
 

 

 
 

Abstract 
Computational Thinking (CT) is considered a core compe-
tency in problem formulation and problem solving. We have 
developed the Computational Thinking using Simulation and 
Modeling (CTSiM) learning environment to help middle 
school students learn science and CT concepts simultane-
ously. In this paper, we present an approach that leverages 
multiple linked representations to help students learn by con-
structing and analyzing computational models of science top-
ics. Results from a recent study show that students success-
fully use the linked representations to become better model-
ers and learners. 

Introduction   
Research in science education has emphasized the im-

portance of engaging learners in the practices of developing 

and using models to help them understand how scientific 

knowledge is constructed, evaluated, and communicated 

(Duschl, Schweingruber, & Shouse, 2007). Computational 

Thinking (CT) is being recognized as a vital ingredient to 

support such learning (Barr & Stephenson, 2011; Grover & 

Pea, 2013). Several of the epistemic and representational 

practices central to the development of expertise in science 

disciplines (e.g., defining problems, developing and using 

models, and designing and verifying solutions) are primary 

components of CT (Wing, 2006). In order to support middle 

school students’ synergistic learning of science and CT con-

cepts, we have developed the Computational Thinking using 

Simulation and Modeling (CTSiM) learning environment 

(Basu et. al., 2014; Sengupta et. al, 2013).  

CTSiM provides an agent-based, visual programming 

platform where students build simulation models of science 

phenomena using an agent-based framework (Wilensky, 

1999), and analyze and compare their model behaviors 
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against matched expert simulations to refine their models. In 

this paper, we present our latest version of CTSiM, where 

we have extended the computational/simulation modeling 

representation to include a linked conceptual modeling rep-

resentation to better support students’ modeling and learn-

ing tasks. Conceptual modeling helps students identify the 

primary agents, their properties and behaviors, and relevant 

environment elements in the domain of study. Further, stu-

dents conceptualize agent behaviors as sense-and-act pro-

cesses. In concert, students build their computational mod-

els to describe agent behaviors using a visual block-struc-

tured language. The set of programming constructs or 

blocks include domain-general CT (e.g., assignments, con-

ditionals, loops) and domain-specific (e.g., ‘energy’ in eco-

logical models, ‘speed up’ in kinematics models) constructs 

(Sengupta, et al., 2013). In previous work, we have demon-

strated that the domain-specific computational modeling 

language helps leverage students’ intuitions and science 

knowledge while synergistically supporting learning sci-

ence and CT concepts across different domains (Basu et. al., 

2014).  

In this paper, we formally describe the linked modeling 

representations as different levels of abstraction in CTSiM 

modeling activities. Using results from a 6th-grade class-

room study, we show how students combine the use of these 

representations while building, analyzing, and verifying 

their models to learn science and CT concepts. Analysis of 

students’ modeling behavior shows that when appropriately 

scaffolded, their use of the linked representations improves 

over time. Also, they develop the ability to decompose com-

plex models into parts and use a judicious combination of 

the conceptual and computational representations to con-

struct correct domain models. In addition, their modeling 
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behavior using multiple linked representations is strongly 

correlated with their science learning.  

CTSiM Approach: Learning by Modeling 
CTSiM adopts a learning-by-modeling pedagogical ap-

proach, where students alternate between phases of model 

building, simulation, verification, and refinement tasks. 

They also have access to searchable hypertext resources 

containing information about relevant science and CT con-

cepts. As students build their conceptual and computational 

models, they can visualize their model behaviors as 

NetLogo simulations (Wilensky, 1999), and verify their 

evolving models by comparing the model behaviors against 

a matched ‘expert’ simulation. They do not have access to 

the expert computational model, but they can study and an-

alyze the differences between the simulation results to guide 

them in improving their models. Figure 1 depicts the CTSiM 

learning-by-modeling process. 

