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Abstract

Whether in groups of humans or groups of computer agents,
collaboration is most effective between individuals who have
the ability to coordinate on a joint strategy for collective ac-
tion. However, in general a rational actor will only intend
to coordinate if that actor believes the other group members
have the same intention. This circular dependence makes ra-
tional coordination difficult in uncertain environments if com-
munication between actors is unreliable and no prior agree-
ments have been made. An important normative question with
regard to coordination in these ad hoc settings is therefore
how one can come to believe that other actors will coordi-
nate, and with regard to systems involving humans, an impor-
tant empirical question is how humans arrive at these expec-
tations. We introduce an exact algorithm for computing the
infinitely recursive hierarchy of graded beliefs required for
rational coordination in uncertain environments, and we in-
troduce a novel mechanism for multiagent coordination that
uses it. Our algorithm is valid in any environment with a fi-
nite state space, and extensions to certain countably infinite
state spaces are likely possible. We test our mechanism for
multiagent coordination as a model for human decisions in a
simple coordination game using existing experimental data.
We then explore via simulations whether modeling humans
in this way may improve human-agent collaboration.

Forming shared plans that support mutually beneficial be-
havior within a group is central to collaborative social inter-
action and collective intelligence (Grosz and Kraus 1996).
Indeed, many common organizational practices are designed
to facilitate shared knowledge of the structure and goals of
organizations, as well as mutual recognition of the roles
that individuals in the organizations play. Once teams be-
come physically separated and responsiveness or frequency
of communication declines, the challenge of forming shared
plans increases. Part of this difficulty is fundamentally com-
putational. In theory, coming to a fully mutually recognized
agreement on even a simple action plan among two choices
can be literally impossible if communication is even mildly
unreliable, even if an arbitrary amount of communication is
allowed (Halpern and Moses 1990; Lynch 1996).

This problem is well-studied within the AI literature (e.g.,
(Gmytrasiewicz and Durfee 1992)), though the core diffi-
culties still manifest in contemporary research on “ad hoc
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coordination”—collaborative multiagent planning with pre-
viously unknown teammates (Stone et al. 2010). However,
surprisingly little is known about the strategies that humans
use to overcome the difficulties of coordination (Thomas et
al. 2014). Understanding how and when people try to co-
ordinate is critical to furthering our understanding of human
group behavior, as well as to the design of agents for human-
agent collectives (Jennings et al. 2014). Existing attempts
at modeling human coordination have focused either on un-
structured predictive models (e.g., (Frieder, Lin, and Kraus
2012)) or bounded depth socially recursive reasoning mod-
els (e.g., (Gal and Pfeffer 2008; Yoshida, Dolan, and Friston
2008)), but there is reason to believe that these accounts miss
important aspects of human coordination.

One concept that appears repeatedly in formal treatments
of coordination but has not appeared meaningfully in empir-
ical modeling is common knowledge. Two agents have com-
mon knowledge if both agents have infinitely nested knowl-
edge of the other agent’s knowledge of a proposition, i.e.
the first agent knows the second agent knows, the first agent
knows the second agent knows the first agent knows, etc.
Common knowledge has been shown to be necessary for ex-
act coordination (Halpern and Moses 1990), and a proba-
bilistic generalization of common knowledge, called com-
mon p-belief, has been been shown to be necessary for ap-
proximate coordination (Monderer and Samet 1989). While
these notions are clearly important normatively, it is not en-
tirely clear how important they are empirically in human co-
ordination. Indeed, supposing that humans are able to men-
tally represent an infinitely recursive belief state seems a
priori implausible, and the need to represent and infer this
infinite recursive belief state has also been a barrier to em-
pirically testing models involving common knowledge.

Nevertheless, building on the existing normative results,
a group of researchers recently designed a set of experi-
ments to test whether people are able to recognize situations
in which common knowledge might obtain (Thomas et al.
2014) (hereafter referred to as the “Thomas experiments”).
These researchers argued that people do possess a distinct
mental representation of common knowledge by showing
that people will attempt to coordinate more often in situa-
tions where common knowledge can be inferred. However,
this previous work did not formalize this claim in a model or
rigorously test it against plausible alternative computational
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models of coordination. This existing empirical work there-
fore leaves open several important scientific questions that a
modeling effort can help address. In particular: How might
people mentally represent common p-belief? Do people rea-
son about graded levels of common p-belief, or just “suffi-
ciently high” common p-belief? Finally, what computational
processes could people use to infer common p-belief?

In this work we use a previously established fixed point
characterization of common p-belief (Monderer and Samet
1989) to formulate a novel model of human coordination. In
finite state spaces this characterization yields an exact finite
representation of common p-belief, which we use to develop
an efficient algorithm for computing common p-belief. This
algorithm allows us to simulate models that rely on common
p-belief. Because of the normative importance of common
p-belief in coordination problems, our algorithm may also be
independently useful for coordination in artificial multiagent
systems. We show using data from the Thomas experiments
that this model provides a better account of human decisions
than three alternative models in a simple coordination task.
Finally, we show via simulations based on the data from the
Thomas experiments that modeling humans in this way may
improve human-agent coordination.

1 Background

We first provide a description of the coordination task we
will study in this paper: the well-known coordinated attack
problem. We then provide an overview of the formal defini-
tions of common knowledge and common p-belief, and their
relationship to the coordinated attack problem.

1.1 Coordinated Attack Problem

The coordination task that we study in this paper is alterna-
tively called the coordinated attack problem, the two gen-
erals problem, or the email game. The original formula-
tion of this task was posed in the literature on distributed
computer systems to illustrate the impossibility of achieving
consensus among distributed computer processors that use
an unreliable message-passing system (Halpern and Moses
1990), and the problem was later adapted by economists to
a game theoretic context (Rubinstein 1989). Here we focus
on the game theoretic adaptation, as this formulation is more
amenable to decision-theoretic modeling and thus more rel-
evant for modeling human behavior.1

In this task the world can be in one of two states, x = 1
or x = 0. The state of the world determines which of two
games two players will play together. The payoff matrices
for these two games are as follows (a > c > max(b, d)):

x = 1 A B
A a,a b,c
B c,b c,c

x = 0 A B
A d,d b,c
B c,b c,c

The players receive the optimal payoff if they coordinate on
both playing A when x = 1, but playing A is risky. Playing
A is inferior to playing B if x = 0 or if there is a mismatch

1Our exposition largely assumes familiarity with rudimentary
game theory, and familiarity with measure-theoretic probability as
it appears in incomplete information games.

between the players’ actions. Playing B is safe with a sure
payoff of c. Thus in order for it to be rational to play A, a
player must believe with sufficient confidence both that the
world state is x = 1 and that the other player will play A.

1.2 Common p-Belief

In order for a player to believe the other player will play A
in this game, it is not enough for that player to believe that
the other player knows x = 1. If the second player does not
believe that the first player knows x = 1, then the second
player will not try to coordinate. Therefore the first player
must also at least believe that the second player believes the
first player knows x = 1. However, it turns out even this
amount of knowledge does not suffice. In fact, an infinite hi-
erarchy of recursive belief is needed (Morris and Shin 1997).
This infinite hierarchy of beliefs has been formalized using
a construct called common p-belief, which we now define.

Using standard definitions from game theory, we de-
fine a two-player finite Bayesian game to be a tuple
((Ω, μ, (Π0,Π1)), (A0,A1), (u0, u1)) consisting of a finite
state space Ω = {ω1, . . . , ω|Ω|}, a probability measure μ
defined over that state space, the information partition Πi of
each player i, the action set Ai of each player, and the utility
function ui of each player. Elements of Ω are called states,
and subsets of Ω are called events. For a given world state ω
and player i the partition of Ω, Πi, uniquely specifies the be-
liefs of player i in the form of posterior probabilities. Πi(ω),
which indicates the unique element of Πi containing ω, can
be thought of as the observation that player i receives when
the true state ω occurs. Specifically for any event E ⊆ Ω,
μ(E |Πi(ω)) is the probability that player i assigns to E
having occurred given ω has occurred. As a shorthand, we
write Pi(E |ω) = μ(E |Πi(ω)). Using another common
shorthand, we will treat propositions and events satisfying
those propositions interchangeably. For example, in the co-
ordinated attack problem we will be interested in whether
there is “common p-belief” that x = 1, which will refer to
common p-belief in the event C = {ω ∈ Ω : x(ω) = 1},
where x formally is a random variable mapping Ω → {0, 1}.

Following (Dalkiran et al. 2012), we say that player i p-
believes2 an event E at ω if Pi(E |ω) ≥ p. An event E is
said to be p-evident if for all ω ∈ E and for all players i,
player i p-believes E at ω. In a slight divergence from the
standard terminology of this literature, we say an event E
is super-p-evident if for all ω ∈ E and for all players i,
Pi(E |ω) > p (the only difference being strict inequality).
We say there is common p-belief in an event C at state ω if
there exists a p-evident event E with ω ∈ E, and for all ω′ ∈
E and all players i, player i p-believes C at ω′. Common
knowledge is defined as common p-belief for p = 1.

A critically important result of (Monderer and Samet
1989) states that this definition of common p-belief is equiv-
alent to a more intuitive infinitely recursive formulation. The
importance of this definition of common p-belief is therefore
that it provides a fixed point characterization of common p-

2We use an italicized “p” when referring to specific values of
p-belief and a non-italicized “p” when referring to the terms in gen-
eral.
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belief strictly in terms of beliefs about events rather than
directly in terms of beliefs about other players. When Ω is
finite, common p-belief can thus be represented in terms of a
finite set of states, rather than an infinite hierarchy of beliefs.

2 Models

We now describe four strategies for coordination in the co-
ordinated attack game we study. Two of these strategies in-
volve the computation of p-evident events and common p-
belief, which we will use to test whether human coordina-
tion behavior could be explained in terms of reasoning about
p-evident events. The other two strategies serve as baselines.

2.1 Rational p-Belief

The first strategy we consider represents an agent who max-
imizes expected utility at an equilibrium point of the co-
ordinated attack problem we study. The strategy is imple-
mented as follows: player i plays action A if and only if the
player believes with probability at least p∗ = c−b

a−b that both
players have common p∗-belief that x = 1. This strategy
forms an equilibrium of the coordinated attack problem if
p∗ > Pi(x = 1) and if evidence that x = 1 always leads
to certain belief that x = 1, i.e. Pi(x = 1 |ω) > Pi(x =
1) ⇒ Pi(x = 1 |ω) = 1 for all ω. These conditions will
be satisfied by the specific state spaces and payoffs we use
to represent the Thomas experiments. We call this model the
rational p-belief strategy. The proof that this strategy forms
an equilibrium, including a derivation for the specific form
of p∗, is included in our supplementary materials.3

2.2 Matched p-Belief

The second strategy we consider is a novel probabilistic
relaxation of the rational p-belief strategy. Humans have
been shown to exhibit a behavior called probability match-
ing in many decision-making settings (Herrnstein 1961;
Vulkan 2000). Probability matching consists of taking the
probability p that a decision is the best decision available,
and choosing to make that decision with probability p. While
probability matching is not utility maximizing, it can be
viewed as rational if players are performing sample-based
Bayesian inference and if taking samples is costly (Vul et
al. 2014). Motivated by this frequently observed behavior,
we propose a model we call the matched p-belief strategy.
A player i using this strategy chooses action A at ω with
probability p equal to the maximal common p-belief that the
player perceives at ω, i.e. the largest value such that i p-
believes at ω that there is common p-belief that x = 1.

2.3 Iterated Maximization

Next we consider a well-known model of boundedly rational
behavior sometimes called a “level-k” depth of reasoning
model. This family of models has been shown to be consis-
tent with human behavior in a diversity of settings, including

3A version of our paper that includes the supplementary
materials (as well as any post-publication corrections to the
main text) is available in multiple locations online, includ-
ing at http://people.csail.mit.edu/pkrafft/papers/krafft-et-al-2016-
modeling-human-ad-hoc-coordination.pdf.

some coordination games (e.g., (Yoshida, Dolan, and Friston
2008)), and hence is a strong baseline. Since the term “level-
k” is used for many slightly different models, we call our in-
stantiation of this model the iterated maximization strategy.
This strategy assumes that players have a certain fixed level
of recursive social reasoning k. A player using the level-k
iterated maximization strategy chooses the action that max-
imizes that player’s expected utility when playing with a
player using the level-(k − 1) strategy. The level-0 player
takes action A at ω if Pi(x = 1 |ω) > c−b

a−b . This level-0
strategy corresponds to the player maximizing expected util-
ity assuming the player can control the actions of both play-
ers, or equivalently that the optimal joint action is taken ac-
cording to that player’s beliefs. While in general the predic-
tions of level-k models depend strongly on the specification
of the level-0 strategy, in informal exploration we found that
the qualitative conclusions of our work are robust to whether
we instead specify the level-0 strategy as always playing A
or choosing between A and B uniformly randomly.

2.4 Iterated Matching

Finally, we also consider a less common depth of reason-
ing model that combines the iterated maximization strategy
with probability matching behavior, which we call iterated
matching. Like the iterated maximization strategy, this strat-
egy assumes that players have a certain fixed level of recur-
sive social reasoning k. However, instead of choosing the
action that maximizes expected utility, a level-k player us-
ing the iterated matching strategy chooses to take action A
with probability equal to that player’s belief that x = 1,
times the expected probability that a level-(k−1) companion
player would play A. The level-0 player probability matches
on Pi(x = 1 |ω).

3 Algorithms

In this section we present the algorithms we use to imple-
ment each of the models we consider. To the best of our
knowledge the existing literature on common p-belief has
yet to offer algorithms for computing common p-belief (or
in our case the perceived maximal common p-belief) for
a given world state and observation model. This computa-
tion is central to the rational and matched p-belief strategies.
Hence we offer the first fully computational account of co-
ordination via reasoning about p-evident events. Algorithms
for iterated reasoning are straightforward and well-known.

The challenge in developing an algorithm for computing
a player’s perception of the maximal common p-belief is
avoiding enumeration over all exponentially many possible
subsets of Ω. While it is straightforward to evaluate whether
a particular given event is p-evident, the definition of com-
mon p-belief requires only the existence of some such event.
Computing perceived maximal common p-belief therefore
requires jointly searching over values of p and over sub-
sets of Ω. We leverage the generic mathematical structure
of p-evident events in finite state spaces in order to develop
an exact algorithm that avoids enumerating all subsets. Our
algorithm only requires a search that is polynomial in the
size of the state space. Of course, the state spaces in many
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Algorithm 1 common p belief(C, i, ω)
E := Ω; F := Ω
while Pi(F |ω) > 0 do

p := evidence level(F,C)
E := F
F := super p evident(E,C, p)

p := evidence level(E,C)
return p

Algorithm 2 evidence level(E, C)
return minω∈E min belief(E,C, ω)

problems are often themselves exponential in some underly-
ing parameter variables, and hence future improvements on
this algorithm would be desirable. Extensions to at least cer-
tain countably infinite or continuous state spaces are likely
possible as well, such as perhaps by refining the search to
only consider events that have non-zero probability given
the player’s observations.

3.1 Computing Information Partitions

Our algorithms require access to the information partitions
of each player. However, directly specifying the information
partitions that people have in a naturalistic setting, such as
in the data we use from the Thomas experiments, is diffi-
cult. Instead, we take the approach of specifying a plausible
generative probabilistic world model, and we then construct
the information partitions from this factored representation
via a straightforward algorithm. The generative world model
specifies the pieces of information, or “observations”, that
each player receives. The algorithm for generating informa-
tion partitions, which is specified precisely in our supple-
mentary materials, consists of iterating over all combina-
tions of random values of variables in the generative world
model, treating each such combination as a state in Ω, and
for each player grouping together the states that yield iden-
tical observations.

3.2 Computing Common p-Belief

Algorithms 1-4 present the functions needed to compute per-
ceived maximal common p-belief. Formally, given a player
i, a particular state ω, and an event C, Algorithm 1 com-
putes the largest value p for which player i p-believes that
there is common p-belief in C. Note that it is insufficient to
compute the largest value of p for which there is common
p-belief in C at ω, since in general at state ω player i only
knows that the event Πi(ω) has occurred, not that ω specif-
ically has occurred. Relatedly, note that while Algorithm 1
takes ω as input for convenience, the algorithm only depends
on Πi(ω), and hence could be executed by a player.

Formal proofs of the correctness of these algorithms are
included in our supplementary materials. The basic logic of
the algorithms is to maintain a candidate p-evident event E,
and to gradually remove elements from E to make it more
p-evident until a point where player i believes the event to be
impossible because the elements of the event are no longer

Algorithm 3 min belief(E, C, ω)
return mini∈{0,1} min(Pi(E |ω), Pi(C |ω))

Algorithm 4 super p evident(E, C, p)
while E has changed do

if ∃ ω ∈ E : min belief(E,C, ω) ≤ p then
E := E \ {ω}

return E

consistent with that player’s observations. By only remov-
ing elements that either cause E to be unlikely or cause C to
be unlikely, we are guaranteed to arrive at a more p-evident
event at each iteration, and one that preserves belief in C. By
starting with E as the entire state space, the final candidate
event must be the largest, most p-evident event that player
i p-believes at state ω in which C is common p-belief. This
algorithm can also be viewed as traversing a unique nested
sequence of maximally evident events (independent of i and
ω) induced by C and the structure of (Ω, μ, (Π0,Π1)), halt-
ing at the first event in this sequence that does not include
any elements of Πi(ω).

The rational p-belief strategy consists of player i taking
action A if common p belief(x = 1, i, ω) > c−b

a−b . The
matched p-belief strategy consists of player i choosing A
with probability common p belief(x = 1, i, ω).

3.3 Iterated Reasoning

We now present our algorithms for the iterated reasoning
strategies. For level k > 0, given a player i and a state ω, the
iterated maximization strategy computes

fk
i (ω) =

( ∑
ω′∈Πi(ω)

Pi(ω
′ |ω)

(
Pi(x = 1 |ω′)fk−1

1−i (ω
′)a

+ Pi(x = 0 |ω′)fk−1
1−i (ω

′)d+
(
1− fk−1

1−i (ω
′)
)
b
)
> c

)
,

where () is the indicator function, and f0
i (ω) = (Pi(x =

1 |ω) > c−b
a−b ). If fk

i (ω) = 1, then player i plays A, and oth-
erwise player i plays B. For the iterated matching strategy,

qki (ω) = Pi(x = 1 |ω) ·
∑

ω′∈Πi(ω)

Pi(ω
′ |ω)qk−1

1−i (ω
′).

A is then played with probability qki , q0i = Pi(x = 1 |ω).

4 Data

We now present the data we use for our empirical results.
The dataset comes from the Thomas experiments (Thomas
et al. 2014). These experiments presented participants with a
stylized coordinated attack problem couched in a story about
the butcher and the baker of a town. In their story, these mer-
chants can either work together to produce hot dogs, or they
can work separately to produce chicken wings and dinner
rolls, respectively. The merchants can sell chicken wings and
dinner rolls separately for a constant profit of c each on any
day, but the profit of hot dogs varies from day-to-day. The
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Figure 1: Data from the Thomas experiments and the predictions of each of the models we consider.

merchants make a profit of a each if x = 1 on a particular
day or d if x = 0. There is also a loudspeaker that sometimes
publicly announces the prices of hot dogs, and a messenger
who runs around the town delivering messages. The experi-
ments had four different knowledge conditions that specified
the information that participants received:

1. Private Knowledge: “The Messenger Boy [sic] has not
seen the Butcher today, so he cannot tell you anything
about what the Butcher knows.”

2. Secondary Knowledge: “The Messenger Boy says he
stopped by the butcher shop before coming to your bak-
ery. He tells you that the Butcher knows what todays hot
dog price is. However, he says that he forgot to mention to
the Butcher that he was coming to see you, so the Butcher
is not aware that you know todays hot dog price.”

3. Tertiary Knowledge: “The Messenger Boy mentions that
he is heading over to the butcher shop, and will let the
Butcher know todays price as well. The Messenger Boy
will also tell the Butcher that he just came from your bak-
ery and told you the price. However, the Messenger Boy
will not inform the Butcher that he told you he would be
heading over there. So, while the Butcher is aware that
you know todays price, he is not aware that you know that
he knows that.”

4. Common Knowledge: “The loudspeaker broadcast the
market price . . . The messenger boy did not come by. Be-
cause the market price was broadcast on the loudspeaker,
the Butcher knows today’s price, and he knows that you
know this information as well.”

After being shown this information as well as additional
information indicating that x = 1, the participants were
asked whether they would like to try to make hot dogs or
not. The dataset from this experiment is visualized in Figure
1. Since the researchers provided evidence that the behavior
of participants in their two-player experiments was invariant
to payoffs, here we focus on their first payoff condition, in
which a = 1.1, b = 0, c = 1, and d = 0.4.

We use this dataset to test whether the coordination strate-
gies we have described are good models of human coordina-
tion in this setting. In order to be able to generate predictions
for these models, we must determine a state space that repre-
sents the story in the Thomas experiments. We designed the
following two probabilistic generative world models (one

for the messenger, and one for the loudspeaker) to be consis-
tent with a reading of the knowledge conditions from those
experiments. The observe(i,o) function indicates that player
i observes o.

Messenger:

x ∼ Bernoulli(δ)
visit0 ∼ Bernoulli(0.5)
visit1 ∼ Bernoulli(0.5)
tell plan0 ∼ visit0 ∧ Bernoulli(0.5)
tell plan1 ∼ visit1 ∧ Bernoulli(0.5)
if visit0:

observe(0, x)
if tell plan0:

observe(0, (visit1, tell plan1))

if visit1:
observe(1, (x, visit0))
if tell plan1:

observe(1, tell plan0)

Loudspeaker:

x ∼ Bernoulli(δ)
broadcast ∼ Bernoulli(0.5)
if broadcast:

observe(0, x), observe(1, x)

These models share a free parameter δ. We take δ = 0.25.
This setting provides a closer fit to the empirical data than
the maximum entropy setting of δ = 0.5. We interpret state-
ments that one player is “not aware” as meaning that the
player could have been made aware, and assign a maximum
entropy probability of 0.5 to these events.

The state spaces corresponding to these world models
consist of the sets of all possible combinations of vari-
ables in the models’ generative processes: (x, visit0, visit1,
tell plan0, tell plan0) for Ωmessenger and (x, broadcast) for
Ωloudspeaker. The generative processes also uniquely spec-
ify probability measures over each state space. The knowl-
edge conditions correspond to the following states. Pri-
vate: (1, 1, 0, 1, 0) ∈ Ωmessenger, Secondary: (1, 1, 1, 0, 1) ∈
Ωmessenger, Tertiary: (1, 1, 1, 1, 0) ∈ Ωmessenger, and Com-
mon Knowledge: (1, 1) ∈ Ωloudspeaker. The participants act
as player 0 in all but the secondary condition. Due to high
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Figure 2: The mean-squared error of each model’s predic-
tions on the Thomas experiments’ data.

ambiguity in the wording of the private knowledge condi-
tion, we considered two plausible readings. Either the mes-
senger is communicating an intention to not visit the other
player, or the messenger is being unhelpful in not offering
any information about the messenger’s plan. By using the
state (1, 1, 0, 1, 0) we assume the first interpretation. This
interpretation results in a better empirical fit.

5 Results

We now present our empirical results. We first examine
the predictions of each of the coordination strategies we
consider given the generative processes representing the
Thomas experiments. We then examine the extent to which
a computer agent equipped with the best fitting model of hu-
man coordination is able to achieve higher payoffs in a sim-
ulated human-agent coordination problem. All of our code
is available online at https://github.com/pkrafft/modeling-
human-ad-hoc-coordination.

5.1 Model Comparison

To perform model comparison we compute the probability
of choosing A that each model predicts given our formal
representations of each of the four knowledge conditions.
We then compare these predicted probabilities to the actual
probabilities observed in the Thomas experiments. For the
two iterated reasoning models we use a grid search over
[0, 1, 2, 3, 4, 5] to find the best fitting k for each model (ul-
timately k = 1 in iterated maximization and k = 3 in iter-
ated matching). The specific predictions of each model are
shown in Figure 1. As shown in Figure 2, the matched p-
belief model achieves the lowest mean-squared error. Quali-
tatively, the most striking aspect of the data that the matched
p-belief model successfully captures is the similarity in the
probability of coordination between the secondary and ter-
tiary knowledge conditions. The two models that involve
maximizing agents (rational p-belief and iterated maximiza-
tion) both make predictions that are too extreme. The iter-
ated matching model offers a competitive second place fit
to the data, but it fails to capture the similarity between the
middle two knowledge conditions.

The reason that the matched p-belief model makes good
predictions for the two middle conditions is that the player
in both of those conditions has the same amount of uncer-
tainty appearing at some level of that player’s infinite re-
cursive hierarchy of interpersonal beliefs. Common p-belief
essentially represents a minimum taken over all these levels,

Figure 3: Performance of agents in our simulated human-
agent coordination experiments. A strategy’s marginal value
is the expected sum of payoffs the strategy obtained in each
of the four knowledge conditions, minus the payoffs that
could have been obtained by always playing B.

and thus the common p-belief in each of those two condi-
tions is the same. The rational p-belief model is aware of the
uncertainty at higher levels of recursive belief, but its pre-
dictions are too coarse due to the assumption of utility max-
imization. An interesting avenue for future work is to ex-
amine whether the rational p-belief model can be relaxed in
any other way to allow for intermediate predictions, such as
by allowing for heterogeneity in interpretations of the world
model across agents. It is possible that the matched p-belief
model is approximating such a case.

5.2 Human-Agent Coordination

Besides testing the fit of the models of human coordination
that we have proposed, we are also interested in whether
the best fitting model helps us improve outcomes in human-
agent coordination. We use the data from the Thomas ex-
periments to evaluate this possibility. For this task our com-
puter agents implement what we call a “cognitive strategy”.
An agent using the cognitive strategy chooses the action
that maximizes expected utility under an assumption that
the agent’s companion is using the matched p-belief model.
These agents play the humans’ companion player in each of
the four knowledge conditions of the Thomas experiments
(player 1 in all but the Secondary condition). We evaluate
the payoffs from the agents’ actions using the human data
from the Thomas experiments. In this simulation we vary the
payoffs (a, b, c, d), and we assume that the humans would
remain payoff invariant across the range of payoffs that we
use. This assumption is reasonable given that participants in
the Thomas experiments displayed payoff invariance in the
two-agent case. We vary the payoffs according to risk, tak-
ing the payoffs to be (1, 0, p∗, 0) for a particular risk level
p∗ = c−b

a−b . As shown in Figure 3, we find that having the
matched p-belief model of human coordination may help
in human-agent coordination. We compared to two baseline
strategies: an agent using a “private heuristic” who always
coordinates if the agent knows x = 1, and an agent using a
“pair heuristic” who always coordinates if the agent knows
that both the agent and the human know x = 1. The private
heuristic achieves good performance for low risk levels, and
the pair heuristic achieves good performance for high risk
levels. The cognitive strategy achieves good performance
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at both low and high levels of risk, and only has negative
marginal value over always playing the safe action B at very
high levels of risk.

6 Discussion

In the present paper we focused on laying the groundwork
for using common p-belief in AI and cognitive modeling.
In particular, we developed an efficient algorithm for the in-
ference of maximal perceived common p-belief, we showed
that the coordination strategy of probability matching on
common p-belief explains certain surprising qualitative fea-
tures of existing data from a previous human experiment,
and we showed that this model may also help improve agent
outcomes in human-agent coordination. This work has three
main limitations. Due to the small amount of human data
we had and the lack of a held-out test set, our empirical
results are necessarily only suggestive. While the data are
inconsistent with the rational p-belief model and the iter-
ated maximization model, the predictions of the iterated
matching model and the matched p-belief model are both
reasonably good. The strongest evidence we have favoring
the matched p-belief model is this model’s ability to pro-
duce equal amounts of coordination in the secondary and
tertiary knowledge conditions as well as a low amount with
private knowledge and a high amount with common knowl-
edge. No iterated reasoning model under any formulation
we could find of the Thomas experiments was able to cap-
ture the equality between the two middle conditions while
maintaining good predictions at the extremes. Two other
important limitations of our work are that the coordination
task we consider did not involve intentional communication,
and that the state and action spaces of the task were sim-
ple. While these features allowed us to easily test the predic-
tions of each of our alternative models, it would be interest-
ing to see how the models we considered would compare in
more complex environments. A related interesting direction
for future work is the application of inference of common
p-belief through reasoning about p-evident events to artifi-
cial distributed systems, such as for developing or analyz-
ing bitcoin/blockchain-like protocols, synchronizing remote
servers, or distributed planning in ad hoc multi-robot teams.
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