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Abstract

Socio-economic maps contain important information regard-
ing the population of a country. Computing these maps is
critical given that policy makers often times make impor-
tant decisions based upon such information. However, the
compilation of socio-economic maps requires extensive re-
sources and becomes highly expensive. On the other hand,
the ubiquitous presence of cell phones, is generating large
amounts of spatio-temporal data that can reveal human be-
havioral traits related to specific socio-economic character-
istics. Traditional inference approaches have taken advantage
of these datasets to infer regional socio-economic characteris-
tics. In this paper, we propose a novel approach whereby topic
models are used to infer socio-economic levels from large-
scale spatio-temporal data. Instead of using a pre-determined
set of features, we use latent Dirichlet Allocation (LDA) to
extract latent recurring patterns of co-occurring behaviors
across regions, which are then used in the prediction of socio-
economic levels. We show that our approach improves state
of the art prediction results by ≈ 9%.

Introduction

Socio-economic maps gather large amounts of information
regarding the status of households at a national scale. These
maps contain information that characterizes various social
and economic aspects like the educational level of the citi-
zens or the access to electricity. Such information is aggre-
gated and reported at various granularity levels, from a na-
tional scale, to states, all the way down to urban geographic
areas of a few square kilometers. The accuracy of these maps
is critical given that many policy decisions made by govern-
ments and international organizations are based upon such
information. National Statistical Institutes (NSIs) compute
these maps every five to ten years, and typically require a
large number of enumerators that carry out interviews gath-
ering information pertaining the main socio-economic char-
acteristics of each household. All these prerequisites make
the computation highly expensive, especially for budget-
constraint emerging economies. To reduce costs, countries
have made cuts both in the number of interview questions
and in the number of citizens interviewed, which unfortu-
nately impacts the quality of the final census information.
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On the other hand, the ubiquitous presence of cell phones
worldwide is generating datasets of spatio-temporal data
across large groups of individuals. As previous research
has shown, cell phone data can offer a detailed picture of
how humans move and interact with each other (Becker
et al. 2013). Recent results found that cell phone-based
behavioral patterns might be correlated to specific socio-
economic characteristics (Eagle, Macy, and Claxton 2010;
Soto et al. 2011; Frias-Martinez et al. 2013). For exam-
ple, higher socio-economic levels have been associated to
stronger social networks or longer distances traveled (Blu-
menstock and Eagle 2010). Furthermore, previous work has
shown that regional socio-economic levels can be inferred
from cell phone-based behavioral features with acceptable
accuracies using various regression and classification tech-
niques over a set of behavioral features (Frias-Martinez et
al. 2012). Framing the problem as a supervised learning set-
ting, these approaches use the spatio-temporal data to com-
pute a set of pre-determined behavioral features per region
and attempt to predict the regional socio-economic levels
manually collected by the NSIs. Such features are usually
defined based on ad-hoc hypothesis about human behav-
iors and socio-economic values often neglecting underlying
spatio-temporal relationships. Rather than pre-determined
features, regions might be better characterized by probabilis-
tic models of latent behaviors not obvious through obser-
vation. Such latent recurring patterns might best reflect the
complex nature of human behaviors and the impact that ge-
ography and time might have on that behavior.

In this paper, we propose a novel approach to the prob-
lem of inferring regional socio-economic levels from spatio-
temporal data. Specifically, we propose a topic modeling
framework based on Latent Dirichlet Allocation (LDA).
LDA models are typically used in research involving doc-
uments whereby a document is represented as a set of words
and distributions are drawn to identify topics across docu-
ments in an unsupervised manner. However, they have also
been successfully applied in a variety of different scenarios
for model estimation and inference including computer vi-
sion (Fei-Fei and Perona 2005) or climate modeling (Tand
and Monteleoni 2014). We investigate the hypothesis that
using individual behaviors (words) collected from cell phone
data to identify probabilistic large-scale population behav-
iors (topics) across regions might allow to improve the cur-
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Figure 1: General Approach. sLDA and LDA plate notation
from (Mcauliffe and Blei 2008).

rent state of the art in the prediction of socio-economic levels
using spatio-temporal data. The rest of the paper is organized
as follows: we first present our general approach, followed
by our proposed method and results. We finalize with related
work and conclusions.

Approach Overview

Figure 1 shows the general approach proposed in this pa-
per. We start with a socio-economic map where each region
is represented by a pair (SEL, Spatio − temporal data)
where SEL (socio-economic level) is a label manually
gathered through surveys. These regions might represent
states, cities, neighborhoods or geographical units (GUs),
the smallest geographical division, which divides cities into
small areas of up to a few square kilometers (approximately
blocks). Although the SEL is a continuous variable, it is of-
ten times expressed as a discrete value through a letter (A,
B, C, etc.). The granularity of the SELs i.e., the number
of SEL classes in which the continuous values are divided
into, varies a lot across studies. Some researchers differen-
tiate three socio-economic levels (Wyatt and Mattern 2011)
while others prefer to use a larger range of values in their
analyses (Worrall, Basu, and Hanson 2003).

On the other hand, the spatio-temporal data of a given re-
gion contains all individual calls from or to a person in that
region for a given period of time. Specifically, each call in
the dataset contains information regarding origin and desti-
nation encrypted phone numbers, origin and destination re-
gions where caller and callee where when the phone call
was made, as well as time and date at which a given in-
dividual called another one. Using the information about
origin and destination regions, we can build individual mo-
bility patterns that indicate the continuous locations visited
by an individual at different times of the day. Since this in-
formation is collected by telecommunication companies for
billing purposes, it contains behavioral information about
millions of users. As a result, and as shown in previous re-
search (Vieira et al. 2010), the mobility patterns extracted

from such data can be representative of the regional popu-
lation at large, and thus of the underlying socio-economic
level.

In this paper, we use the spatio-temporal data as a proxy
of the mobility across regions, which will in turn be used as
a predictor of regional socio-economic levels. Previous work
has shown that mobility patterns are predictive of socio-
economic levels (Smith-Clarke, Mashhadi, and Capra 2014).
Here, we explore whether using a generative approach to
extract latent, more complex behavioral features which are
then used for discriminative prediction can enhance previous
state of the art approaches. Specifically, we consider each
region as a document which we characterize by a set of indi-
vidual mobility motifs (words) that have the region as origin
or destination. We assume that the mobility motifs arise from
a set of latent topics, that is, a set of unknown distributions
over the patterns. In this scenario, the topics can be inter-
preted as population mobility behaviors at large scale. For
example, commercial regions in a city could have as a pop-
ular motif incoming and outgoing trips from/to residential
regions during the weekends. The topic would be weekend
shopping and the words could be the two mobility patterns
described.

With this approach in mind, we organize the spatio-
temporal data into geographic data structures amenable to
represent mobility as words. We define the mobility motifs
as individual transitions containing origin and destination
regions together with the time range at which that event hap-
pens. As a result, each region will have a set of such motifs
every time a transition is observed for the time period under
study.

With these regions and their motifs, we propose three ap-
proaches to understand the impact of using latent topics ver-
sus pre-defined features in the prediction of regional socio-
economic levels. The first approach, proposes the use of su-
pervised Latent Dirichlet Allocation to do both latent popu-
lation mobility behaviors (PMB) extraction and SEL predic-
tion over the mobility motifs (PMBSEL-sLDA) (Mcauliffe
and Blei 2008). In this scenario, both the motifs in the region
as well as the socio-economic label (response variable) are
used to model the latent population mobility behaviors (top-
ics) and predict the SELs. For the second approach, PMB-
LDA, we propose to use unsupervised LDA to reveal the
population mobility behavior (topic) proportions across re-
gions which are in turn used as input to discriminative re-
gression and classification algorithms to predict the SELs.
Finally, the last approach, Pre-determined Features (PF),
represents each region as a vector of pre-determined mo-
bility motifs where each component shows the number of
times a given motif happens. The vectors are then used as
input to regression or classification techniques. By compar-
ing the accuracy of the three approaches, PMBSEL-sLDA,
PMB-LDA and PF, we expect to quantify the impact of using
latent topics to predict socio-economic levels from spatio-
temporal data. Next, we explain each approach in detail.

Method
We first explain how we compute the mobility motifs from
the spatio-temporal data. Next, we cover each of the pre-
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dictive approaches. At this point, it is important to clarify
that the predictive approaches we propose will be adapted
to work for either continuous or categorical values since the
socio-economic levels (SEL) can sometimes be expressed as
one or the other. Categorical SELs are typically represented
by letters e.g., letter A represents high socio-economic lev-
els, B medium and C lower socio-economic levels where A
covers the range [1− .66), B [.66− .33) and C [.33− 0].

Mobility Motifs

The proposed approach uses large-scale spatio-temporal
data collected from cell phones to model individual mo-
bility. Specifically, each record collected is of the type
(i, j, Ri, Rj , T,D where i, j are encrypted phone numbers,
Rz the regions where the individuals were when the phone
call was made and T,D are time and date of the call. Every
time a phone call is made, a record of such type is collected
thus building data collections of millions of interactions. We
use such records to compute the mobility motifs of a region
Ri as the set of individual continuous transitions that depart
or reach that region for a given period of time.

Formally, given two call records from the same individual
i, we can build a transition as follows. If i was in region Ri

and called individual j in region Rj at time T and date D i.e.,
(i, j, Ri, Rj , T,D) and next the individual i moved to region
R′

i and called to k in region R′
k at time T ′ and date D′ ≥ D

i.e., (i, k, R′
i, R

′
k, T

′, D′) we can extract a mobility motif for
region Ri as the tuple mm = (out,R′

i, T ) meaning that we
observe an individual outgoing transition from region Ri to
region R′

i at time T ; and a mobility motif for region R′
i as

the tuple mm = (in,Ri, T
′) meaning that we observe an in-

dividual incoming transition from region Ri to region R′
i at

time T ′. Since the mobility motifs are based on calling data,
not GPS, we do not have a large number of daily data points
(regions visited) per individual. The average time between
visited regions is 3.2h, thus, we discretize the time into six
four-hour ranges i.e., T ∈ {[0 − 4), [4 − 8), ...[20, 24)}.
Repeating the process for all transitions observed, we can
build a collection of regions (documents) each containing a
specific set of mobility motifs modeled from the observed
calling data as Ri =

⋃
j∈1...6∗R2(out,Rj , T ) ∨ (in,Rj , T )

where 6 ∗ R2 is the size of the vocabulary accounting for
all possible bidirectional transitions between any two given
regions in the area under study at any four-hour time range.

PMBSEL-sLDA

In this approach, we assume that the mobility motifs in each
region arise from a set of latent topics or population mo-
bility behaviors (PMB) at large scale i.e., a set of unknown
distributions over the mobility motifs. The set of PMBs is
common to all regions, but each region will have a different
combination of them. For example, one such PMB might
be commuting and it will be prominent in residential re-
gions where motifs reaching office regions in the morning
and leaving them in the afternoon will be common place.
We propose to use a supervised latent Dirichlet allocation
(sLDA) in such a way that the generative process also in-
cludes the socio-economic label for each region as part of

the model (Mcauliffe and Blei 2008). As a result, the in-
ference is based on model estimates that take into account
the socio-economic labels ı.e., the empirical PMB frequen-
cies put together and non-exchangeably both mobility motifs
and SELs. Given that SELs can be continuous or categori-
cal values, the algorithm (see 1) regresses the SEL labels
on the topic frequencies when the values are continuous.
When SELs are expressed as categories, it is considered to
be drawn from a softmax regression for classification allow-
ing to do a multi-class sLDA as explained in (Wang, Blei,
and Li 2009).

Algorithm 1 PMBSEL-sLDA
1: Draw PMB proportions θ|α ≈ Dir(α).
2: for each mobility motif do
3: Draw PMB assignment zn|θ ≈Mult(θ).
4: Draw mobility motif wn|zn, β1:P ≈Mult(θ)).
5: end for
6: if SEL ∈ � then
7: Draw SEL y|z1:N , η, σ2 ≈ N(ηT ẑ, σ2).
8: else
9: Draw SEL y|z1:N ≈ softmax(ẑ, η).

10: end if

In the algorithm, P is the number of topics, β1:P a vec-
tor with probabilities distribution, ẑ = (1/N)

∑N
n=1 zn, and

the softmax function provides the distribution p(c|ẑ, η) =

exp(ηTc ẑ)/
∑C

l=1 exp(η
T
l ẑ to be able to run classification on

C classes instead of inferring a continuous response. Param-
eters β1:P , η and σ2 are estimated with maximum-likelihood
estimation using a variational EM procedure.

To test the accuracy of this approach, we randomly divide
the set of regions in the area under study into a training and
a testing set (75% − 25%) and repeat it 100 times. We use
the training set for PMBSEL-sLDA model estimation and
the testing set for the inference of SELs from mobility mo-
tifs and topics, and report average accuracy values across all
runs. For continuous SEL values, we report R2 and RMSE.
For SEL classes, we report precision and recall per class, ac-
curacy and average and per-class F1 score since the accuracy
measures tend to be biased towards the majority class if the
class distribution is not homogeneous. The F1 score is com-
puted as F1 = 2∗ precision∗recall

precision+recall where precision is defined
as the fraction of correct results with respect to a given class
and recall as the fraction of correct results with respect to
all the correct results that should have been returned by the
classifier for that class.

PMB-LDA

This second approach focuses on using topic modeling to
extract the population mobility behaviors (PMB) in an un-
supervised manner i.e., topics are identified with the regions
treated as unlabelled. Next, we use the PMBs as features
to predict SELs either as continuous values or as classes.
In this scenario, the LDA is used for dimensionality re-
duction i.e., instead of working with all possible mobility
motifs (words) as features, the LDA extracts the distribu-
tions of the latent population mobility behaviors for each
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region which are in turn used for SEL prediction. The pro-
cess, as shown in algorithm 2, first generates a set of PMB
features over all regions and assigns the mobility motifs
to each PMB. Next, for each region Ri, it adds the vec-
tor containing its PMB frequencies to a dataset (TTS) that
will be used for training and testing. The regional SELs are
then predicted using the regional PMB frequencies as fea-
tures. Since mixed generative-discriminative classifiers have
been reported to improve accuracy results, we evaluate the
performance of Support Vector Machines (SVM) and Ran-
dom Forest (RF) (Jaakkola and Haussler 1998) (Joachims
1999) (Breiman 2001). Finally, depending on the nature of
the socio-economic data, the algorithm executes regressions
(SVR,RFR) or classifications (SVM,RF).

Algorithm 2 PMB-LDA
1: Draw PMB proportions θ|α ≈ Dir(α).
2: for each mobility motif do
3: Draw PMB assignment zn|θ ≈Mult(θ).
4: Draw mobility motif wn|zn, β1:P ≈Mult(θ)).
5: end for
6: for each region Ri do
7: Extract PMB frequencies Ri = [PMB1..PMBP ].
8: TTS =

⋃R
i=1(Ri, SEL)

9: end for
10: if SEL ∈ � then
11: Train and test with TTS using SVR and RFR
12: else
13: Train and test with TTS using SVM and RF
14: end if

As shown, P is the number of topics and β1:P a vector
with probabilities distribution. All parameters are estimated
with maximum-likelihood estimation using a variational EM
procedure. We compute the accuracy by randomly dividing
the set of regions in the area under study into a training and
a testing set (75% − 25%) and repeating it 100 times. We
use the training set to estimate the LDA model, ignoring the
regional SEL labels; and the testing set to infer SELs using
SVM or RF over the topic proportions. We report average
accuracies across runs for both classifications and regres-
sions.

Pre-determined Features

In this approach, each region Ri is represented by a vec-
tor containing all possible mobility motifs as features. We
refer to the features as pre-determined because they are de-
fined from behavioral hypothesis about human behavior and
socio-economic levels rather than from latent topics directly
extracted from the features which add the possibility of find-
ing more complex behaviors. Instead of using population
mobility behaviors extracted with LDA, here the regions
have hard-coded all possible mobility motifs. As shown in
the algorithm 3, each region is represented as a vector con-
taining for each of the 6 ∗ R2 fields the normalized number
of times a mobility motif mfi is observed. Depending on the
vector’s size, for large R values Laplacian smoothing (Field
1988) is applied to account for cases that, although not ob-

served in the dataset, might have happened but not been col-
lected. To be able to compare results against topic modeling
approaches (which exert some type of loosely defined fea-
ture selection), we also apply feature selection techniques
(mRMR) on the hard-coded elements of the vector (Ding
and Peng 2005; Chang and Lin 2001). Then, each regional
vector –after feature selection is applied– is paired up with
its SEL label and all vectors are used as input to a discrimi-
native classifier. As in previous approaches, both classifica-
tion and regression are considered depending on the nature
of the SELs. The accuracy for this approach is computed by
randomly dividing the set of regions into a training and a
testing set (75%− 25%) and repeating it 100 times. We use
the training set to estimate the SVM/RF model; and the test-
ing set to infer SELs. We report average accuracies across
runs for both classifications and regressions.

The mobility motifs presented in this paper were designed
such that they would be amenable to topic models. How-
ever, related work has used different types of pre-determined
mobility-related features to predict socio-economic levels.
Most of them tend to be continuous variables modeling fac-
tors such as radius of gyration, distances traveled, etc. For
completeness, and in an attempt to compare pre-determined
feature approaches, we use 26 different mobility features de-
scribed in recent related literature (Blumenstock and Eagle
2010; Smith-Clarke, Mashhadi, and Capra 2014) to charac-
terize each region and we run algorithm 3 over them. Specifi-
cally, we consider the following features: number of incom-
ing and outgoing transitions, average traveled distance for
trips to or from a given region, radius of gyration, popu-
lation and number of visitors to/from a region and entropy
considering separate weekday and weekend values as well
as several ratios among them. We will refer to this approach
as PF2 and discuss results in the next section.

Algorithm 3 PF
1: for each region Ri do
2: for each mobility motif in region Ri do
3: Update Ri = [mf1, ...,mf6∗R2 ]
4: end for
5: Apply smoothing technique to Ri if necessary
6: TTS =

⋃R
i=1(Ri, SEL)

7: end for
8: if SEL ∈ � then
9: FS, Train, test with TTS using SVR and RFR

10: else
11: FS, Train and test with TTS using SVM and RF
12: end if

Results

Dataset

To evaluate the accuracy of the approaches proposed, we use
two datasets: a large-scale spatio-temporal dataset contain-
ing one month of calling activity for three cities from the
same country, and the socio-economic map for those three
cities containing regional SEL information. For privacy rea-
sons involving the use of cell phone data at large-scale, we
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cannot reveal the name of the country. The spatio-temporal
dataset contains a total of 134M calls and 1.8M individu-
als; while the SEL map contains a total of 186 regions dis-
tributed across the three cities. Each region has a SEL value
expressed as a real number. For completeness, we also re-
port results for discrete SELs. For that purpose, we discretize
SEL values into a range of two to six different categories and
report results for the best approach which was three i.e., level
A, or high socio-economic level, covers the range [1− .66),
level B [.66 − .33) and level C represents the lower socio-
economic level [.33 − 0]. The distribution of regions across
classes was 48 regions with level A, 71 regions with level B
and 67 regions with level C.

SEL Inference

We first compute the mobility motifs from the spatio-
temporal dataset. We obtain a total of≈ 4.4M mobility mo-
tifs across all 186 regions, with an average of≈ 24K motifs
per region (σ =≈ 32K).

Table 1 shows the results for the four approaches using
regression to infer SELs as continuous values. The results
reported are for 20 topics for PMB-LDA (RF and SVR) and
25 for PMBSEL-sLDA, which turned out to be the num-
ber of topics that had the best results in terms of accuracy
(R2) as shown in Figure 2. For Support Vector Regression,
we used a Gaussian RBF kernel and the parameters (C, γ, ε)
were selected using 5-fold cross validation to minimize the
mean squared error. For Random Forest, the results are re-
ported for 8 random trees in PMB-SEL; 146 trees in PF and
14 trees in PF2.

We can observe that both topic model approaches,
PMBSEL-sLDA and PMB-LDA, have the best R2 values
together with the lowest error. In the case of PMB-LDA
the best results are obtained using RF although SVR gave
results with R2 only ≈ 1% worse. As hypothesized, the
topic model approaches outperform the pre-determined fea-
ture approaches by ≈ 9% in the best case. In fact, R2 =
0.7802 for PMBSEL-sLDA while R2 = 0.6927 for PF .
These results show that the topic models reveal latent pop-
ulation mobility behaviors (PMB) that appear to character-
ize SELs (and the complex behaviors associated to them)
better than the mobilility motifs in which the PMBs are
based on. Comparing both topic model approaches, the su-
pervised approach gave ≈ 6% better R2 than the unsuper-
vised approach combined with RF. A similar result was also
reported by (Mcauliffe and Blei 2008) in an experiment in-
ferring movie ratings with sLDA. Finally, when comparing
pre-determined feature approaches we can see that the mo-
bility motifs (PF) outperform the set of mobility variables in
PF2 by ≈ 7%. Incidentally, the words defined to carry out
the experiment, which model events co-occurring in space
and time (connected regions, direction of the flow and time
stamp) appear to represent the human behavior associated
to socio-economic levels better than simpler mobility mea-
sures recently used in the literature. Somewhat similar find-
ings were reported in (Yuan, Zheng, and Xie 2012) with re-
spect to identifying urban land uses from GPS-based human
behavior, although the task was fully unsupervised.

On the other hand, Table 2 shows the accuracies and F1
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Figure 2: R2 per number of topics for PMB-LDA (SVR and
RF) and PMBSEL-sLDA approaches.

REGRESSION R2 RMSE

PMBSEL-sLDA 0.7802 0.0902

PMB-LDA SVR 0.7050 0.1088
RF 0.7188 0.1058

PF SVR 0.2573 0.1731
RF 0.6927 0.1156

PF2 SVR 0.5721 0.1290
RF 0.6288 0.1195

Table 1: Accuracies for Regression with topic models and
pre-determined features.

scores for all four approaches when SELs are defined as
three discrete classes: A, B and C (from high to low socio-
economic level). The results are reported for 25 topics for
PMBSEL-sLDA and 15 topics for PMB-LDA, which are the
topics that gave the highest F1 scores. For SVM, we used an
RBF Gaussian Kernel and for RF the number of trees were
8, 146 and 2 for PMB-LDA, PF and PF2, respectively.

In general, the findings and trends are similar to the ones
already discussed for the regression results. Here again, we
observe that both topic models appear to improve the aver-
age F1 score obtained with the pre-determined features ap-
proach by ≈ 4% in the best case scenario (PMBSEL-sLDA
vs. PF). It seems that LDA-based approaches might be doing
a better job at extracting more complex population mobility
behaviors than just the mobility motifs. Similarly, the pre-
determined mobility motifs approach is slightly better than
the simpler features of PF2 when RF are used. Moving on
to the per-class F1 scores, we observe that the results across
classes are quite balanced, specially when topic models are
used. Interestingly, this fact reveals that regions are not sim-
ply being classified as the most frequent class which would
be B in this case. Finally, the discretization of the SEL val-
ues was done by simply dividing the values into three equal-
length ranges. However, future work will explore more sen-
sitive discretizations with respect to socio-economic levels
such as computing range widths based on density estima-
tions of SELs which might model better how poverty is dis-
tributed (Schmidberger and Frank 2005).

Exploring SEL-based Topics

The mobility motifs we have defined are not as intuitive as
natural words and as a result, it makes it challenging to show
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CLASSIFICATION ACC AVG.F1 F1
A B C

PMBSEL-sLDA 0.7565 0.7526 0.7273 0.7283 0.8023

PMB-LDA SVM 0.6237 0.6302 0.6609 0.5519 0.6777
RF 0.7130 0.7212 0.7786 0.6572 0.7276

PF SVM 0.4522 0.4510 0.7856 0.6283 0.7160
RF 0.7004 0.7100 0.7856 0.6283 0.7160

PF2 SVM 0.6200 0.6374 0.7409 0.5586 0.6128
RF 0.6440 0.6567 0.7468 0.5847 0.6387

Table 2: Accuracy (ACC), average F1 and per-class F1 score
with topic models and pre-determined features.

what motifs are associated to different topics so as to carry
out qualitative explorations of the type natural language pro-
cessing researchers do. For that reason, we propose a qual-
itative evaluation of the topics and words based on socio-
economic levels since these are the most relevant variables
for policy makers. For each PMB (topic), we take its mobil-
ity motifs (regardless of their frequency), extract the socio-
economic category of the regions involved in those words,
and plot a colored circle for each observed category in each
region. Figure 3 shows an example for one of the topics de-
tected in one of the three cities under study. Each region
is color-coded according to its SEL: A is orange, B dark
yellow and C light yellow; and the circles follow the same
color code. Interestingly, we observe that most of the regions
only have mobility motifs to/from regions with the same
socio-economic level (see #1 in the Figure) thus showing
that people from similar SELs tend to cluster together and
revealing potential urban pockets based on SELs. There ex-
ist a few mid- and high-SEL regions that show transitions
between them, probably because they share borders (see
#2) although, as can be seen, there exist other regions that
share borders without sharing flows of different SELs (see
#3). Additionally, there exists a unique region that has flows
to/from all socio-economic levels (see #4 in Figure) which
contains a very important touristic attraction that probably
attracts frequent trips from all regions. We also observe three
rare cases of sink regions where flows to/from the region are
only from a different SEL than its own (see #5). One could
argue that these findings simply reflect the temporal limi-
tations that individuals have to reach different regions and
that in general they visit the ones that are nearby. However,
recall that the mobility motifs are computed for 4 − hour
periods (avg. transition length of 3.2h) which is sufficient
time to reach any region of the city from any other. Thus,
it appears that individuals choose to focus on specific SEL-
influenced flows among all the possibilities. By repeating
this analysis for other topics, and adding word frequencies
or temporal ranges, we might be able to extract urban dy-
namics that could inform policy makers about inequalities
or abnormalities that should be solved to improve the cities
we live in. The topic modeling framework proposed in this
paper is amenable to that type of analysis.

Related Work

(Smith-Clarke, Mashhadi, and Capra 2014) used cell phone
data from two countries to extract a set of mobility and call-
ing features including call volumes, regional distances or

Figure 3: SEL-based mobility motifs. Darker colors repre-
sent higher SELs. Circles represent to/from transitions.

entropy. Such features were then used to analyze various
types of correlations as well as to run a simple linear regres-
sion to approximate poverty information from cell phone
data. Other papers have presented similar approaches using
other machine learning techniques including SVMs, RF or
EM clustering to predict socio-economic maps (Rubio et al.
2010; Eagle, Macy, and Claxton 2010; Blumenstock and Ea-
gle 2010). Other works not specifically focused on SEL pre-
diction but on potential proxies include (Quercia et al. 2012;
Quercia, Seaghdha, and Crowcroft 2012) who found that
deprivation values were related to pre-determined Twit-
ter features such as conversations or sentiment; or (Doll,
Muller, and Elvidge 2000; Ebener et al. 2005; Elvidge et
al. 1997) who showed that a country’s GDP was corre-
lated to night time light (NTL) measured from satellite im-
agery. Topic models have been used outside natural lan-
guage processing in various capacities (Barnard et al. 2003;
Blei and Jordan 2003; Bosch, Zisserman, and Munoz 2006;
Duygulu et al. 2002). In this paper, we have explored the use
of topic models to enhance the existing approaches to SEL
prediction.

Conclusions

Computing socio-economic maps is critical for countries.
However, its compilation requires extensive resources and
becomes highly expensive. Traditional approaches have
used prediction techniques based on a set of pre-determined
features computed from spatio-temporal data. In this paper,
we have presented a novel approach that uses topic modeling
techniques to extract a set of latent features (the population
mobility behaviors) that are used to infer socio-economic
regional labels. We have shown that our approach improves
state of the art techniques by ≈ 9%. Future work will ex-
plore the use of social media sources to explore improve-
ments in socio-economic level predictions through multi-
modal systems.

References

Barnard, K.; Duygulu, P.; de Freitas, F.; Forsyth, D.; Blei,
D.; and Jordan, M. 2003. Matching words and pictures.

3840



Journal of Machine Learning 3:1107–1135.
Becker, R.; Caceres, R.; Hanson, K.; Isaacman, S.; Loh, J.;
Martonosi, M.; Rowland, J.; Urbanek, S.; Varshavsky, A.;
and Volinsky, C. 2013. Human Mobility Characterization
from Cellular Network Data. In CACM.
Blei, D., and Jordan, I. 2003. Modeling annotated data.
SIGIR.
Blumenstock, J., and Eagle, N. 2010. Mobile divides: Gen-
der, socioeconomic status, and mobile phone use in rwanda.
Bosch, A.; Zisserman, A.; and Munoz, X. 2006. Scene clas-
sification via plsa. European Conference on Computer Vi-
sion.
Breiman, L. 2001. Random forests. Machine Learning
45(1):5–32.
Chang, C., and Lin, C. 2001. Libsvm: a library support for
vector machines. http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
Ding, C., and Peng, H. 2005. Minimum redundancy feature
selection from microarray gene expression data. Journal of
Bioinformatics and Computational Biology 3(2):185–206.
Doll, C.; Muller, J.; and Elvidge, C. 2000. Night-time im-
agery as a tool for global mapping of socioeconomic param-
eters and greenhouse gas emissions. AMBIO:Journal of the
Human Environment 29(3):157–162.
Duygulu, P.; Barnard, J.; de Freitas, F.; and Forsyth, D. 2002.
Object recognition as machine translation: Learning a lexi-
con for a fixed image vocabulary. European Conference on
Computer Vision.
Eagle, N.; Macy, M.; and Claxton, R. 2010. Network diver-
sity and econmic development. Science 328.
Ebener, S.; Murray, C.; Tandon, A.; and Elvidge, C. 2005.
From wealth to health: modelling the distribution of income
per capita at the sub-national level using night-time light im-
agery. International Journal of Health Geographics 4(1).
Elvidge, C.; Baugh, K.; Kihn, E.; and Kroehl, H. 1997. Map-
ping city lights with night time data from the dmsp opera-
tional linescan system. Photogrammetric Engineering and
Remote Sensing 63(6):727–734.
Fei-Fei, L., and Perona, P. 2005. A bayesian hierarchical
model for learning natural scene categories. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 2, 524–531.
Field, D. A. 1988. Laplacian smoothing and delaunay tri-
angulations. Communications in applied numerical methods
4(6):709–712.
Frias-Martinez, V.; Soto, V.; Virseda, J.; and Frias-Martinez,
E. 2012. Computing cost-effective census maps from cell
phone traces. Workshop on Pervasive Urban Applications,
PURBA.
Frias-Martinez, V.; Soguero-Ruiz, C.; Frias-Martinez, E.;
and Josephidou, M. 2013. Forecasting socioeconomic trends
with cell phone records. ACM Symposium on Computing for
Development.
Jaakkola, T., and Haussler, D. 1998. Exploiting generative
models in discriminative classifiers. In In Advances in Neu-
ral Information Processing Systems 11.

Joachims, T. 1999. Transductive inference for text classifi-
cation using support vector machines. In Proceedings of the
Sixteenth International Conference on Machine Learning.
Mcauliffe, J. D., and Blei, D. M. 2008. Supervised topic
models. In Advances in neural information processing sys-
tems, 121–128.
Quercia, D.; Ellis, J.; Capra, L.; and Crowcroft, J. 2012.
Tracking gross community happiness from tweets. In
Proceedings of the ACM Computer-Supported Cooperative
Work and Social Computing.
Quercia, D.; Seaghdha, D.; and Crowcroft, J. 2012. Talk
of the city: Our tweets, our community happiness. In Pro-
ceedings of the AAAI International Conference on Web and
Social Media.
Rubio, A.; Frias-Martinez, V.; E., F.-M.; and Oliver, N.
2010. Human mobility in advanced and developing
economies: A comparative analysis. AAAI Spring Sympo-
sium: Artificial Intelligence for Development.
Schmidberger, G., and Frank, E. 2005. Unsupervised dis-
cretization using tree-based density estimation. In Pro-
ceedings of the 9th European Conference on Principles and
Practice of Knowledge Discovery in Databases, PKDD’05.
Smith-Clarke, C.; Mashhadi, A.; and Capra, L. 2014.
Poverty on the cheap: Estimating poverty maps using ag-
gregated mobile communication networks. In CHI.
Soto, V.; Frias-Martinez, V.; Virseda, J.; and Frias-Martinez,
E. 2011. Prediction of socioeconomic levels using cell
phone records. In Proceedings of the Int. Conference on
User Modeling, Adaption, and Personalization.
Tand, C., and Monteleoni, C. 2014. Detecting extreme
events from climate time series via topic modeling. In In-
ternational Workshop on Climate Informatics.
Vieira, M.; Frias-Martinez, E.; Bakalov, P.; Frias-Martinez,
V.; and Tsotras, V. 2010. Querying spatio-temporal patterns
in mobile phone-call datasets. International Conference of
Mobile Data Management.
Wang, C.; Blei, D.; and Li, F.-F. 2009. Simultaneous image
classification and annotation. In Computer Vision and Pat-
tern Recognition, 2009. CVPR 2009. IEEE Conference on,
1903–1910. IEEE.
Worrall, E.; Basu, S.; and Hanson, K. 2003. The relationship
between socio-economic status and malaria: a review of the
literature. Health Economics for Developing Countries.
Wyatt, J., and Mattern, K. 2011. Low-ses students and col-
lege outcomes: the role of ap fee reductions. College Board:
AP Data and Records.
Yuan, J.; Zheng, Y.; and Xie, X. 2012. Discovering regions
of different functions in a city using human mobility and
pois. In Proceedings of the 18th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing.

3841