Fig 1. Learning using CTSiM 

Currently, CTSiM includes three primary modeling activ-

ities in Kinematics and Ecology. Activity 1 models a roller 

coaster (RC) car moving along a track with four segments - 

up at constant speed (pulled by a motor);  down (free fall); 

flat (constant speed); and up against gravity. This activity 

targets the Kinematics concepts of speed, distance, and ac-

celeration and their relations. In Activities 2 and 3, students 

progress from modeling single agent behaviors in the RC 

activity to modeling multiple agents with multiple behaviors 

as they model the ecological processes in a fish tank system. 

In Activity 2, students build a macro-level, semi-stable 

model of a fish tank with two types of agents: fish and duck-

weed, and behaviors associated with the food chain, respira-

tion, locomotion, and reproduction of these agents. Since the 

waste cycle is not modeled, the build-up of toxic fish waste 

results in the non-sustainability of the macro-model (the fish 

and the duckweed gradually die off). In Activity 3, students 

address the non-sustainability by introducing micro-level 

entities, i.e., Nitrosomonas and Nitrobacter bacteria, which 

together support the waste cycle, i.e., converting the ammo-

nia in the fish waste to nutrients (nitrates) for the duckweed. 

The plots generated by the simulation models help students 

gain an aggregate level understanding of the different cycles 

and their role in establishing the interdependence and bal-

ance among the different agents in the system. 

Multiple linked representations to support build-
ing the simulation model 
CTSiM supports students’ model building activities with 

two linked representations. Multiple external representa-

tions (MERs) are known to help in developing a deeper un-

derstanding of domain concepts that would be difficult to 

achieve with a single representation (Ainsworth, 2006). The 

ability to construct and switch between multiple perspec-

tives in a domain helps learners build abstractions that are 

fundamental to successful learning in the domain (Ains-

worth & van Labeke, 2004). Furthermore, insights achieved 

through the use of MERs increases the likelihood of transfer 

to new situations (Bransford & Schwartz, 1999).  

However, studies on the benefits of MERs have produced 

mixed results for novice learners, possibly due to the cogni-

tive load imposed by dealing with MERs (Mayer & Moreno, 

2002; Ainsworth, 2006). Learners have to understand the 

constructs and semantics associated with each representa-

tion, while also discovering the relations between these rep-

resentations. Studies have shown that learners tend to treat 

representations in isolation and find it difficult to relate, 

translate between, and integrate information from MERs, 

(van der Meij & de Jong, 2006). To derive benefits from 

MERs, learners need to be supported. Some common forms 

of support include integrated presentation of the MERs with 

dynamic linking or translation between them (Ainsworth, 

2006; Goldman, 2003).  

CTSiM operationalizes the important CT concepts of ab-

straction and decomposition with two complementary 

linked modeling representations that support modeling at 

different levels of abstraction. Students start constructing an 

abstract conceptual model of the domain, which they can 

leverage to build the computational models of individual be-

haviors. Though this implies a hierarchical structure be-

tween the two representations, students have the freedom to 

switch between the representations as they construct and re-

fine their models in parts. CTSiM provides support for inte-

grating and maintaining correspondence between the repre-

sentations by (1) the modeling interface, which provides an 

integrated presentation that highlights the links between the 

representations, and (2) individualized feedback from a 

mentor agent, when students are unable to make progress in 

their modeling tasks.  

In the conceptual model representation, students use a 

visual editor to identify the primary agents and environmen-

tal elements in the domain of study, along with the relevant 

properties associated with these entities. Students also iden-

tify agent behaviors and represent the behaviors in terms of 
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sensed and acted-upon properties. For example, in the fish-

macro activity, ‘fish’ represents an agent with properties 

like ‘hunger’ and ‘energy’ and behaviors like ‘feed’ and 

‘swim’, while ‘water’ is an environment element with prop-

erties like ‘dissolved oxygen’ and ‘cleanliness’. The ‘fish-

feed’ behavior senses the properties ‘fish-hunger’ and 

‘duckweed-existence’, and acts on properties like ‘fish-en-

ergy’. However, this representation abstracts several details 

like how and when the different properties are acted on in 

the various agent behaviors. 

