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Abstract

This paper presents a cognitive model of goal formula-
tion in designing that is triggered by surprise. Cognitive
system approaches to design synthesis focus on gener-
ating alternative designs in response to design goals or
requirements. Few existing systems provide models for
how goals change during designing, a hallmark of cre-
ative design in humans. In this paper we present mod-
els of surprise and reformulation as metacognitive pro-
cesses that transform design goals in order to explore
surprising regions of a design search space. The model
provides a system with specific goals for exploratory
behaviour, whereas previous systems have modelled ex-
ploration and novelty-seeking abstractly. We use ob-
served designs to construct a probabilistic model that
represents expectations about the design domain, and
then reason about the unexpectedness of new designs
with that model. We implement our model in the do-
main of culinary creativity, and demonstrate how the
cognitive behaviors of surprise and problem reformu-
lation can be incorporated into design reasoning.

Introduction
Designing presents unique challenges for cognitive systems:
problems are ill-defined, solution spaces are very large, and
there is often an unstated goal that new designs are expected
to be creative. Creativity implies that a new design not just
be useful and/or appropriate, but novel as well (Newell,
Shaw, and Simon 1959; Boden 2003). Evaluating novelty
in creativity requires more than a distance measure in an
objective representation space. Novel designs induce sur-
prise in observers given their past experiences with the de-
sign domain (Grace et al. 2015; 2014). Therefore evaluating
creativity is dependent on dynamic and complex contextual
factors, including the set of known past solutions to similar
problems. Recognising the creativity of a design is increas-
ingly a problem approachable by data science – by extract-
ing knowledge from large volumes of product data and using
it in the evaluation of novelty and value.

Cognitive models of creative designing that have in-
spired computational systems include: analogical reasoning,
case-based reasoning, bio-inspired design, and evolution-
ary design (Gero 1994; Gero and Maher 1993; Goel and
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Pirolli 1992; Maher and Poon 1996; Maher et al. 1995;
Goel et al. 2014; Helms and Goel 2012; Wiltgen, Goel,
and Vattam 2011; Goel et al. 2012). These various models
are primarily concerned with knowledge representation and
generalized processes for design synthesis. While creating
and pursuing design goals is a critical part of the synthe-
sis of potentially creative design solutions, there remains a
challenge of how to model the formation of new goals.

Cognitive studies of human creative design suggest
that problem decomposition, goal formulation and solution
search do not happen discretely and sequentially, but iter-
atively interact as designers re-interpret, re-formulate and
solve problems (Schön 1983; Getzels and Csikszentmihalyi
1976). One documented trigger of this iterative reformula-
tion is unexpected discovery – the observation of a whole or
partial design of low prior likelihood (Suwa, Gero, and Pur-
cell ). The discovery of unexpected elements within a design
has been shown to lead to the invention of new design re-
quirements, which in turn lead to an increased chance of fu-
ture unexpected discovery (Suwa, Gero, and Purcell 2000).
In human designers, the ability to surprise oneself with inter-
mediate external representations (e.g. sketches) is not only
possible but highly desirable for creativity. We present a
computational model in which observing surprising designs
leads to reformulation of design goals. We do this by adopt-
ing a metacognitive perspective, in which designing occurs
at the cognitive level and surprise-triggered reformulation at
the metacognitive level.

Background

AI approaches to design have been inspired by cognitive
models of human designers. Each of these models provides a
representation of design knowledge that has the potential to
generate creative designs, for example, by bringing knowl-
edge from another domain (bio-inspired design, cross do-
main analogy) or by systematically combining components
in a design space (i.e. the space of all possible designs)
guided by a fitness function (evolutionary design). However,
these models lack specificity in how to formulate new goals
in response to the search in the solutions space that can lead
to creative design solutions. In this section we review aspects
of cognitive systems that are the basis for our more complete
cognitive model that includes a metacognitive model of goal
reformulation for creative design.
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Metacognition in Design

Metacognition is a concept that proposes cognition about
cognition, capturing that aspect of reasoning that is aware
of its own processes. A hallmark of creative design is the
metacognitive ability to reframe problems in ways that make
surprising solutions accessible. This problem (re-)framing,
referred to as reflection-in-action (Schön 1983), is an en-
during challenge in the computational and cognitive model-
ing of design processes. Designers seek unintended conse-
quences early in the design process by externalizing and re-
perceiving their partially formed ideas and concepts (Schön
and Wiggins 1992). Surprise occurs when a practitioner’s
grounded, experiential knowledge about performing design
in this domain fails, forcing an in-the-moment process of
task reformulation driven by the unexpected perception.

