has several other desirable properties. For example, it
is easy to execute, requires limited preference information,

1A mechanism is neutral if permuting the names merely per-
mutes the outcome (that is, the outcome does not depend on the
names of the indivisible items).
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and returns Pareto efficient allocations supposing agents act
sincerely.

We first consider the case where one agent or a coalitional
of agents try to manipulate the outcome by acting strategi-
cally to ensure the best possible outcome, whilst the other
agents act sincerely. This is equivalent to the best response
problem in Nash dynamics. Bouveret and Lang (2014) prove
that a single agent can compute an optimal manipulation
in polynomial time, as can a coalition if we allow transfers
and side payments. However, if we prevent transfers and/or
side payments, then a simple reduction from the PARTITION
problem proves that computing a successful manipulation is
NP-hard even with just 2 manipulators (Bouveret and Lang
2014).

We next consider the case when all agents act strategi-
cally. The sequential allocation procedure naturally lends it-
self to a game theoretic analysis where we look for a Nash
equilibrium where no agent can improve their allocation by
deviating unilaterally from their (perhaps insincere) picking
strategy. We view the sequential allocation mechanism as
a finite repeated sequential game in which all agents have
complete information about the preference ordering of the
other agents. We could use backward induction to find the
subgame perfect Nash equilibrium but this would take ex-
ponential time in general. When agents have the same pref-
erence ordering, Proposition 6 in (Bouveret and Lang 2011)
proves that the subgame perfect Nash equilibrium is sincere
picking. On the other hand, when preference orderings are
different (as in the example in the introduction to this pa-
per), there exist equilibria where behaviour is not sincere.

With two agents, additive utilities, and the strictly alter-
nating policy, Kohler and Chandraesekaran (1971) prove
that the subgame perfect Nash equilibrium can be computed
in linear time by simply reversing the policy and preference
orderings. This subgame perfect Nash equilibrium is unique
provided no agent has the same utility for any pair of items.
Surprisingly, this method to compute the subgame perfect
Nash equilibrium extends to any policy and not just poli-
cies in which agents strictly alternate to pick. The basic in-
tuition is that, by acting strategically, the agent who doesn’t
pick last can ensure optimally that the agent who does pick
last gets their least favourite item (which they will certainly
leave till last to pick). Similarly, if we delete this item, then
the agent who doesn’t pick second from last can act strate-
gically to ensure optimally that the agent who does pick
second from last gets their least favourite remaining item
(which they will also certainly leave till then to pick), and so
on for earlier picks.

Theorem 2. (Kalinowski et al. 2013) With two agents and
additive utilities, we can compute the unique subgame per-
fect Nash equilibrium in linear time by reversing the pref-
erences, swapping the agents, and running the policy in re-
verse.

As promised at the start of this paper, you now know how
to compute your optimal strategic behaviour when captain
selecting a team. This leaves open the following interesting
challenge.

Challenge 3. Identify how to compute the sub-
game perfect Nash equilibria for sequential alloca-
tion mechanisms with 2 agents when utilities are not
additive.

With three agents, there may no longer be an unique sub-
game perfect Nash equilibrium. Indeed, there exists a class
of allocation problems with additive Borda utilities in which
the number of subgame perfect Nash equilibria grows expo-
nentially. Little more is known about the subgame perfect
Nash equilibria with 3 or more agents.

Challenge 4. Characterise the subgame perfect Nash
equilibria for sequential allocation mechanisms with
3 or more or agents.

With an unbounded number of agents, the complexity of
the problem of computing a subgame perfect Nash equi-
librium remained open for a long time. Brams and Straffin
(1979) remarked that

“no algorithm is known which will produce optimal
[strategic] play more efficiently than by checking many
branches of the game tree”

Recently, we proved that the problem is indeed computation-
ally intractable.
Theorem 3. (Kalinowski et al. 2013) With an unbounded
number of agents and additive Borda utilities, computing a
subgame perfect Nash equilibrium is PSPACE-hard.

As noted before, strategic behaviour is only worthwhile
when agents have different utilities. We say that an item is
multi-valued if two agents assign it different utilities. There
is a polynomial algorithm to computing a subgame perfect
Nash equilibrium when the number of multi-valued items is
held constant.
Theorem 4. (Kalinowski et al. 2013) For any number of
agents, we can compute a subgame perfect Nash equilibrium
in O(k!mk+1) time where k is the number of multi-valued
items, and m is the number of single valued items

An interesting open problem remains which is the compu-
tational complexity of computing the subgame perfect Nash
equilibria with a bounded number of agents and no bound
on the number of multi-valued items.

Challenge 5. Determine the computational complex-
ity of computing the subgame perfect Nash equilibria
for sequential allocation mechanisms with a bound
on the number of agents but not on the number of
multi-valued items.

Note that these results have so far assumed the manipu-
lating agents have perfect information about the preferences
of the other agents. This may be unrealistic in practice. Of
course, any of our complexity results provide lower bounds
on the complexity in the presence of incomplete informa-
tion. However, more generally, we might want to consider
strategic behaviour when agents have only probabilistic in-
formation.