Instead, these details are modeled in the computational 

model representation. For this purpose, students use a linked 

visual interface that supports the selecting and dragging of 

primitives (blocks) from a palette with domain-specific 

primitives (e.g., “speed-up” in kinematics, “wander” in 

ecology) and domain-general CT primitives (e.g., condition-

als and loops). This domain-specific modeling language 

with domain-general computational constructs helps em-

phasize the domain-specific science concepts and the gener-

ality of CT concepts across science domains, helping stu-

dents synergistically learn science and CT concepts. 

The properties specified in the sense-act conceptual 

model representation for an agent behavior determine the set 

of domain-specific primitives available in the palette for 

modeling the behavior. This dynamic linking helps students 

gain a deeper understanding of the representations and their 

relationships. For example, the ‘wander’ block is available 

in the ‘fish-swim’ behavior only if ‘fish-location’ is speci-

fied as an acted on property for the behavior. CTSiM adopts 

a single internal representation for specifying the agent-

based conceptual and computational modeling constructs, 

and a sense-act framework that help students focus on con-

cepts associated with a specific science topic, while also ac-

commodating CT constructs that apply across multiple sci-

ence domains. 

Figure 2 depicts the modeling representations. The top 

screenshot is a part of the conceptual modeling interface. 

The second screenshot represents a combined conceptual-

computational interface for modeling agent behaviors (‘fish-

feed’ in this case). The leftmost panel depicts the sense-act 

conceptual representation, while the middle panel shows the 

computational palette, and the right panel contains the stu-

dent-generated computational model. The side-by-side 

placement of the representations provides integrated presen-

tation support and is based on the fact that learners find it 

easy to understand physically-integrated material rather than 

separately presented material (Chandler & Sweller, 1992). 

To further aid the integration, the red/green coloring of 

the sense-act properties provides students with visual feed-

back about how closely their computational models for an 

agent behavior correspond to their conceptual model for that 

behavior. Initially, the sense-act properties are colored red. 

As students build their computational model and add sens-

ing and action blocks corresponding to these properties, they 

change color from red to green (another example of support 

provided by the dynamic-linking). For example, in Figure 2, 

the student has conceptualized that O2-amount needs to be 

sensed for the fish-feed behavior. However, the computa-

tional model does not include this information and hence the 

property is colored red. In such cases, students can verify 

individual agent behaviors and decide how to refine their 

computational and/or conceptual models.  

Scaffolds for conceptual and computational mod-
eling and their integration 
Besides the inherent support provided by the interface de-

sign that emphasizes the links between the conceptual and 

computational representation as presented above, we also 

designed a set of adaptive scaffolds to support students when 

they face persistent problems in their modeling tasks. The 

scaffolds, delivered through a text-based conversational di-

alogue initiated by the mentor agent in the system, point to 

the problems observed in students’ models (this is done by 

tracking the students’ actions and their evolving models) 

and suggest appropriate strategies to help them overcome 

their difficulties. The strategies implemented in the current 
Fig 2. Conceptual and computational modeling representations 
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version of CTSiM include: (1) pointers to the science re-

sources to help students acquire relevant information needed 

to build or refine a part of a model; and (2) suggestions for 

simulating the model in parts to make it easier to identify 

discrepancies in agent behaviors. 

The designed scaffolds are delivered to the students fol-

lowing a top-down approach, first pointing out problems 

with the conceptual model before focusing on issues of co-

herence between the conceptual and computational repre-

sentations, and finally identifying problems specific to the 

computational model like incorrect arrangement of blocks. 

Examples of scaffolding dialogues are (1) “The fish-breathe 
behavior requires interaction of the fish with other entities. 
Have you considered all the entities in this science topic?”; 

(2) “You have all the necessary blocks for the rollercoaster-
update speed behavior, but are you sure that all the actions 
occur under the right set of conditions?”; and (3) “You have 
unused properties colored red in the fish-feed behavior. Do 
you want to use them in your program or do you want to 
delete the properties?”  