We build on the three-level notion of meta-reasoning from
Cox & Raja (2011), in which a cognitive system can be
divided into the object level, the reasoning level, and the
meta-reasoning level. In designing, the object space is es-
sentially the space of possible designs; the reasoning space
is the processes associated with design synthesis; and the
meta-reasoning is reasoning about synthesis.

Reasoning about Goals

Generally speaking, a goal is a desired state. In AI, goals
are representational structures that are used to guide prob-
lem solving and to test if a specific process has been suc-
cessful or completed. AI approaches to cognitive systems
typically assume explicit representations of goals, and treat
them as integral to problem solving and as a focus of at-
tention. Adaptive goal reasoning (Aha 2015) is the study of
models for generating, prioritising and selecting goals.

Dignum and Conte (1998) state that truly autonomous,
intelligent agents must be capable of creating new goals
as well as dropping goals as conditions change. They dis-
tinguish between abstract, high-level goals and concrete,
achievable goals. They describe goal formation as a pro-
cess of deriving concrete, achievable goals (e.g. ‘driving at
the speed limit’) from high level, abstract goals (e.g. ‘be-
ing good’). Abstract goals are difficult to formalise because
of the challenge of representing objectives such as being
good or being creative. Other approaches use models of mo-
tivation to take the place of abstract learning goals (Mer-
rick and Maher 2009; Chentanez, Barto, and Singh 2004;
Kaplan and Oudeyer 2003; Schmidhuber 1991). Computa-
tional models of motivation have also been proposed as an
approach to embedding implicit motives in artificial agents
to create agents with different preferences for certain kinds
of activities (Merrick and Shafi 2011; 2013).

Vattam et al (2013) describe self-motivation and anomaly
detection as two triggers for goal formulation, both of which
we adopt in our surprise-triggered model. In our model
surprises trigger specific exploratory behaviour rather than
avoidance of the triggering anomaly. The drive for specific
exploration occurs in human cognition as the distinction be-
tween specific and general curiosity (Berlyne 1960). In our
context, a design goal is a function over a design (that is,
over a state in the design search space) that yields a quantity

to be maximised. The Synthesis section below gives exam-
ples, separating design goals into “novelty” and “value”.

Computational Unexpectedness and Surprise

Operationalising surprise is a key step towards cognitively
plausible models of novelty for evaluating creativity. Mod-
els of novelty based on distance in a representation space do
not effectively capture the notion of novelty as it applies to
design domains (Grace et al. 2014), and we adopt surprise
as a measure of an observer’s response to novel or unex-
pected stimuli. (Itti and Baldi 2004) define a Bayesian mea-
sure of surprise as as the degree of change in an observer’s
beliefs caused by an observation. The unit they give for this
is the “wow”, a two-fold variance in the prior probability
of a model (in our case the marginal probability of a single
feature in the expectation model) and its posterior probabil-
ity given some observed data (in our case probability of that
same feature given a certain context). This measure gives
results in bits, but “wow” is used to distinguish its belief-
centric nature from data-centric Shannon entropy.

For the purposes of surprise-triggered reformulation we
must also know the cause of surprise, so as to influence fu-
ture designing. Itti and Baldi’s (2004) model-centric defini-
tion is insufficient for our purposes as it cannot easily be
localised to particular input features. They define surprise
as the K-L divergence between the expectation model’s pa-
rameters before and after observing a new design, and in
our model the mapping between hidden variables and design
features may be complex and nonlinear. Baldi and Itti (2010)
do provide a means of localising surprising stimuli by train-
ing models (and calculating surprise) for individual features
separately, but we do not wish to impose such a per-feature
training constraint upon our expectation models. We eval-
uate surprising combinations of features by the information
that a partial observation of a design provides to another fea-
ture of that design. This allows us to denote a single feature
as surprising to the model in the context of other features.