Challenge 6. Study the Markov perfect Nash equilib-
ria of sequential allocation mechanisms.
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Probabilistic serial mechanism

We turn now to a more recent but increasingly popular
non-deterministic mechanism, the probabilistic serial mech-
anism (Bogomolnaia and Moulin 2001). With this mecha-
nism, agents simultaneously “eat” their most preferred items
at a uniform speed, moving onto their next most preferred
item whenever an item is fully eaten. This gives a random-
ized or fractional assignment which can easily be realized
as a probability distribution over discrete allocations. Un-
fortunately, the probabilistic serial mechanism is not strat-
egy proof (Bogomolnaia and Moulin 2001). However, it has
good welfare and efficiency properties. It is, for instance,
SD-efficient and SD-envyfree.

What do we know about computing strategic behaviour
with the probabilistic serial mechanism? First, we have
shown that computing an expected utility better response is
NP-hard (Aziz et al. 2015b). We also identified two tractable
cases: computing a best response for lexicographical util-
ities, and a best response with just two agents. It follows
therefore that computing a manipulation that optimizes the
expected utility is also NP-hard in general. Second, Nash
deviations under the probabilistic serial mechanism can cy-
cle. Despite the possibilities of cycles, we proved that a pure
Nash equilibrium is guaranteed to exist. Unfortunately com-
puting this is intractable in general.

Theorem 5. (Aziz et al. 2015a) Verifying if a profile of pref-
erences is a pure Nash equilibrium for the probabilistic se-
rial mechanism is coNP-complete, whilst computing a pure
Nash equilibrium is NP-hard.

In this case computational complexity is a good thing. It
may act as a shield against agents manipulating the mech-
anism. On the other hand, manipulation is easy with two
agents. A pure Nash equilibrium can be computed in lin-
ear time (Aziz et al. 2015a). This linear time algorithm ex-
ploits a beautiful mapping between the probabilistic serial
mechanism and the sequential allocation mechanism where
two agents simply alternate turns to pick items. If we divide
items into two halves, and replicate the agents’ preferences,
then the allocation returned by the probabilistic serial mech-
anism is ‘essentially’ the same as the allocation obtained by
applying sequential allocation to this half-item problem. An
interesting open challenge is to generalize this mapping to
more than two agents. With 2 agents, it was easy to see that
we only needed “half” items. It is much less obvious what
fractional division of items is required for the m agent prob-
lem.

Challenge 7. Generalize the mapping between the
probabilistic serial mechanism and the sequential al-
location mechanism for 3 or more agents.

This mapping may also help us solve another challenge
which is to understand strategic behaviour where we stop
viewing this an one off game. It is perhaps more realistic
to view this as a repeated game, with a new subgame each
time an agent starts eating a new item. We might also want
to consider games in which agents only have partial or prob-
abilistic information about the preferences of other agents.

Challenge 8. Understand strategic behaviour in the
repeated version of the probabilistic serial mecha-
nism game, as well as in the game with incomplete
or probabilistic information.

Scoring rule mechanisms

Nguyen, Baumeister and Rothe (2015) have recently studied
the strategy proofness of another type of allocation mecha-
nism. In scoring rule mechanisms (Baumeister et al. 2014),
agents specify ordinal preferences over individual items. Or-
dinal rankings are converted into utilities for the individ-
ual items using simple scoring vectors like Borda or lexi-
cographical scores. These are lifted to sets of items using
standard extension principles from social choice theory like
sthe Kelly or Gärdenfors extensions. Such mechanisms of-
ten have a number of good properties like monotonicity and
consistency. Nguyen, Baumeister and Rothe (2015) charac-
terized the strategy-proofness of the scoring rule allocation
mechanism that maximizes utilitarian welfare. They prove
that such mechanisms are strategy proof in only rather lim-
ited circumstances.

Theorem 6. (Nguyen, Baumeister, and Rothe 2015) The
utilitarian scoring rule mechanism is strategy proof (accord-
ing to the Kelly or Gärdenfors set extension) if and only if
the scoring rule vector has at most two different values or
the largest value occurs more than m

2 times.

As they note, strategy proofness occurs when the scoring
rule mechanism is rather oblivious to the preferences of the
agents. In situations where the mechanism is more respon-
sive to the preferences of the agents, manipulation is likely
to be possible. This suggests the following research direc-
tion.

Challenge 9. Study strategic behaviour in scoring
rule mechanisms.