Method 
We report a recent CTSiM study with 52 students from two 

6th grade sections (average age=11.5). This study was part 

of a larger controlled study with 98 students grouped into 

two conditions – an experimental group that received the 

adaptive scaffolding and a control group that did not have 

access to the adaptive scaffolding. In this paper, we limit our 

discussions to the students in the experimental group who 

received the adaptive scaffolding, and their use of the linked 

representations for model-building in CTSiM. 

Each student worked individually on the three modeling 

activities described in the previous section. The study was 

run daily over a span of three weeks during class science 

periods. During this period, the science teachers for both the 

sections ensured that they did not provide any instruction on 

or assign any activities related to the Kinematics and Ecol-

ogy concepts covered in the CTSiM activities. On Day 1, 

students took paper-based tests in Kinematics, Ecology, and 

CT.  The Kinematics questions tested students’ understand-

ing of the relationships between distance, speed, and accel-

eration. The Ecology questions focused on the interdepend-

ence among the species in an ecosystem, along with the en-

ergy, respiration, and the waste cycles. CT skills were as-

sessed by asking students to predict program segment out-

puts, and model scenarios using CT constructs. 

On day 2, students were introduced to agent based mod-

eling and the CTSiM system. They practiced a simple shape 

drawing activity that modeled the relations between dis-

tance, speed, and acceleration. Students then worked on the 

Rollercoaster unit through Day 6. They took paper-based 

post-tests on Kinematics and CT on Day 7. On days 8-12 

students worked on the Ecology modeling activities. They 

took their Ecology post-tests and CT-final post-tests on Day 

13. On Day 14, students worked on a paper-based wolf-

sheep-grass ecosystem modeling activity as a transfer task.  

In this paper, we assess students’ pre-post learning gains, 

modeling performance and modeling behaviors (from data 

collected in log files) to answer the following research ques-

tions: 

1. Did the intervention help students learn the desired 
science and CT concepts? 

2. How did students use and integrate their conceptual 
and computational modeling activities in developing 
their simulation models? 

3. How did students’ modeling performances and behav-
iors relate to their science learning? 

We assess students’ conceptual and computational mod-

eling performances for an activity in terms of the distances 

between the student models and the corresponding expert 

models. A model distance of 0 implies that the student 

model is a perfect match to the expert model (no extra and 

incorrect constructs). A more comprehensive definition of 

the distance metric can be found in Basu et. al. (2014).  

Students’ modeling behaviors during an activity are char-

acterized by the rate of progress in building their conceptual 

and computational models, and how they combine the two 

representations to build their models. We describe model 

evolution using 3 metrics: (1) Effectiveness- the proportion 

of model edits that bring the model closer to the expert 

model; (2) Slope – the rate and direction of change in the 

model distance as students build their models; and (3) Con-
sistency – How closely the model distance evolution 

matches a linear trend. We assess integration of the concep-

tual and computational representations with 3 other metrics: 

(1) We look at activity chunks of each type and use the total 
number of chunks as a measure of how many times a student 

switched between the two representations; (2) The average 
sizes of the conceptual and computational modeling chunks, 

and their ratio constitutes the second metric; and (3) the 

fraction of conceptual edits that were followed by related  

(coherent) computational edits defines the third metric.  

Results 
Overall, the pre- and post-test results showed that the inter-

vention produced strong learning gains for the science and 

CT concepts (research question 1).  Table 1 shows the re-

sults of a one-way repeated measures ANOVA of pre-post 

differences. The gains were significant at the p<0.0001 level 

with large effect sizes (Cohen’s d).The CT post-scores in 

Table 1 refer to the scores on the final CT test administered 

after the Ecology unit. The intermediate (post-kinematics) 

CT test results also showed significant gains (p<0.0001, ef-

fect size=0.82). 