A metacognitive model of surprise-triggered

reformulation

Grace and Maher (2015b) present a metacognitive frame-
work for surprise-triggered reformulation in a design rea-
soning system (shown in Figure 1), adapted from the frame-
work for metacognitive reasoning in Cox and Raja (2011).
Typically, cognitive models of design include Synthesis as
a goal directed process that perceives and acts on a design
space, that is, a space of possible and existing designs. In
our cognitive model of design we include a process we call
Expectation, which learns from the existing designs in the
design space, and builds models of expectation that explic-
itly guide the Synthesis process in a large search space of ex-
isting and possible designs. Surprise-triggered reformulation
occurs as a metacognitive process of reflecting on expecta-
tions, reformulating goals that guiding synthesis towards the
part of the design space that triggered surprise. As in humans
the model’s design process is iterative, with synthesis pro-
ducing designs that affect future synthesis through expecta-
tion, surprise and reformulation. In this paper we present a
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computational model of this framework and provide proof-
of-concept implementations of its core components.

Figure 1: A cognitive model of surprise-triggered reformula-
tion in designing (Grace and Maher 2015b), showing levels
of reasoning as per Cox and Raja (2011).

Design Space

The design space demarcates the domain (i.e. the space of
products that perform compatible functions – a necessarily
subjective definition) in which the design reasoning system
is operating, and comprises the object level of our compu-
tational model. The design space consists of a set of design
features F , the powerset of which is the set of all possible
designs D = 2F . This formalism considers only discrete de-
sign features for notational simplicity, but could be extended
to continuous features. A subset of possible designs O ⊂ D
have been observed, either created by the system through its
synthesis process or created by others. Each possible design
d ∈ D contains a subset of all possible features: d ⊂ F .

Design space knowledge acquisition can be accomplished
in several ways. Knowledge, which is captured in the ex-
pectation process’s generative model, can be provided be-
fore use, or learnt from observed designs. The model could
also support systems that explore the design space through
synthesis alone, with O being initially empty and thereafter
containing only the system’s creations.

Expectation

The expectation process models the system’s beliefs about
the design space that can be used to synthesise and evaluate
new designs. Expectation builds the system’s beliefs about
the design space as a probabilistic generative model over
possible designs PΘ(D). Our approach is compatible with
any parameterisation, Θ, of this model, so long as it can be
learnt from what is known about the design space (in our
experiments we use a corpus of designs). The structure and
parameters of this model, including any hidden variables,
are implementation specific. We treat each feature f ∈ F
as a discrete random variable, and the relationships between
features are modelled by the joint distribution of this model.
This distribution is used in both the evaluation of surprise
to recognise the unexpected features of designs and in the
synthesis process to generate new designs.

Synthesis

We define synthesis to encompass all design reasoning from
a set of design goals to generate one or more designs, a broad
scope that allows our computational model to encapsulate a

variety of approaches to design reasoning. Our model’s pur-
pose is to produce creative designs, for which systems pos-
sess a set of value goals Gv and a set of novelty goals Gn,
both of which must be met for a design to be considered cre-
ative. For example, an automated recipe design system may
have a value goal specific to cake baking that maximises
the similarity between cake sweetness (evaluated by some
flavour model) and a “target sweetness” in the knowledge
base. In an online recipe system, a value goal may be to max-
imise the number of “likes” a recipe receives. In most design
reasoning systems novelty goals are typically abstract, such
as “maximise the distance between the new design and the
nearest cluster of existing designs” or “minimise the likeli-
hood of the design under a probabilistic model derived from
domain knowledge” (Grace et al. 2014). These general nov-
elty goals are supplemented in our system by goals formed
as a result of surprise-triggered reformulation. Synthesis is
a function from the current set of goals and the expectation
model to C, a set of candidate new designs:

S(Gv, Gn, PΘ(D)) = C ⊂ D

This function, as with the expectation model, is pro-
vided as a “black box” compatible with many synthesis ap-
proaches, of which one example is given in this paper.