Item partition mechanisms

Inspired by our work on online fair division (Walsh 2011a;
2014; 2015; Aleksandrov et al. 2015), we have recently iden-
tified a novel class of strategy proof mechanisms called item
partition mechanisms. These mechanisms are in some sense
half way between sequential allocation and serial dictator-
ship mechanisms. As in both sequential allocation and serial
dictatorship mechanisms, agents in an item partition mecha-
nism take turns to pick items. Like serial dictatorship mech-
anisms, item partition mechanisms are strategy proof but,
unlike serial dictatorship mechanisms (and like sequential
allocation mechanisms), item partition mechanisms do not
require agents to pick all their items at once. To be more pre-
cise, in an item partition mechanism, items are partitioned
into sets of n or fewer items, and a sequential allocation
mechanism is then used to allocate the items within each
set. For instance, in the random item partition (RIP) mech-
anism, we partition items at random into sets of n items,
and then use RSD to allocate each set of items. Of course,
other critieria can also be used to partition items and to or-
der agents within round of sequential allocation.
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Theorem 7. Item partition mechanisms are strategy proof.
The RIP mechanism is both strategy proof and proportional
ex ante. With 2 agents, the RIP mechanism is also envy free
ex ante.

The strategyproofness of the RIP mechanism somewhat
contradicts the claim in (Budish and Cantillon 2012) that

“dictatorships are the only strategyproof mechanisms
within the class of random priority mechanisms (i.e.,
mechanisms where agents take turns choosing objects
in some random order)” (page 2204).

The RIP mechanism is a type of priority mechanism that is
strategy proof but not dictatorial. Interestingly, Budish and
Cantillon (2012) argue the Harvard Business School mech-
anism mentioned earlier is strategy proof on a domain re-
striction, “block correlated” preferences. This translates to
preferences in which the items partition into blocks, and ir-
respective of the priority order, items from a single block are
chosen in each round. It remains an interesting open prob-
lem to discover other item partition mechanisms with good
properties.

Challenge 10. Identify other item partition mecha-
nisms with good fairness and efficiency properties.

Control of fair division

It is not only the agents being allocated items who can be-
have strategically. The chair allocating items can also try to
influence the outcome. In fact, they may be uniquely placed
to do so as they may be the only agent who naturally has
complete information. For instance, in allocating courses at
Harvard Business School, the agents all submit their ordi-
nal preferences to the chair. The chair is then supposed to
decide on a policy at random from the space of all possible
balanced alternation policies. However, based on the sub-
mitted ordinal preferences, the chair could also decide on
a policy that achieves a particular outcome. This could be
benevolent (e.g. to improve welfare) or malevolent (e.g. to
favor a particular agent).

Recently, we have begun to consider the computational
questions of choosing policies to achive particular outcomes.
For instance, if any policy is permitted, it is trivially easy to
ensure an agent gets a particular item or subset of items. We
just give this agent every pick until they are happy. However,
if we are limited to balanced alternation policies, it is not so
easy to find a policy that ensures a given outcome. Every
time we give one agent a pick, we must give every other
agent also a pick. Indeed it is now intractable to decide if
one of the (possible super-exponential number of) policies
achieves a particular outcome.
Theorem 8. (Aziz, Walsh, and Xia 2015) Finding a bal-
anced alternation policy which ensures an agent gets a par-
ticular item or subset of items is NP-hard.

Such problems are closely related to questions about what
is possible or necessary when the policy is chosen at random.
For instance, the problem of deciding if an agent gets an item
with non-zero probability when a policy is chosen at random
is equivalent to the problem of whether the chair can choose

a policy to ensure an agent gets this item. We may, of course,
be interested in properties of the outcome rather than specific
outcomes. This suggests another open problem.

Challenge 11. Study the problem of choosing a pol-
icy for sequential allocation to ensure good fairness
or welfare properties.

Choosing the policy is not the only way that the chair can
influence the outcome. We may also be interested in other
control actions that the chair can perform similar to those
considered in voting (Bartholdi, Tovey, and Trick 1992;
Faliszewski, Hemaspaandra, and Hemaspaandra 2009). For
example, the chair might add one or more items to improve
the efficiency of the outcome. As a second example, the
chair might considering deleting one or more items to im-
prove the fairness of the outcome.

Challenge 12. Consider other actions that the chair
can perform to control the outcome of a resource
allocation mechanism (e.g. adding/deleting/replacing
items, adding/deleting/replacing agents, or partition-
ing items/agents).

Conclusions

There are many interesting computational questions sur-
rounding strategic behaviour in resource allocation prob-
lems. We have surveyed some recent work in this area. For
instance, how does an agent (mis)report their preferences
to ensure a particular outcome? How do we compute the
(subgame perfect) Nash equilibrium of a particular mech-
anism? And how does the chair strategically choose a pol-
icy to ensure an agents gets a particular subset of items?
However, many interesting questions remain to be answered.
In particular, how do we deal with more complex prefer-
ences (e.g. conditional, combinatorial, or non-additive), par-
tial or probabilistic information about the preferences of
other agents, mechanisms that involve repeated games, and
other types of control. Finally, many results discussed so far
have been worst case. It would be interesting to consider the
complexity in practice, as well as issues like phase transi-
tion behaviour (Gent and Walsh 1995; Walsh 2009; 2010;
2011b)
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