Modeling performance and behavior 
For the analysis supporting our second research question, 

we first studied students’ conceptual and computational 
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modeling behaviors and performance separately (Table 2), 

and then computed the integration metrics (Table 3). Table 

2 shows that both the conceptual and computational 

modeling behavior metrics, i.e., effectiveness, slope and 

consistency improved significantly from the RC activity to 

the fish-micro activity with significance levels of p<0.001. 

Table 1: Pre-post gains [mean (s.d.)] for science and CT content 

Table 2: Modeling performance and behavior for conceptual and 

computational modeling individually [mean (s.d.)] 

 

Table 3 shows how students combine the conceptual and 

computational representations in each activity, and how 

these metrics change across the activities. Initially, the aver-

age size (number of edits) of each editing chunk was large 

and the number of switches between the conceptual and 

computational model editing was small. In later activities, 

the chunk sizes decreased and the number of switches in-

creased, which implies that students decomposed their mod-

eling tasks into smaller units. We computed the normalized 

ratio of conceptual and computational chunk sizes (normal-

ized it by the ratio of the size of the expert models) to define 

another measure of integration among the modeling repre-

sentations. The normalized ratio for the RC model is 1.1 im-

plying it is similar to the ratio for the conceptual and com-

putational components of the expert RC model. This ratio 

increased for the two later activities (increasing to 2 for the 

fish macro model) implying that students’ conceptual edits 

increased as compared to their computational edits with re-

spect to the corresponding expert models. Perhaps, the com-

plexity of the ecology domain, as well as students’ lower 

prior knowledge in the domain (lower pre-test scores in Ta-

ble 1) resulted in the students spending more effort (i.e., 

more edits because they made more errors) in conceptualiz-

ing the models (multiple entities, their properties, and be-

haviors) than in the kinematics unit. Also, as the complexity 

of the model increased, the average size of both the concep-

tual and computational model building chunks decreased, 

implying that the increased complexity led students to de-

compose their model building into smaller chunks, and 

switch more often between the two linked representations in 

constructing the model chunks. For all activities, the median 

conceptual edit occurred at around 40% of all the model ed-

its, meaning more of the initial model edits were conceptual 

rather than computational. This provides indirect evidence 

that the students employed a top-down modeling approach, 

starting with the conceptual model and then switching to 

constructing the corresponding segments of the computa-

tional model. 

Table 3: Modeling behavior for integrating representations 

To better understand how students coordinated their con-

ceptual and computational modeling activities, we also ana-

lyzed the relationship between edits in the two representa-

tions. Conceptual and subsequent computational edits are 

‘coherent’ if both are related to the same aspect of the model 

being constructed. For example, if a student added ‘breathe’ 

as a fish agent behavior in their conceptual model, then any 

subsequent edits to the blocks in the fish-breathe computa-

tional model were defined to be ‘coherent’ with the concep-

tual edit.  Similarly, if a student added ‘fish-hunger’ as a 

sensed property in their conceptual model for a particular 

agent behavior, adding a sensing block like “Is the fish hun-

gry?” to the computational model for the behavior is consid-

ered ‘coherent’. Only additions to the conceptual model 

 RC      

activity 

Macro  

activity 

Micro  

activity 

Number of chunks 33.23 

(11.57) 

93.52 

(30.11) 

56.17 

(13.56) 

Average size of conceptual 

chunks 

8.24 

(2.44) 

8.12 

(3.33) 

5.65 

(1.6) 

Average size of computational 

chunks 

7.92 

(2.78) 

5.11 

(1.25) 

4.2 

(1.26) 

Normalized ratio of concep-

tual to computational chunk 

sizes 

1.1 

(.52) 

2.02 

(.87) 

1.38 

(.42) 

Median conceptual edit with 

respect to all edits 

0.37 

(.09) 

0.43 

(0.05) 

.41 

(.05) 

Conceptual edits followed by 

coherent computational edits 

.3  

(.08) 

.33 

(.11) 

.56 

(.12) 

 

  RC    

model 

Macro  

model 

Micro  

model 

Conceptual 

modeling 

Final  

distance 

0.2 

(0.2) 

0.13 

(0.13) 

0.14 

(0.08) 

Effective-

ness 

0.57 

(0.04) 

0.59 

(0.04) 

0.68 

(0.06) 

Slope -0.003 

(0.003) 

-0.002 

(0.002) 

-0.005 

(0.003) 

Consistency 0.3 

(0.22) 

0.59 

(0.31) 

0.8 

(0.22) 

Computa-

tional  

modeling 

Final  

distance 

0.24 

(0.25) 

0.09 

(0.1) 

0.04 

(0.08) 

Effective-

ness 

0.43 

(.08) 

0.58 

(.08) 

0.69 

(.11) 

Slope �0.006 

(.005) 

�0.004 

(.002) 

�0.009 

(.004) 

Consistency 0.6 

(.25) 

0.95 

(.04) 

0.95 

(.05) 

 Pre  Post  p-value Effect size 

Kinematics 

(max=45) 

16.65 

(6.61) 

22.38 

(6.39) 

<0.0001 0.88 

Ecology 

(max=39.5) 

9.39 

(4.47) 

27.91 

(6.70) 

<0.0001 3.25 

CT 

(max=60) 

22.72 

(7.68) 

32.24 

(5.86) 

<0.0001 1.39 
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were considered in computing coherence relations since co-

herence is characterized by computational edits that are 

linked to previous conceptual edits. The results showed sig-

nificant improvement in this metric from the RC to the fish-

micro activity (p<0.0001), and that about 50% of these co-

herent computational edits were made immediately follow-

ing the conceptual edits in all the activities. 

Effects of modeling performance and behavior on 
learning 
To investigate the third research question, we analyzed the 

correlations between the modeling measures for each activ-

ity (described in Tables 2 and 3) and students’ post-test 

scores for the corresponding science domain. We did not 

find any significant correlations between students’ modeling 

measures in the RC activity and their Kinematics posttest 

performance. A likely reason is that the RC conceptual rep-

resentation, with a single agent type, did not provide a lot of 

scaffolding in helping design the corresponding computa-

tional models. Therefore, the benefits of the linked represen-

tation are not as apparent. Besides the students may not have 

become proficient with the representations in activity 1, 

therefore, the linked representations did not help the stu-

dents to better understand domain knowledge. However, Ta-

ble 4 shows that the modeling metrics in the fish-macro and 

fish-micro activities were significantly correlated with their 

Ecology post-test scores.  

 

Table 4: Correlations of modeling performances and behaviors 

with ecology learning (*p<0.05; **p<0.01) 

 

The correlations between macro and micro final concep-

tual model distances, and the macro final computational 

model distance with ecology post-test scores were signifi-

cant (lower distance indicates better models, which was as-

sociated with higher post test score). Also, nearly all of the 

conceptual model evolution metrics for the fish-macro and 

fish-micro activities were correlated with ecology post-test 

scores (higher conceptual effectiveness and consistency and 

more negative slopes were associated with higher post test 

scores). 

In terms of linked representation integration metrics, the 

fraction of coherent edits in both the macro and micro units 

were significantly correlated to ecology post test scores 

(higher fraction of conceptual edits with coherent computa-

tional edits was associated with higher post test scores). 

Though the ratio of chunk sizes was not significantly corre-

lated with learning, we found the macro average conceptual 

chunk size to be significantly correlated with post test scores 

(r = �0.42, p<0.01), and the micro conceptual and computa-

tional chunk sizes were also significantly correlated with 

post test scores (r= �0.29, p<0.05; and r = �0.3, p<0.05), 

meaning smaller chunk sizes implied higher post test scores.  

With respect to integrating the two representations, these re-

sults suggest that effective coordination between the linked 

representations appears to have an important positive effect 

on science learning. Specifically, decomposing the model-

ing task and going back-and-forth between representations 

in relatively small sized chunks that were coherent (as meas-

ured by the coherence edit proportion) appear to be useful 

behaviors that supported greater learning. These are espe-

cially promising results given the general positive trends in 

these measures over the course of the CTSiM progression of 

modeling activities. In summary, we find that the accuracy 

of the conceptual and computational models students build, 

the evolution of the models, as well as how well students 

integrate their activities with respect to the two modeling 

representations, are all strong indicators of learning science 

content while working in the CTSiM environment.  

Discussion and Conclusions 
We have presented a learning-by-modeling approach that 

combines two linked modeling representations and ideas 

from CT (model building by decomposition, problem solv-

ing, monitoring evolving models, and verifying model be-

haviors) for teaching middle school students about science 

topics and CT concepts synergistically. With appropriate 

support provided by the modeling interfaces that highlight 

the relations between the two representations combined with 

adaptive scaffolding when students face difficulties, we 

have demonstrated the effectiveness of using multiple rep-

resentations in synergistic learning of science and CT con-

cepts.  In fact, we found that the adaptive scaffolding was 

critical for enabling effective integration and use of the two 

modeling representations. Students in the control group that 

did not receive adaptive scaffolding (see Method section) 

also showed science and CT learning gains, but their gains 

were significantly lower than that of students in the experi-

mental group whose results have been discussed in this pa-

per. Also, compared to the control group, the experimental 

group showed significantly better modeling performance 

 Macro unit Micro unit 

Final conceptual distance -0.476** -0.393** 

Conceptual effectiveness 0.334* 0.275* 

Conceptual slope -0.204 -0.286* 

Conceptual consistency 0.3116* 0.281* 

Final computational distance -0.393** -0.182 

Computational effectiveness 0.225 0.131 

Computational slope -0.265 -0.155 

Computational consistency 0.264 0.104 

Conceptual chunk size -0.42** -0.29* 

Computational chunk size -0.21 -0.3* 

Coherent edits 0.293* 0.275* 
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with each of the representations, and better modeling behav-

iors with respect to integrating the representations and main-

taining correspondence between them. Our results thus 

agree with the existing literature on MERs (Ainsworth, 

2006; Mayer & Moreno, 2002) that hypothesize that MERs 

are powerful tools, but the representations need to be care-

fully integrated and learners need to be supported to help 

them manage their cognitive load so that they may derive 

the increased understanding from these representations. In 

our case, the scaffolds afforded by the system linking the 

conceptual and computational representations are further 

aided by the adaptive scaffolding that guides students in ef-

fective use of the two closely linked representations. 

In addition, we have shown that the two linked represen-

tations promote effective modeling behaviors (such as a ‘di-

vide and conquer’ strategy) on complex modeling tasks, 

even though this strategy was not explicitly taught or re-

quired for the model building tasks.  Our results also show 

that students’ abilities to integrate the two representations 

effectively and progressively build more accurate models 

improved as they worked on more activities. Equally im-

portant, our results showed that proper use of the linked rep-

resentations also led to better learning of science domain 

content as demonstrated by the pre- to post-test learning 

gains. Overall, the linked representations coupled with 

adaptive scaffolding not only helped improve students’ 

learning of science concepts, but they also helped develop 

important CT concepts related to model building, model 

analysis and verification, and problem solving. 

As future work, we plan to study in greater detail how 

students combined their model building tasks with other 

tasks, such as information acquisition and model verifica-

tion, and how these may have been influenced by the linked 

representations. We also plan to analyze how the individual 

scaffolds helped students learn from the coupled modeling 

representations. Also, how often were the different scaffolds 

provided, and how students responded to them. These anal-

yses should help us understand how to scaffold students 

more effectively in such scenarios.  

Last, we would like to conduct more definitive studies us-

ing a control-experimental design to gain a better under-

standing of the role of multiple representations in learning 

by modeling and problem solving. For such experiments, the 

control condition would work with a single modeling repre-

sentation, and the differences in learning behaviors and per-

formance would provide clear evidence for and against us-

ing multiple representations. 
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