Surprise

Surprise occurs when a design, in whole or in part, is highly
unexpected given the probabilistic model that comprises the
expectation component of the system. This can result from
evaluating a new design while searching the design space,
but also from observing a design created by another (i.e.
a point in the design space visited by another system and
shared with this one). Under Itti and Baldi’s (2004) surprise
measure (modified as specified in the Background), a design
feature that halved in a-priori likelihood when some other
features were observed would have a surprise of 1 bit, or 1
wow. Here we extend that definition from the surprisingness
of an individual feature to the surprisingness of a design. A
surprising design, d, possesses one or more surprising com-
binations, s(f, c): a single surprising feature, f ∈ d, and a
surprise context, c ∈ 2d, which consists of a set of features
all observed in the design. The surprising feature is of sig-
nificantly lower expected likelihood (under the expectation
model) when the surprise context is present than if it were
not. The evaluation of the surprise of a design is therefore
the search for the most surprising s(f, c) pairs:

s(d) = argmax
f,c

s(f |c), ∀f ∈ d, ∀c ∈ 2d

This involves a search of the powerset of the set of all
features in a design, 2d, for surprise contexts, testing each
context against all other potentially surprising features. Ex-
haustive search is likely to only be computationally feasible
in domains where the feature representation is sparse, such
as recipes. See the Implementation section for a discussion
of an approximate solution to the search component of eval-
uating the surprise of a recipe. With this we can evaluate an
individual surprising combination s(f |c) given PΘ(f) and
PΘ(f |c) (from the expectation model) as:
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s(f |c) = −log2(PΘ(f)/PΘ(f |c))
assuming that c ⊂ d, f ∈ d, f �∈ c, and c �= ∅. In other

words, s(f |c) is the overall information content of f minus
the information content of f when all features in c are also
present, measured in bits. In the special case where c = ∅
we construct surprise differently:

s(f |∅) = −log2(PΘ(f))− (

|d|∑

n=1

log2(PΘ(fn))/n

or the unconditional probability of f ′ minus the aver-
age unconditional probability of all other features. Surprise
given an empty context can be considered the novelty of the
feature f (Grace et al. 2014).

Reformulation

The purpose of surprise-triggered reformulation is to induce
temporary novelty goals that will bias the search for designs
towards those that are surprising in a similar way to the trig-
gering stimulus. Our model defines reformulation as a func-
tion from a surprising combination to a new novelty goal:
R(s(f |c)) = Gn′ . This new goal consists of a weighting
over variables in the expectation model that bias the original
novelty goal Gn. This new weighted novelty function will
rate the triggering combination at least as surprising as the
default novelty goal Gn, and rate causes of surprise involv-
ing unrelated variables much less surprising. The specifics of
this function from surprising combination to weighting over
expectation model variables (both hidden and visible) are
a matter of implementation, although various heuristics for
surprise-triggered reformulation have been proposed (Grace
and Maher 2015a; 2015b).

Implementation

As a proof-of-concept evaluation of our model for surprise-
triggered goal reformulation we have implemented it in the
context of recipe design, a popular domain for computa-
tional design and creativity (Varshney et al. 2013; Morris
et al. 2012).

Design Space

We gathered approximately 130,000 recipes from
http://ffts.com/recipes, an archive of pub-
lic domain recipes designed to work with desktop recipe
database software. We utilise a “bag of ingredients” ap-
proach to representing recipes, with each recipe consisting
only of the set of ingredients that it contains, ignoring
amounts, preparation, categories, etc. We do not present
this representation as optimal for design reasoning in
the culinary arts, but instead seek to establish a simple
proof-of-concept of the surprise-triggered reformulation
model. We removed ingredients present in less than 0.1% of
the dataset, and then removed recipes with less than three
ingredients, resulting in a final dataset of approximately
100,000 recipes containing 321 unique ingredients. There
is insufficient data to infer the likely correlates of these

rare ingredients, and therefore they cannot lead to confident
expectations: they are novel, but not surprising (see Grace
et al 2014 for a discussion of the difference).

