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Abstract

The Hierarchical Graph-Coupled Hidden Markov Model
(hGCHMM) is a useful tool for tracking and predicting the
spread of contagious diseases, such as influenza, by lever-
aging social contact data collected from individual wearable
devices. However, the existing inference algorithms depend
on the assumption that the infection rates are small in prob-
ability, typically close to 0. The purpose of this paper is to
build a unified learning framework for latent infection state
estimation for the hGCHMM, regardless of the infection rate
and transition function. We derive our algorithm based on
a dynamic auto-encoding variational inference scheme, thus
potentially generalizing the hGCHMM to models other than
those that work on highly contagious diseases. We experi-
mentally compare our approach with previous Gibbs EM al-
gorithms and standard variational method mean-field infer-
ence, on both semi-synthetic data and app collected epidemi-
ological and social records.

Introduction

The mainstay of computational epidemiology research for
predicting patterns or discovering the risks of infectious dis-
ease has been at the population level. A prominent example
is the Google flu trend website, which, leveraging the tem-
poral searching key words associating with flu, forecasted
the flu outbreak two weeks ahead of Center of Disease Con-
trol (CDC). However, the advent of personal health apps in
mobile or wearable devices allows disease diffusion to be
modeled in an individual level, e.g. data from cell phones
is harnessed to identify the probability of contracting flu for
every single person in a relatively close community (Dong,
Pentland, and Heller 2012; Fan et al. 2015). They both in-
corporate the face-to-face contact information within a local
area to adjust the transmission function and construct their
models, thus constructing a hierarchical model with extra
features with an enriched epidemiology dataset for more ac-
curate prediction. The main idea in these works is to build
a model in a fully Bayesian setting taking the advantage of
efficient Gibbs sampling. However, the nice conjugacy prop-
erty of such complicated models, to a great extent, relies on
a small infection rate since a Taylor expansion trick is ap-
plied. This paper aims to break this assumption and develop
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Figure 1: A template graphical representation of hGCHMM.
See an unrolled but equivalent version in supplementary.

a unifying inference method for a non-conjugate disease dif-
fusion model.

Along the lines of (Fan, Aiello, and Heller 2015), we
adopt the hGCHMM model (Fig. 1) where the binary la-
tent variables indicate whether the person is infected, and
the observed variables are a binary vector which indicate
multiple symptoms. The colored nodes are observables and
the nodes Gt representing the dynamic social network, im-
plicitly drawn (see explicit graph in(Fan et al. 2015) or
supplementary1). The reason we emphasize this model is
that the hGCHMM is a general and flexible framework
to heterogeneously simulate the disease spread in a dy-
namic social network. It simulates a discretized Suspicious-
Infections-Suspicious (SIS) model (Cooper and Lipsitch
2004), evolved from standard hidden Markov process, and is
able to reduce to a homogeneous version, the Graph-coupled
HMM or even latent Dirichlet allocation (LDA) (Gruber,
Weiss, and Rosen-Zvi 2007). The generative process of Fig.
1 follows

αn, βn, γn ∼ Beta
(
ez

�
n η·,1 , ez

�
n η·,1

)

xt
n ∼ Bernoulli(φ(αn, βn, γn;x

t−1,Gt−1)) (1)

ytn,s ∼ Bernoulli(θxt
n,s

)

where the subscript · means either α, β or γ, and transition
function φ takes the arguments αn, βn, γn and depends on

1http://people.duke.edu/∼kf96/docs/aaai2016supp.zip
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all the latent states xt−1 (through turning xt−1
1:N into a col-

umn vector) coupled with social network Gt−1 (a binary
symmetric matrix) at the previous timestamp. In order to re-
late to epidemiological models, γ means the recovery prob-
ability if infectious at previous timestamp; α represents the
probability of being infected from some one outside the net-
work while β represents the probability of being infected
from some one inside the network. Thus we can readily write
φ as ptn(1 → 0) = γn and

ptn(0 → 1) = 1− (1− αn)(1− βn)
Ct−1

n (2)

where Ct−1
n =

∑
m:(m,n)∈Gt−1

I{xt−1
m =1}, in other words,

Ct−1
n means the total number of infected people that person

n had contacted with during the time interval [t− 1, t). This
construction intuitively implies that if you have more friends
with flu, you have a higher risk of becoming infected. This
transition matrix makes biological sense but induces non-
conjugacy. The previous studies circumvent this problem by
using a Taylor expansion (Dong, Pentland, and Heller 2012)
or polynomial decomposition (Fan et al. 2015) to approx-
imate (2) and then apply Gibbs sampling, which gives ac-
ceptable performance if α and β are sufficiently small.

In our paper, we propose a novel learning approach in the
variational inference (VI) framework. Differing from the tra-
ditional VI methods, such as mean-field (Beal 2003), we
get rid of the complicated gradient computation for non-
conjugate probabilistic models but build a tractable dynamic
recognition model corresponding to the generative process.
The recognition model is equivalent to the variational dis-
tribution in VI parlance. Therefore we can minimize the
Kullback-Leibler (KL) divergence or maximize the corre-
sponding lower bound for parameter estimation. Taking ad-
vantage of the binary variables in the hGCHMM, the recog-
nition model can be completely constructed by a sigmoid
belief network (SBN) (Sutskever and Hinton 2008), where
it is straightforward to generalize to the categorical case by
inducing softmax output, thus allowing our approach to re-
produce the potential tasks introduced in (Fan et al. 2015). In
addition, we overcome the major drawback – lacking the ca-
pability to simulate highly contagious disease, by proposing
a dynamic auto-encoding variational inference method. In
the experiments, we compare our algorithm with the Gibbs
EM (Fan et al. 2015) and mean-field (Beal 2003) versions,
and achieve competitive performance in the small infection
rate case but outperform them in the large rate scenario.

Related Work

The idea of utilizing extra features like social contacts to
enrich the epidemiology dataset has been extensively re-
searched. (Christley et al. 2005) incorporated a fixed so-
cial network analysis on susceptible-infectious-recovered
(SIR) models to identify high-risk individuals. (Salathé et
al. 2010)’s work on close proximity interactions (CPIs) of
dynamic social networks in a high school indicated immu-
nization strategies are more credible if extra contact data is
provided. Our studied model was first developed by (Fan et
al. 2015) for heterogeneous personalized health data. The
purpose of this work is to broaden the application range

of this model to diversified epidemics even with larger in-
fection rate. The novel auto-encoding variational inference
method used here originated from the deep learning commu-
nity. A variety of papers (Kingma and Welling 2014; Mnih
and Gregor 2014; Rezende, Mohamed, and Wierstra 2014;
Kingma et al. 2014) put forward generative neural networks
and a recognition model by reversing the direction of the link
between latent variables and visible variables, and further
employed the stochastic variational inference to optimize
the parameters of both models simultaneously. Unlike their
work, which was mainly for a fixed network structure, we
use a dynamic framework by introducing a Markov process
with time-dependence between the temporal auto-encoders.
Additionally, it is unnecessary to assume any conjugacy in
the probabilistic model. We can directly use SBN to con-
struct directed edges mapping to a binary variable. However,
we prefer a gradient based parameter optimization method,
such as Adagrad (Duchi, Hazan, and Singer 2011) or Rm-
sprop (Dauphin et al. 2015), rather than the slower wake-
sleep algorithm (Hinton, Osindero, and Teh 2006).

Limitation of Gibbs Sampling

φ Approximation by Auxiliary Variable

Eq. (2) is an exception unsatisfying the Bernoulli-Beta con-
jugate in generative model (1). By inducing auxiliary vari-
able R, which indicates the infection source from outside,
inside or both of the surveyed community, an approximate
Gibbs scheme can be developed. Particularly, (Dong, Pent-
land, and Heller 2012) used a simple Taylor expansion
αn + Ct

nβn to represent (2), and (Fan et al. 2015) further
applied a polynomial decomposition trick by rewriting it as
the summation of three terms,

αn(1− βn)
Ct−1

n + Ct−1
n (1− αn)βn + Ct−1

n αnβn (3)

where
(
1− (1− βn)

Ct−1
n

)
is approximated by Ct−1

n βn.

Admittedly, (3) is a better estimation of (2) than αn+Ct
nβn,

and also favors the Bernoulli-Beta conjugate for potential
Gibbs sampling. We have to notice that if the condition
α, β ≈ 0 does not hold, the resulted error of (3) will
be crucially non-negligible and violate the entire Bayesian
scheme, thus leading a biased estimation. In Fig. 2, we plot
the infection probability as the function of α, β with differ-
ence approximation.

The visualized comparison shows when α or β is suffi-
ciently large, the approximation is not even a probability at
all, which should be bounded by 1. One plausible solution
is to rescale, but this hack trick lacks any theoretical or in-
tuitive explanation (the rescaled figure is shown in supple-
mentary). Therefore, the Taylor expansion restricts the gen-
eralization ability of this model, so we are intent to modify
the inference method by using variational inference.

Sigmoid Variational Inference

Variational Inference Basics

Suppose we are interested in a latent variable model repre-
sented as distribution PΦ(X,Y) parametrized by Φ, where
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Figure 2: The bottom surface is the exact plot for ptn(0 → 1);
the middle one is the approximation by (3); the top one is the
approximation by α+ Cβ. In this plot, we set C = 2.

X is latent variable and Y is observed variable. The pur-
pose of learning task is to estimate the posterior of latent
variable PΦ(X|Y) and Φ. In most case, the exact infer-
ence is intractable and thus a variational lower bound on the
marginal log-likelihood is often derived to be maximized,
because optimization problem can be naively solved by gra-
dient based algorithm. Particularly, we need induce a vari-
ational distribution QΨ(X|Y) with parameters Ψ, which is
selected with the intention of being similar to the true poste-
rior PΦ(X|Y). A prevalent construction of Q will usually be
assumed to factorize over some partition of the latent vari-
ables, i.e mean-field method.

With simple mathematical derivation, we have

logP (Y) (4)

=EQ

[
log

PΦ(X,Y)

QΨ(X|Y)

]
+KL(QΨ(X|Y)||PΦ(X|Y))

≥ EQ [logPΦ(X,Y)− logQΨ(X|Y)] � L(Y,Φ,Ψ)

For the lower bound L, maximizing it with respect to Φ,Ψ
is equivalent to minimizing the KL divergence between pro-
posed distribution and true posterior. The tightness of this
bound holds when Q exactly recovers true posterior. By ex-
amining the bound, it does not rely on the form of Q. In our
work, the variational distribution is restricted to belong to a
family of distributions of simpler form than PΦ(X|Y), but
preferably flexible enough to contain or close the true poste-
rior as a solution. To be specific, we reverse the directed edge
between latent and observed variable in generative process
and enforce a sigmoid belief nets to simulate this link.

Dynamic Recognition Model

Before we describe the details of our recognition model,
we first revisit the generative model and reformulate part
of the process to be deterministic. Due to the fact that
the expectation of distribution Beta

(
ez

�
n η·,1 , ez

�
n η·,1

)
is

σ
(
(η·,1 − η·,2)�zn

)
, where σ(x) = 1

1+e−x is sigmoid
function, we can simplify the parameterization by substitut-
ing a single η· for η·,1 − η·,2 if we apply a sigmoid be-
lief net with input zn. One advantage of this approximation
is to reduce the number of parameters in generative model

since αn, βn, γn can implicitly vanish from the arguments
in φ, leading to a more direct form φ(η·, zn). In the con-
trary, the disadvantage is apparently the deficiency of uncer-
tainty for these intermediate variables. However, point esti-
mation of associating parameters is also acceptable in the
medical application, since the most concerned issue is to
discover heterogenous infection probability on every single
day and how the individual covariates zn influence the per-
sonal physical constitution. The advantage of sigmoid for-
mulation is to benefit our subsequent gradient based algo-
rithm. Analogously, we can rewrite the generative process
of yn,t,s by using sigmoid function, i.e. P (ytn,s = 1) =

θ0,sI{xt
n=0} + θ1,sI{xt

n=1} = σ(wsx
t
n + bs), where ws and

bs become model parameters in Φ.
With the reformulated generative process, we can read-

ily construct the a simple dynamic recognition model
QΨ(X|Y,Z) by applying sigmoid belief nets. Notice that
for clarity we write the observed variables Y,Z separately,
which is a slightly different from the general discussion.

xn,t ∼ Bernoulli
(
σ(ω�x̃t−1

n + ν�yt
n + κ�zn + b)

)
(5)

where the vector x̃t−1
n = gt−1

n � Ixt−1=1, and gt−1
n is the

nth column of Gt−1 and � is element-wise multiplication
operator. (5) indicates the graphical representation of recog-
nition model has only two modifications of Fig.1: getting rid
of redundant intermediate variable by inducing link between
zn and xt

n; reversing the direction from xt
n to yt

n. The pow-
erful approximation ability of sigmoid belief nets allows it
to obtain perfect estimation of any transition function. This
is key reason why we did not make the same assumption
as (Fan et al. 2015). Additionally, we can further plug in
one more hidden layer ht

n following the convention of (5),
and then let xn,t ∼ Bernoulli

(
σ(ω�h h

t
n + bh)

)
. The deep

architecture of networks can enlarge the representative abil-
ity, and succeeds with great improvement in many machine
learning areas, such as collaborative filtering (Salakhutdi-
nov, Mnih, and Hinton 2007), or document modeling (Sri-
vastava, Salakhutdinov, and Hinton 2013). In our paper, deep
structure is not the main issue we discuss, since we found
it had no significant improvement and brought more varia-
tional parameters to estimate.

Parametrization and Optimization

In previous section, we did not specify the index or subscript
of variational parameters ω,ν,κ, b in recognition model. By
observing the factorized structure of generative model (6),
we analyze different parameterization possibilities for (5).

PΦ(X,Y) =

N∏
n=1

T∏
t=1

p(yt
n|xt

n)p(x
t
n|x̃t−1

n ) (6)

where we hide the dependence on zn for simplicity but with-
out ambiguousness, and x0

n can either be non-exsited node
or the initial node without emission. Therefore, according
to previous discussion, the corresponding recognition model
for approximating PΦ(X|Y) has the following form.

QΨ(X|Y) =

N∏
n=1

T∏
t=1

q(xt
n|x̃t−1

n ,yt
n) (7)
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Algorithm 1 Temporal Sigmoid Variational Inference
Initialization: By normal distribution with small variance;

1: while (Φ,Ψ,Ξ) Not Converge do
2: for t = 1, . . . , T do
3: Sample xt

1:N ∼ q(xt
1:N |xt−1

1:N ,yt
1:N );

4: Compute temporal learning signal ltΨ;
5: Subtract baseline ltΨ ← ltΨ −BΞt

(yt
1:N );

6: Ψt ← Ψt + ε · ltΨ∇Ψt
log q(xt

1:N |xt−1
1:N ,yt

1:N );
7: Ξt ← Ξt + ε · ltΨ∇Ξt

logBΞt
(yt

1:N );
8: end for
9: Φ ← Φ+ ε ·∑T

t=1 ∇Φ log p(xt
1:N ,yt

1:N );
10: end while

In order to take the advantage of variational inference princi-
ple established in (4), an ideal factor by factor optimization
between the logarithm form of P and Q inspires three main
parameterization methods.

Temporal Parametrization We emphasize the descrip-
tion on the most natural temporal parametrization and
demonstrate our learning signal (Sutton and Barto 1998)
based optimization algorithm. In this setting, each factor q
can be formulated as

q(xt
n = 1) = σ(ω�t x̃t−1

n + ν�t yt
n + κ�t zn + bt) (8)

This allows the dynamic parameters shared by different
chains, and is equivalent to train the model with a unique
datapoint YN×T×S . The reason is the temporal parameters
Ψt = {ωt,νt,κt, bt} can be updated locally. Each set of
temporal parameters is merely associated with the corre-
spondent observed data yt

1:N . To make this argument con-
crete, it can be shown by integration by parts for the deriva-
tive of lower bound (4). For notation simplicity, we denote
the learning signal lΨ = logPΦ− logQΨ, and then have the
following temporal decomposition.

∇Ψt
L =EQ[lΨ∇Ψt

log q(xt
n = 1|x̃t−1

n ,yt
n)]

=Eq(x1:t−1
1:N |y1:t−1

1:N )

[
Eq(xt:T

1:N |xt−1
1:N ,yt:T

1:N )[
lΨ · ∇Ψt log q(x

t
n = 1|x̃t−1

n ,yt
n) | xt−1

1:N

]]
(9)

Additionally, (9) can also enable the possibility of tem-
poral learning signal, ltΨ = logP

(
xt:T
1:N ,yt:T

1:N |xt−1
1:N

) −
logQ

(
xt:T
1:N |yt:T

1:N , xt−1
1:N

)
. Thus, Ψt can be locally updated

by ltΨ. To fully adopt the reinforcement learning trick,
we also induce an observation dependent but latent vari-
able independent signal baseline BΞt(y

t
1:N ) temporally

parametrized by Ξt, which is also implemented by SBN.
Since the identity property

EQ[(lΨ −B)∇Ψt log qΨt ] = EQ[lΨ∇Ψt log qΨt ] (10)

it works practically in gradient variance reduction (Mnih and
Gregor 2014; Mnih et al. 2015). Therefore, we summarize
the Algorithm 1. It is noticed that we only provide the basic
gradient ascent algorithm, whereas many existed advanced
trick can be explored as well, such as the adaptive learn-
ing rate, RMSprop, or Adagrad. Compared with mean-field

Algorithm 2 Personal Sigmoid Variational Inference
1: while (Φ,Ψ,Ξ) Not Converge do
2: for t = 1, . . . , T do
3: Sample xt

1:N ∼ q(xt
1:N |xt−1

1:N ,yt
1:N );

4: Compute temporal learning signal ltΨ;
5: Subtract baseline ltΨ ← ltΨ −BΞ(y

t
1:N );

6: end for
7: Normalize {ltΨ}Tt=1;
8: ∇ΨnL =

∑T
t=1 l

t
Ψ∇Ψn log q(xt

n|x̃t−1
n ,yt

n);
9: ∇ΞL =

∑T
t=1 l

t
Ψ∇Ξ logBΞ(y

t
1:N );

10: Update Φ (as Alg. 1), Ξ and Ψn by gradient ascent;
11: end while

xt−1
1:N xt

1:N

yt
1:N

zn

Gt−1

Ψt

(a) Temporal

xt
1

yt
1

xt
N

yt
N

Ψ1

ΨN

. . .

(b) Personal

xt
n

yt
n

Ψt
n

(c) Node

Figure 3: Recognition models, where (b) and (c) omit some
side information nodes.

algorithm, the burden of derivative computation in our al-
gorithm is relatively simple. Due to the limited space, the
detailed derivation shows in the supplementary materials.
Even if we deploy a deep SBN, the convenience of deriving
sigmoid function makes our algorithm efficient. As we dis-
cussed before, if a hidden layer plugs into the SBN, we can
actually sample this layer similarly as Line 3 in Algorithm
1. When it comes to compute the gradient associated with
hidden layer, it is not necessary to use the back-propagation,
which is a standard method in feed forward neural networks.
We merely need to compute the gradient of sigmoid function
twice, since given the sampled hidden layer the input and the
output are independent (see supplementary).

Personal Parametrization Analogously, the subscript of
variational parameters can be heterogeneously indexed by n.

q(xt
n = 1) = σ(ω�n x̃

t−1
n + ν�n yt

n + κ�n zn + bn) (11)

The setting means the variational parameters Ψ =
{ωn,νn,κn, bn}Nn=1 would not change dynamically but dif-
fer chain by chain, thus being equivalent to train the model
with dataset {y1:N}Tt=1. It also indicates Ψ can not be
trained temporally as previous discussion but allows central-
ization and normalization of learning signal for variance re-
duction. For Algorithm 2, the baseline becomes global, and
ltΨ has the different meaning from previous one.

Node-wise Parametrization More specifically, we can
even construct the node-wise parameterization Ψt

n =
{ωt

n,ν
t
n,κ

t
n, b

t
n}. The formulation and the detailed algo-

rithm framework are similar to a combination of previous
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two settings, so we include the Algorithm in the supple-
mentary. All three parameterized recognition models do not
assume any quantitative magnitude on the parameters, and
the only approximation induced in this framework is due to
the inequality (4). This gap is hopefully filled by the gradient
based optimization algorithm. Furthermore, the recognition
model of hGCHMM is particularly counter-intuitive, since
its parameterization shows a trade-off between the complex-
ity of graphical model and the number of variational param-
eters. To approximate the same true posterior, our approach
is to propose either a simple model with more parameters or
complex one with less parameters (See Fig. 3 for a graph-
cial illustration). In our experiments, the L2 norm penalty
on parameters is also implemented.

Experiments

Data Description

We apply our inference method to two flu diffusion datasets.
The first experiment is based on MIT social evolution data.
The dynamic social contacts can be summarized from the
daily bluetooth data, thus resulting in Gt, t = 1, . . . , 107.
In addition, the personal health habits zn for each person
contain 9 features, weight, height, salads per week, veggies
fruits per day, healthy diet level, aerobics per week, sports
per week, smoking indicator, and default feature 1. Since the
ground truth of infectious state is latent variable or unknown,
we need to simulate consistent X and Y for evaluation by
generative model, though self-reported symptom Y is in fact
provided in the dataset.

Another dataset is exFlu survey. This study is conducted
in a college dormitory during a chain referral recruitment
process carried out from September 2012 to January 2013.
103 enrolled students participated flu survey by the smart-
phone installed with health apps. Besides the covariates de-
scribed in MIT data, the temporally unchanged features of
exFlu also include gender, age, average times of hand wash-
ing by sanitizer, and indicator for vaccination or flu shot.
The data type for dynamic social networks G and daily
symptoms Y is exactly the same as above dataset. However,
this survey has a special treatment on participants with se-
vere symptoms to diagnose whether the specific person is
infected and record the flu duration since onsite. Thus, it al-
lows us to evaluate the performance of our approach com-
paring with expertise.

Partially Synthetic Datasets

In this experiment, we mainly study the generalization abil-
ity of our approach for various diseases by synthesizing 3
different infection rates. The data we used in this section
is partially simulated MIT data with true Gt and zn. Since
the infection rate is crucially heterogenous in our model, the
magnitude mentioned later or the severity of contagiosity is
virtually the mean value of these person-specific rates. Basi-
cally, the three contagious diseases are usual flu with recov-
ery rate 0.3 and low infection rate 0.01 (outside) and 0.02
(inside), severe flu (such as H1N1) with lower recovery rate
0.2 and high infection rate 0.34 and 0.24, and a completely
artificial flu with high recovery rate 0.6 but relatively high
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Figure 5: ROC curve comparison

infection rate 0.06 and 0.13. The demo of dynamic predic-
tion is recorded in the .avi files of supplementary.

In this setting, we evaluate the predicting performance on
simulated infected states XN×T , with N participants in T
days. The algorithms we tested are node-wise sigmoid vari-
ational infection, mean-field variational bayesian inference
and Gibbs sampling with EM (Fan et al. 2015). Mean-field
is the most standard variational inference approach; how-
ever, its derivation is extremely complicated for the non-
conjugate model. In our case, some variables like γ, Y, be-
longing to conjugate exponential (CE) family, have a nice
variational EM updating formula, which is actually similar
to the full conditional in Gibbs sampling. However, for other
variables, we need to derive the gradient based optimization
method. Unlike much simpler gradient computation with re-
spect to sigmoid function, the gradient of some logarithm
term may become quite annoying (we provide the mean field
VB derivation in the supplementary material).

Fig.4 and 5 display the measurement of accuracy and
ROC curve. For usual flu setting when α, β are extremely
small (≈ 0), the performance on three algorithms has no sig-
nificant difference, no matter on which criterion. However,
as mentioned previously, the flaw of Taylor expansion will
be exaggeratedly amplified if α, β increases. On this circum-
stance, the advantage of variational inference is exemplified
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Figure 6: Posterior P (X|Y) estimation: x-axis represents day and y-axis means id number of participants. (a) A binary matrix
with 1 indicating infected; (b) Posterior mean estimated by SigVI. (c) Resulted binary matrix by applying a 0.5 threshold on
(v); (d) Posterior mean estimated by mean-filed; (e) Posterior mean estimated by Gibbs EM.

on the other two flu settings. Both the accuracy and ROC
illustrate that Gibbs EM almost deteriorates as a random
classifier, while mean field and sigmoid variational infection
can still obtain reasonable result. Additionally, the behavior
of SigVI is smoother than mean-field. This phenomenon is
more obvious in yellow circle of Fig.4 in the setting with low
recovery and high infection rate, thus empirically leading to
a reasonable hard threshold for decision. Since mean-field
VBEM is similar to full conditional of Gibbs sampling, its
curves behave analogously as Gibbs EM. The 1000 thresh-
olds we used to plot are uniformly distributed on interval
[0, 1], but the corresponding points of ROC except SigVI are
almost located in the leftmost region of coordinates.

Short Pattern Capture on Real Flu Case

In the second experiment, we validate our approach in the
real flu diffusion dataset with professional diagnosis. In pre-
vious work, the Gibbs sampling based algorithm tends to
find the long duration flu while the short pattern is usu-
ally omitted by averaging when computing posterior mean.
However, we found the node-wise sigmoid variational infer-
ence can eliminate this deficiency due to the structure of pa-
rameterization. It favors a node-wise estimation rather than
temporal dependency. Fig.6 illustrates the comparison be-
tween the expertise diagnosis and different inference results.
We notice that the short duration after onsite of flu does ex-
ist in accordance to Fig.6(a). The posterior mean of SigVI
in Fig.6(b) shows that even the short duration is less than 5
days, such patterns can be captured by assigning high risk
on these days, accompanying with less risk of infection ap-
pearing before or after these days. The finding actually re-
flects the common sense. For example, Participant 13 was
diagnosed as flu during day 13 to 15. Comparing with other
algorithms, only SigVI detected this patient with prediction
during the whole week. The first and last 2 days are pre-
dicted as low risk period, while the middle 3 days are high
risk period which is corresponding to expertise.

For the overall predication accuracy, all algorithms
achieve a more than 99% accuracy. This is mainly due to
two reasons. The underlying infection rate should be close
to 0, since this dataset is collected during a normal flu sea-
son, not from SARS or HxNx outbreaking period. Another
obvious reason is that the negative cases (0) dominate the
binary matrix, thus meaning that a more than 95% accuracy

Table 1: Recall and Accuracy of exFlu Epidemics
Model Recall Accuracy

SigVI 0.9548 0.9946
MfVI 0.9032 0.9979

GibEM (Fan et al. 2015) 0.8974 0.9978
GCHMMs+LogReg

(Dong, Pentland, and Heller 2012) 0.7436 0.9912

can be obtained even if we predict all zeros. