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Abstract

Transportation and mobility are central to sustainable
urban development, where multiagent-based route guid-
ance is widely applied. Traditional multiagent-based
route guidance always seeks LET (least expected travel
time) paths. However, drivers usually have specific ex-
pectations, i.e., tight or loose deadlines, which may not
be all met by LET paths. We thus adopt and extend the
probability tail model that aims to maximize the proba-
bility of reaching destinations before deadlines. Specif-
ically, we propose a decentralized multiagent approach,
where infrastructure agents locally collect intentions of
concerned vehicle agents and formulate route guidance
as a route assignment problem, to guarantee their arrival
on time. Experimental results on real road networks jus-
tify its ability to increase the chance of arrival on time.

Introduction

Route guidance for vehicles is a challenging problem in
transportation and mobility, which is crucial to the sustain-
able development of any city. It attracts broad and deep at-
tention from the government, industry and research com-
munity due to its high relevance to people’s daily life.
Multiagent-based approaches are widely applied in route
guidance (France, Ghorbani, and others 2003; Wilt and
Botea 2014), because agent metaphor for modeling a traf-
fic participant or decision-maker can capture complex con-
straints connecting all problem-solving phases, especially in
the cooperative vehicle routing (Bazzan and Klügl 2014). A
transportation system can be modeled as a large, distributed
and dynamic multiagent system where vehicles represented
as agents move on the road network following their own
routes, which are determined by themselves or infrastructure
agents at road intersections (Jiang, Zhang, and Ong 2014).

Although multiagent-based approaches have achieved big
success in route guidance, a critical issue still remains
to be addressed: most of them only seek LET (least ex-
pected travel time) paths for vehicles (Yamashita et al. 2005;
Claes, Holvoet, and Weyns 2011; Wang, Djahel, and Mc-
Manis 2014). The attractive aspect about LET path is that
it can be transformed into a deterministic routing problem
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and solved by efficient path finding algorithms like Dijk-
stra (Hall 1986). However, in real traffic, different drivers
may have different deadlines, and even the same driver may
have different deadlines in various scenarios. For instance,
if they catch up important appointments, deadlines might be
tight; if they go shopping, deadlines might be loose. Sim-
ply seeking LET paths for all drivers is not necessary and
may cause some drivers with tight deadlines to miss their
deadlines due to the influence from other drivers with loose
deadlines. This will then increase these drivers’ frustration
and impatience, and in consequence the accident rate.

To address this issue, we propose to adopt the probability
tail model which aims to maximize the probability of reach-
ing destination before a deadline (Fan, Kalaba, and Moore II
2005; Lim et al. 2013). This model is more reasonable as
it considers specific demands of drivers and is consistent
with real-world travel behavior. One common query could
be that “I want to reach airport in 40 minutes. Please find a
path with maximum chance”. However, the probability tail
model is originally designed for each single vehicle, which
independently pre-computes a path before each vehicle de-
parts. Traffic is known to be dynamic, so optimality of a pre-
computed path may not hold once all vehicles are en-route.
It is then desirable to extend the probability tail model to
consider the intentions of other vehicles, with the purpose
of increasing the chance of arrival on time for all vehicles.
To achieve this, we propose a decentralized multiagent ap-
proach, where infrastructure agents locally collect intentions
of concerned vehicle agents and formulate route guidance
as a route assignment problem, to guarantee their arrival on
time. Furthermore, its efficiency is enhanced by reformulat-
ing route assignment as a mixed integer linear programming
(MILP) problem, and its performance is improved by al-
lowing communication between neighboring infrastructure
agents. Experimental results on real road networks show that
our approach outperforms the traditional methods.

Related Work

In one of the early multiagent-based approaches for route
guidance (Yamashita et al. 2005), a global server agent con-
stantly collects intentions of routes from all vehicle agents.
It then computes a predicted LET path for each individual
vehicle agent by cooperatively exploring the collected inten-
tions, and all vehicle agents update their routes at each inter-
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section accordingly. Similarly, a modified A∗ algorithm (Pan
et al. 2013) incorporates a repulsion scheme into the expres-
sion of weights on all road links. Then each vehicle agent
recursively computes a LET path in a centralized manner,
to avoid the situation where too many vehicle agents rush
into a same route. In another centralized approach (de B do
Amarante and Bazzan 2012), each vehicle agent is assumed
to know real-time traffic condition on all road links, and
dynamically travels along the latest LET path. Centralized
approaches often suffer from low computational efficiency.
Jiang et al. (2014) propose a decentralized pheromone-based
vehicle rerouting approach, in which whenever congestion is
predicted by a local infrastructure agent, the concerned ve-
hicle agents will update their routes by choosing one of the
best k LET paths. Decentralized multiagent approaches have
the capability of adaptively updating routes according to dy-
namic traffic, however they do not consider specific demands
of vehicle agents, i.e., preferred deadlines.

Several optimization approaches are proposed to take
drivers’ preferred deadlines into account. Particularly, the
probability tail model is widely adopted for vehicle route
guidance (Fan, Kalaba, and Moore II 2005; Lim et al. 2009;
2013), which aims to maximize the probability of arriv-
ing at destination before deadline and is formally expressed
as (Lim et al. 2013; Cao et al. 2014):

max
�x

Prob(�w��x ≤ T )
∣∣M�x = �b; �x ∈ {0, 1}|Ar|, (1)

where �w denotes travel time for each road link; M is node-
arc incidence matrix of the road network; T is the preferred
deadline; �b is an O-D vector, all elements of which are zeros
except those for origin (“1”) and destination (“-1”); �x refers
to the set of road links where an element is “1” if the referred
road link is on the concerned path. The equality constraint in
Eq. (1) guarantees that �x is a connected path from origin to
destination. This model is more consistent with real-world
travel queries. However the existing approaches incorporat-
ing this model independently pre-computes a path for each
individual vehicle before it departs, without considering the
intentions of others. Since traffic is always dynamic, opti-
mality of a pre-computed path may not hold any more once
all vehicles are en-route due to the influences of others.

It is thus desirable to leverage both the advantages of a de-
centralized multiagent approach (that deals with traffic dy-
namics by considering intentions of vehicle agents) and the
probability tail model (that considers different deadlines of
vehicles), which is what we propose in this paper.

Multiagent-based Route Guidance

We propose a decentralized multiagent-based approach in-
volving two types of agents, vehicle agents and infrastruc-
ture agents. Vehicle agents representing drivers, travel on
a road network by following route guidance. Infrastructure
agents, located at road intersections, collect intentions (i.e.,
deadlines and destinations) from vehicle agents, and formu-
late route guidance as a route assignment problem, to in-
crease the chance of arrival on time for all concerned vehicle
agents. Then the vehicle agents accordingly update routes.
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Figure 1: Two Types of Agents and Intention Collection

Intention Collection

In traffic, vehicles may influence each other due to limited
road capacity and rush hour effect. To consider such in-
fluence, intention collection is necessary (Yamashita et al.
2005; Li, Wu, and Zhu 2009; Claes, Holvoet, and Weyns
2011). In our approach, each vehicle agent determines a des-
tination and a preferred deadline before departure, and trav-
els along an initial route given by the probability tail model
in Eq. (1). Each infrastructure agent is associated with all
traffic lights at a road intersection. It collects intentions from
vehicle agents, which are (1) located on road links directly
connected to that infrastructure agent; and (2) facing red
lights. The motivation for the latter is to avoid unnecessary
and frequent route change. Facing green lights may imply
that the current route is sufficiently satisfactory.

Take a one-way road network in Fig. 1 as an example,
where ri is infrastructure agent, vj is vehicle agent, and pk is
road link. Assume that at this moment, the traffic light asso-
ciated with r1 shows red color to p1 and p2. Then r1 collects
intentions of v1, v2 and v3. Since this red color will last for a
while, r1 will also collect intentions of other vehicle agents
if they later enter p1 or p2 during the same red color period.
Other infrastructure agents also work in the same manner.

Route Assignment

Vehicles generally have different types of deadlines. Simply
seeking LET paths for all vehicles may cause some vehicles
with tight deadlines to miss their deadlines due to the influ-
ences from other vehicles with loose deadlines. Motivated
by this concern, a desirable approach is to distribute vehi-
cles with loose deadlines to detour crowded paths, to make
ways to those with tight deadlines. On the other hand, vehi-
cles always face choices at an intersection: go straight, turn
left, turn right or turn back to enter the next road link. Thus,
in our approach, the infrastructure agent at each road inter-
section provides route guidance to vehicle agents by formu-
lating it as a route assignment problem (Papageorgiou 1990),
which incorporates the collected intentions.

Take infrastructure agent r1 and vehicle agents v1, v2 and
v3 in Fig. 1 again as an example, and focus on the route as-
signment for v1. Assume that: (1) destination of v1 is d2, and
its preferred deadline is T1; (2) v1, v2 and v3 are currently
facing red light, and will next enter p3 or p9. Assignment
for an vehicle agent always influences others. Suppose that
the predicted travel time of v1 on p3 and p9 are T p

13 and
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T p
19, which linearly depend on the number of assigned ve-

hicle agents to the road links and their lengths. Besides, we
need to consider traffic conditions from r2 and r4 to d1 or
d2, where historical expected travel time is used because r2
and r4 are comparatively far away from r1. Assume that the
expected travel time from r2 and r4 to d2 are T e

22 and T e
42.

Hence, if v1 is assigned to p3 or p9, there would be rela-
tive deadlines on p3 and p9 for v1, denoted as T r

13 and T r
19.

Since deadlines should always be non-negative, we have
T r
13 = max{0, T1 − T e

22}, and T r
19 = max{0, T1 − T e

42}.
Thus there would be a potential delay ξ1 for v1, satisfying
T p
13−T r

13 ≤ ξ1 and T p
19−T r

19 ≤ ξ1 (i.e., ξ1 is non-negative,
and there is no delay only if ξi = 0). To guarantee arrival
on time for the three vehicle agents, r1 should minimize the
cardinality1 of �ξ whose components are ξi (i = 1, 2, 3).

In view of the above example, we can generalize route
assignment performed by each infrastructure agent. First in-
troduce several symbols: (1) lj , choices of road links to en-
ter next, such as p3 and p9 in Fig. 1; (2) xij ∈ {0, 1},
xij = 1 means that vi is assigned to lj , otherwise xij = 0;
(3) I = {1, ..., Q} and J = {1, ..., L}, indexes of vehicle
agents and road link choices associated with the infrastruc-
ture agent. Then maximizing the chance of arrival on time
for all concerned vehicle agents can be expressed as mini-
mizing the cardinality of the potential delay �ξ, as follows:

min
�x

Card(�ξ)

∣∣∣∣∣∣∣∣∣

∑

j∈J

(fj(�x)− T r
ij) · xij ≤ ξi, ∀i ∈ I;

∑

j∈J

xij = 1,∀i ∈ I; ξi ≥ 0;xij∈{0, 1},
(2)

where �ξ = {ξ1, ...ξQ}, and delay occurs for vi if ξi > 0;
�xj = (x1j , ..., xQj), indicates assignments to lj ; fj(�x), a
linear function, denotes predicted travel time on lj ; T r

ij is
relative deadline for vi on lj ;

∑
j∈J xij = 1 ensures that

vi can only enter one road link, thus only one potential de-
lay takes effect in

∑
j∈J(fj(�x)−T r

ij) · xij . Particularly, the
linear function fj(�x) for lj is expressed as:

fj(�x) = cj
∑

i

xij + γj (3)

where
∑

i xij is amount of vehicle agents assigned to lj ,
cj and γj are coefficients. The cardinality minimization in
Eq. (2) is difficult to be directly solved. We thus use �1-norm
to approximately solve it (Kim et al. 2009), which can be
further expressed as:

min
�x

Q∑

i=1

ξi

∣∣∣∣∣∣∣∣

∑

j∈J

(fj(�x)− T r
ij) · xij ≤ ξi, ∀i ∈ I;

∑

j∈J

xij = 1, ∀i ∈ I; ξi ≥ 0;xij ∈ {0, 1}. (4)

Eq. (4) is a mixed integer quadratic programming (MIQP)
problem in nature, which can be solved by existing solvers.
Since �1-norm minimization in Eq. (4) is minimizing the
sum of delay duration, our approach actually also reduces
the delay duration for individual vehicles.

1Cardinality is the number of non-zero components in a vector.

input : V = {v1, ..., vQ}, a set of vehicle agents;
R = {r1, ..., rG}, a set of infrastructure agents;
V i=∅, vehicle agents that need guidance at ri;
TLi, traffic lights associated with ri;
Tg , Tr, green light and red light duration;
flg = 0, indicator of route guidance computation;

1 Each ri ∈ R turns on its associated traffic lights TLi;
2 Each vj ∈ V determines destination dj and deadline
Tj , and computes an initial path Pj using Eq. (1);

3 while |V | > 0 do
4 foreach vj ∈ V do
5 if vj reaches dj then
6 Deletes itself from V : V = V − vj ;
7 else
8 Travels along Pj ;
9 Updates deadline Tj ;

10 foreach ri ∈ R do
11 foreach tlk ∈ TLi do
12 Runs according to Tg and Tr;
13 if tlk is in red color phase then

14 ri finds vk facing tlk: V i = V i + vk;
15 ri collects dk and Tk from vk;
16 if tlk is at end of red color phase then
17 flg = 1;

18 if flg == 1 then

19 foreach vj ∈ V i do
20 Computes relative deadline for vj

based on the latest Tj ;
21 Computes its new path P

′
j via Eq. (4);

22 Updates its route: Pj = P
′
j ;

23 Resets parameters: V i = ∅, flg = 0;

Algorithm 1: Multiagent-based Route Guidance

Note that: (1) Eq. (4) only outputs a road link for a vehi-
cle agent to enter next, but the remaining path from assigned
road link to destination is also available due to the compu-
tation of relative deadline T r

ij . The vehicle agent can then
follow this complete route if it does not receive any further
guidance after an route assignment, which may happen if
afterwards it always faces green light; (2) As time elapses,
deadline Tj will decrease, and we always use the latest Tj

when route guidance is performed; (3) We previously take
a simple one-way road network as an example, and double-
way road links can also be easily applied, as long as infras-
tructure agents dynamically recognize on which road links
vehicle agents are facing red light, and which road links are
available to be assigned to those vehicle agents.

Pseudo-Code Summary

We summarize the proposed multiagent-based route guid-
ance approach in Algorithm 1. Lines 1-2 initialize infras-
tructure agents and vehicle agents. In Lines 3-23, each in-
frastructure agent recursively assigns paths to vehicle agents
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who need route guidance at intersections, until they all reach
destinations. Particularly, in Lines 4-9, each vehicle agent
travels along a current route and updates its deadline if it has
not reached destination. In Lines 11-17, during the red-color
phase, each infrastructure agent recursively finds the set of
vehicle agents who need route guidance and collects their
intentions including deadlines and destinations. In Lines 18-
22, upon the completion of the red-color phase, each infras-
tructure agent computes the optimal road links for all con-
cerned vehicle agents to enter next based on Eq. (4), and
accordingly updates theirs routes.

Further Improvements

We further improve computational efficiency of our ap-
proach by introducing new variables and additional linear
constraints to Eq. (4), and route guidance performance by
allowing communications between infrastructure agents.

Improvement on Computational Efficiency

Eq. (4) is a MIQP problem mainly due to (fj(�x)−T r
ij) ·xij

in the first constraint. After unfolding, quadratic part comes
from the term xkj · xij (k ∈ I , and xkj denotes assignment
to lj). Since both xkj , xij ∈ {0, 1}, xkj ·xij can be replaced
by xij if k = i. Therefore, the term xkj ·xij is quadratic only
if k �= i. However, xkj · xij (k �= i) can also be replaced by
a binary variable with two additional linear constraints.

There are four correct permutations for vector (xkj , xij ,
xkj · xij), i.e., (0,0,0), (0,1,0), (1,0,0) and (1,1,1). And we
introduce a new variable ykij ∈ {0, 1} to replace xkj · xij

(k �= i), where eight permutations for vector (xkj , xij , ykij)
exist. Therefore we add two linear cuts, i.e., xkj + xij +
ykij ≤ 1 and −xkj − xij + 2ykij ≤ 0, to filter out the four
faulty permutations (Yang et al. 2013). Then we reformulate
the MIQP problem in Eq. (4) as follows:

min
�x

Q∑

i=1

ξi

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑

j∈J

(gj(�z)+(γj−T r
ij)xij)≤ ξi,∀i∈ I;

− xkj − xij + 2ykij ≤ 0, ...,

xkj+xij+ykij ≤1,∀i, k∈ I, k < i, ∀j∈J ;
∑

j∈J

xij = 1, ∀i ∈ I; ξi ≥ 0;xij ∈ {0, 1},

(5)

where gj(�z) = cj
∑

i∈I zij ; size of �z is same with that of �x;
zkj is equal to xij if k = i, and ykij if k �= i; ykij is equal
to yikj in this scenario. Thus, Eq. (5) is reduced to a mixed
integer linear programming (MILP) problem, which can be
solved much more efficiently than MIQP of similar scale.

Performance Improvement via Communication

In the proposed approach, we use historical expected travel
time to evaluate the remaining path from the assigned road
link to destination. Since the infrastructure agent is always
located at an intersection, it can obtain real-time traffic con-
ditions (i.e., travel time) on directly connected road links.
It is thus reasonable for an infrastructure agent to commu-
nicate with neighboring infrastructure agents to obtain real-
time traffic conditions further away. The expectation is that
real-time traffic condition can better evaluate a route than

the historical traffic condition. We use E (i.e., E ∈ Z
+
0 ) to

denote the number of communication hops, and there is no
communication if E = 0. In Fig. 1, if E = 1, r1 only com-
municates with its neighbors, e.g., r2 and r4. Thus it can
obtain real-time traffic conditions on p4, p5, p12, p10 and p8,
which can be used to evaluate the paths from r2 and r4 to
destinations when r1 performs route assignment for v1, v2
and v3. As E increases to 2, r1 is able to communicate with
infrastructure agents one more hop away, e.g., r3, thus r1
can obtain real-time traffic conditions on p6, p7 and r14 as
well. However, as the number of communication hops be-
comes larger, additional communication and storage costs
also incur. The dynamics of traffic may also cause real-time
traffic information to be outdated by the time vehicle agents
reach the intersection, if the location is far away.

Experimentation

We conduct experiments in various settings to extensively
compare our route guidance approach with existing meth-
ods, showing its advantages of increasing the chances of
reaching destination before deadline for all vehicles.

Road Networks and Parameter Settings

All experiments are conducted on SUMO (Behrisch et al.
2011). The two testing road networks are parts of two very
dense cities, Singapore and New York respectively. Each
road has 2 lanes, and their maps are given in Fig. 3, with
the following properties summarized by SUMO: (1) network
areas are 65,300m2 and 218,000m2; (2) numbers of road
links are 507 and 1,121; (3) numbers of intersections are
98 and 352. The configurations of vehicles are as follows:
length is 5m; minimal gap is 2.5m; car following model is
Krauss (Behrisch et al. 2011); origins and destinations are
randomly generated; traffic light duration: Tg = Tr = 20s;
vehicles will not occupy road resources when reaching des-
tinations. In addition, we introduce a positive parameter α to
denote different levels of deadlines. Specifically, once O-D
are determined, an expected travel time Te can be derived
based on historical traffic data. Thus, T = α · Te implies a
tight deadline if α < 1, and a loose deadline if α > 1. More-
over, the proposed approach needs historical expected travel
time to evaluate some parts of a route. So, before testing
our approach, we first randomly run the simulation for 250
times to get an expected travel time of each road link, where
vehicles simply travel along the shortest distance routes. Ad-
ditionally, we also use SVR (Chang and Lin 2011) to learn
the coefficients of fj(�x) through those random simulations.
Particularly, all experiments are conducted on an ordinary
PC with Intel Core i7-3540M processor and 8.00 GB RAM.

Comparative Performance

We compare with five different route guidance meth-
ods: (1) SD (i.e., shortest distance) based method, which
pre-computes a path of shortest distance; (2) LET-based
method, which pre-computes a path of least expected travel
time based on historical traffic conditions; (3) PTM-based
method (Lim et al. 2013), which pre-computes a path by
Eq. (1); (4) RIS (i.e., route information sharing) method,
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Figure 2: Different Types of Deadlines. [Best Viewed in Color]

(a) Singapore (b) New York

Figure 3: Two Testing Road Networks

which constantly computes LET paths for vehicles at each
intersection by cooperatively exploring their latest intentions
of routes (Yamashita et al. 2005); (5) τ -rerouting method,
claimed to be the best-performing vehicle rerouting strat-
egy (Jiang, Zhang, and Ong 2014). Note that the first three
methods pre-compute route guidance before vehicle depar-
ture, while the last two and our approach adaptively provide
route guidance for vehicles en-route.

Different Levels of Deadlines This experiment varies dif-
ferent levels of deadlines α: 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4,
with different numbers of vehicles: 400, 800, 1,200 and
1,600 on both networks. We run the simulation for 500 times
under each setting, record the probability of arrival on time
for each vehicle, and plot the average in Fig. 2. We can ob-
serve that on both networks, the average probabilities always
increase with α for all six methods. It is natural because a
vehicle with a very loose deadline has higher chance to ar-
rive on time even if it does not follow any smart route guid-
ance. Generally, the three pre-computation methods are in-
ferior to the three adaptive methods, because the optimality
of pre-computed paths may not hold, especially in highly
dynamic traffic, e.g., New York network with 1,600 vehi-

cles. However, the inferiority is not obvious in extremely
sparse or saturated traffic, such as Fig. 2 (a), (e) and (d). In
sparse traffic, vehicles rarely influence each other, and short-
est distance path is sufficiently satisfactory. In over-saturated
traffic, vehicles almost cannot proceed even if they receive
adaptive guidance. Among the three pre-computation meth-
ods, PTM-based method achieves the highest overall perfor-
mance because it takes deadline into account, although in an
independent manner. As for the three adaptive methods, our
approach is always better than the other two in terms of over-
all probabilities of arriving on time, especially in Fig. 2 (b),
(c), (f), (g) and (h), where the traffic densities are moderate.
In most cases, RIS method is better than τ -rerouting method,
because it is centralized, where a global server constantly
predicts the LET path for each individual vehicle, based on
latest intentions of routes. This superiority does not hold for
New York network with 1,600 vehicles, because the traf-
fic density is comparatively high, and τ -rerouting method
is especially effective where congestion is likely to occur.
However, both methods do not care about whether vehicles
would be late regarding their preferred deadlines. On the
other hand, our approach cooperatively explores the dead-
lines of other vehicles, and recursively provides guidance by
solving an optimization problem, which aims to guarantee
arrival on time, thus achieving the best overall performance.

Different Penetration Rates We test the three adaptive
approaches with different penetration rates λ defined as the
percentage of vehicles sharing their intentions. We take both
networks with 1,200 vehicles as study cases, and adopt
λ=0.8 and 0.4. From Fig. 4, we notice that average probabil-
ities for the three methods decrease as λ becomes smaller.
It is natural since route guidance in them all reply on in-
tentions. Particularly, RIS method is centralized, and miss-
ing intentions of routes may globally influence route guid-
ance of others, so τ -rerouting method and our approach
achieve better performance regarding λ=0.4, especially for
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Figure 4: Different Penetration Rates. [Best Viewed in Color]
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Figure 5: Different Percentages of Tight Deadlines and Improvement via Communication. [Best Viewed in Color]

tight deadlines on both networks, i.e., from α = 0.6 to
0.8. Although τ -rerouting method is decentralized, missing
intentions may make infrastructure agents unable to report
congestion timely, which causes more vehicles to miss their
deadlines. On the other hand, missing intentions only par-
tially influences our approach. Moreover, our approach al-
ways takes deadline into account, thus it achieves best over-
all performance for different penetration rates.

Different Percentages of Tight Deadlines We adopt both
networks with 1,200 vehicles to further test our approach
against different percentages of tight deadlines, where α is
set as 0.8 for tight deadline, and 1.2 for loose deadline. Their
percentages are Ptight and 1-Ptight. In Fig. 5 (a) and (b),
as Ptight increases, the average probabilities for the three
pre-computation methods drop more quickly on Singapore
network because its traffic density is comparatively high,
where vehicles always influence each other. There is only
slight decrease for our approach on both networks, which
is better than the other two adaptive methods. Although
RIS method on Singapore network is competitive to our ap-
proach, we highlight that RIS method is centralized, becom-
ing prohibitively time-consuming as network size and vehi-
cle number scale up.

Improved Performance

We also conduct experiments to confirm the improvements
on computation efficiency and route guidance performance
proposed in the “Further Improvements” section.

Improvement of Computation Efficiency Original route
assignment is formulated as an MIQP problem in Eq. (4),
and we reformulate it as an MILP problem in Eq. (5).

To show the efficiency improvement, we use Pyomo
(www.pyomo.org) to respectively solve the two problems re-
garding the same route assignment at each intersection, and
record the average computation time for both networks in
Table 1. We see that as vehicle number increases, the average
computation time becomes longer for both problems. This
happens because more vehicles are likely to request for route
guidance at an intersection if traffic density is larger, thus
the scales of the two optimization problems both increase,
and longer computation time is needed. That also explains
why the computation time on Singapore network is longer
than that of New York network. However, for both networks,
MILP problem can be more efficiently solved than MIQP
problem of similar scale, especially for Singapore network
with 1,600 vehicles, which is around 10 times faster.

Table 1: Average Computation Time (s)
Singapore New York

400 800 1,200 1,600 400 800 1,200 1,600
MIQP 2.31 3.19 7.42 11.61 1.16 1.96 3.29 6.98
MILP 0.38 0.58 0.95 1.19 0.21 0.34 0.62 0.72

Improvement via Communication To evaluate the bene-
fits brought by communication, we test our approach against
different communication hops (i.e., E). We again study both
networks with 1,200 vehicles for different percentages of
tight deadlines. From Fig. 5 (c) and (d), we find that, E =
1, 2 on Singapore network, and E = 1, 2, 3 on New York
network always achieve higher overall probabilities than that
of E = 0, this is reasonable in that, if E > 0, our approach
uses real-time traffic conditions to evaluate the first E road
link(s) of the path from assigned road link to destination.
If E = 0, it only uses historical traffic conditions. As E

3819



increases to, e.g., 3 and 4 on Singapore network, and 4 on
New York network, they do not achieve dominant perfor-
mances over that of E = 0, because the traffic is always
dynamic, and knowing real-time traffic conditions far away
may not yield desirable route guidance (de B do Amarante
and Bazzan 2012). Moreover, large communication hop also
incurs additional cost to dynamically obtain and store traffic
information. Therefore, E = 1 and E = 2 are sufficient to
achieve satisfactory route guidance in our approach.

Conclusion

We proposed a decentralized multiagent-based route guid-
ance approach to enhance the chances of reaching destina-
tion before deadline for vehicles. It is formulated as a route
assignment problem at each road intersection by leveraging
intentions of the vehicles. Experiments confirm its superior
performance over existing methods. As the chance of vehi-
cles’ arrival on time is increased, drivers’ satisfaction gets
improved, which also reduces accident rate due to drivers’
frustration and impatience, an important mission of intelli-
gent transportation and sustainable urban development.
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