Expectation Implementation

In our implementation we wrap the expectation process
around a Variational Autoencoder (VAE) (Kingma and
Welling 2013; Rezende, Mohamed, and Wierstra 2014), a
deep neural network-based generative model that learns the
hidden variables of a Bayes Net from nonlinear combina-
tions of the inputs. Our implementation of expectation con-
verts the set representation of each design to a binary vec-
tor of length |F |, capturing the presence or absence of each
possible feature. The distribution over possible states of
this vector becomes the parameterisation of our generative
model PΘ(D), and is learnt from the recipe corpus.

We found that the initialisation radius of the neurons in
the encoder network needed to be increased significantly (to
values around 0.1) to avoid the local minimum in which the
latent variables z were always near 0 and the decoder net-
work learnt only the individual probabilities of each feature.
In this case the poor predictive performance of the network
is offset by the K-L divergence term, which at this minimum
is near 0. We hypothesise that this is likely to occur for any
similar architecture trained on sparse feature vectors.

Surprise Implementation

In calculating surprise we estimate PΘ(f |c) by repeatedly
sampling from the VAE posterior conditioned on the sur-
prise context c using the “missing data imputation” method
described in Rezende et al. (2014). This method requires it-
eratively sampling from the VAE, making exhaustively eval-
uating PΘ(f |c), ∀f ∈ d, ∀c ∈ 2d, f �∈ c computationally
inefficient. We first applied a maximum context size in the
range of 2-5 to limit search depth. Instituting a depth limit
on the search is particularly apt in the case of recipes, where
most interesting flavour combinations contain just a few in-
gredients, but may not be appropriate in other domains. We
applied beam search, finding a beam width equal to |d| mul-
tiplied by the depth limit to produce a good tradeoff between
accuracy and speed. Beam search ignores features for which
PΘ(f |c) ≈ PΘ(f), assuming that if f and c are independent,
f ∪ c will not be a more insightful surprise context than c. In
other words, the beam search avoids branches of the search
tree that contain unrelated ingredients (i.e. those that do not
affect each others’ likelihoods).

For example, a recipe for chocolate bacon cup-
cakes might involve sugar, butter, flour, bacon, co-
coa powder, salt, eggs and baking powder. Under
the model, PΘ(bacon|butter, eggs) > PΘ(bacon),
and PΘ(sugar|flour, eggs) > PΘ(sugar), mak-
ing those highly unsurprising combinations. However,
PΘ(bacon|sugar, butter, cocoa) 	 PΘ(bacon), giving
that combination 10.8 wows (see Background) of surprise
and putting it in the 97th percentile among the dataset.

Reformulation Implementation

We compare three approaches to reformulation, all based on
the notion of finding other recipes that are similarly sur-
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prising to a trigger. This occurs by replacing the synthesis
process’s general novelty goal with a specific one. The first
and simplest is same combination reformulation, which in-
duces a goal for the presence of the exact surprising combi-
nation from the recipe that triggered reformulation. The sec-
ond approach is same feature reformulation, which searches
for recipes that find the same ingredient surprising, but in
any context. The third is same context reformulation, which
searches for recipes that find ingredient(s) surprising given
the presence of some of the same ingredients that triggered
the initial surprise.

Continuing the above cupcake example, the system would
attempt to create new novelty goals from the surprising
recipe, seeking other recipes that contained bacon, sugar,
butter and cocoa (same combination), other recipes in which
bacon was surprising (same feature), or other recipes in
which something was surprising given sugar, butter and co-
coa (same context).

Synthesis Implementation

The synthesis process of our implementation is trivial: we
sample from the VAE (which is an approximate generative
model of PΘ(D), the joint probability of the design space)
using the surprise (of the maximally surprising combination
in the design) in wows as Gn. This is a minimal implemen-
tation for the purposes of demonstrating goal reformulation.
Naı̈ve sampling from a probability distribution learned from
data is not presented as a replacement for design reasoning,
merely as a generative mechanism by which to demonstrate
the effects of surprise on designing. We do not measure the
“value” component of creativity in this implementation, ex-
cept in that it is indirectly captured by sampling from the
expectation model that has been trained on archived recipes
of presumably high quality. Recipe value could be estimated
from user preferences in online recipe-sharing communities,
or from a purpose-built flavour model, but our goal is only
to demonstrate reformulation. Table 1 shows examples of
recipes generated according to the novelty goals induced
from the cupcake example above, along with an interpre-
tation of the recipe as a dish by the experimenters.

In the rye bread example the original surprising combi-
nation was still the most unexpected. In the cheesy pasta
dish bacon was highly surprising (14 wows) in the context
of dill, pecan and vodka. The sweet potato casserole (which
appears to be a variant on a dish commonly associated with
Thanksgiving in the USA) both sweet potatoes and coconut
were surprising (>9 wows) given the contextual target of
the cocoa, butter and sugar. These results demonstrate how
reformulation can influence search, as none of these com-
binations appear in the training dataset and are all highly
unlikely to appear by random sampling alone. The interpre-
tations are provided by the authors (who also selected each
example from the top three most surprising of 100 generated
designs), but a much more knowledge-rich system could in-
fer such interpretations itself. It is possible for this process
to return recipes found in the database, but this did not occur
in our sample.

Comb. Rye flour, flour, coffee, water, salt, caraway
seeds, yeast, molasses, cocoa, sugar, butter and
bacon.
Interpretation: Rye Bread with coffee/bacon.

Feat. Pasta, pecans, cheese, eggs, parmesan, butter,
dill, vodka, white wine, salt, black pepper, and
bacon.
Interpretation: Rich and cheesy pecan-bacon
pasta.

Ctxt. Sweet potatoes, coconut, eggs, flour, vanilla,
anise, cinnamon, cocoa, butter and sugar.
Interpretation: Coconut-chocolate sweet potato
casserole.

Table 1: Recipes generated under the effect of
the three goal reformulation types as triggered by
s(bacon|sugar, butter, cocoa): Same combination
(Comb.), same feature (Feat.) and same context (Ctxt).
In each case the maximally surprising feature is bolded and
its surprise context italicised.

Simulations

We conducted a series of simulations with our proto-
type surprise-triggered reformulation system, focussing on
demonstrating its capacity to generate goals that can drive
the design process in interesting (and potentially creative)
directions. As an example, in the same combination recipe
in Table 1, a new novelty goal is formulated to synthesise
recipes containing bacon and sugar, butter, and cocoa. In
our simulations the Expectation process builds a probabilis-
tic model of the design space of recipes, the Surprise process
triggers the reformulation of novelty goals based on highly
surprising recipes from the dataset, and the Synthesis pro-
cess searches for designs using the reformulated goal set.

We randomly sampled 1000 recipes from the database and
ranked them in order of their maximally surprising combina-
tion. Table 2 shows two examples from the most surprising
recipes thus evaluated, each with results generated by them
acting as trigger for the three types of reformulation. All
surprise evaluations (including those in the bacon cupcake
example above) were performed with 105 samples, a scale
necessary for reliably estimating scores of 13-15 wows, the
maximum estimable from a database of 105 designs.

Discussion

We have developed, implemented and evaluated a cogni-
tive model of how surprise affects design reasoning. Sur-
prise triggers the reformulation of design goals to focus the
synthesis process on exploring specific features of highly
novel designs. We demonstrated that computational mea-
sures of surprise can be used to guide computational design
reasoning towards creative designs. Our cognitive model in-
cludes metacognitive processes inspired by concepts such
as specific curiosity (Berlyne 1960), in which exploratory
behaviour can have specific, rather than diversive, goals.
Our model extends the idea of an explore/exploit tradeoff
to the design reasoning context, unifying it with the nov-
elty/value approach to evaluating creativity. This forms an
approach to design synthesis based on reasoning about spe-
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Recipe: “Dilly zucchini ricotta muffins”: zucchini, ri-
cotta, sugar, baking powder, margarine, eggs,
flour, zucchini, dill, salt, and milk. (14.5
wows)

Comb. Eggplant, spinach, cottage cheese, dill, mar-
garine, ricotta and zucchini.
Interpretation: Spinach/ricotta stuffed egg-
plant. (14.5 wows)

Feat. Broth, water, sherry, lemon, cashews, onions,
dill, parsley, salt, black pepper.
Interpretation: Lemon cashew soup. (8.5
wows)

Ctxt. Pasta, ricotta, zucchini, tomatoes, potatoes,
eggs, garlic, oregano, salt, basil, black pepper,
balsamic vinegar, parmesan, and margarine.
Interpretation: Vegetarian lasagne. (4.1 wows)

Recipe: “Lime velvet salad”: Jell-o, water, mixed nuts,
cream cheese, whipped cream, cherries, and
celery. (13.4 wows)

Comb. Cake mix, pineapple, eggs, pecans, cel-
ery, whipped cream, cream cheese, cherries,
spices. Interpretation: Pineapple celery cake.
(13.4 wows)

Feat. Chicken, breadcrumbs, butter, apples, celery,
brandy, parsnips. Interpretation: Fried chicken
with apple/parsnip salad. (6.5 wows)

Ctxt. Cream cheese, whipped cream, crackers,
sugar, blueberries, lemon, oranges, cherries.
Interpretation: Fruit cheesecake. (3.4 wows).

Table 2: Highly surprising recipes from the database shown
with generated recipes after each of the three reformulation
types. Format as per Table 1.

cific novelty goals formulated in response to surprising ex-
isting designs, in contrast to the more general goal of gen-
erating any design that is novel. This approach is enabled
by a machine learning-driven expectation model that is data
driven and capable of forming beliefs about the design do-
main over time. We use a knowledge-lean generative process
as a proxy for design synthesis, and show that the surprise-
triggered novelty goals were able to influence synthesis to-
wards surprising-yet-plausible recipes.

Our contribution is a model for creating specific goals for
exploratory behaviour in design reasoning. Our model for
reasoning about goals differs from Baranes and Oudeyer’s
(2010) “maturationally-constrained self-adaptive goal gen-
eration” approach: their model progressively relaxes con-
straints on learning in order to continuously promote ex-
ploration, while our model formulates new goals. In their
model, general relaxation occurs when progress towards
goals slows, in contrast to our model where specific goals
are formulated as a contextual response to surprising ob-
servations. Maher et al. (2015) propose that curiosity is a
kind of reasoning in the absence of goals, while we con-
sider curiosity a metacognitive process that can lead to new
goals through surprise-triggered reformulation. Our formu-
lation of specific goals is as a focus for the synthesis process,

similar to Foner and Maes’ (1994) work on agent models of
attention. Foner and Maes (1994) distinguish between goal-
driven and world-driven focus, where the former is defined
before problem solving starts, and the latter allows reason-
ing to respond to information from the world. Our model
uses information about the world (that is, observed designs
in the design space) to trigger the formulation of new goals
and thus further goal-driven behaviour.

In summary, we contribute a cognitive model for goal rea-
soning in a design system that addresses the challenge of
formulating specific goals that lead to creative designs. We
distinguish between reasoning about design synthesis and
meta-reasoning about goal formulation. Our meta-cognitive
processes of surprise and reformulation reason about ex-
pectations: a probabilistic model of existing and possible
designs constructed by our expectation process. We have
demonstrated a proof-of-concept of our model’s Synthesis,
Expectation, Surprise and Reformulation processes in the
design space of recipes. This implementation provides ev-
idence that goal formulation can guide a synthesis process
towards creative designs. The broader implications of this
approach include: (1) the ability to build design systems that
can be surprised by their own synthesis processes as well as
by observation of new designs produced by others, and (2)
the ability to distinguish between goal-directed reasoning
about design synthesis and meta-reasoning that can recog-
nise when those goals should change.
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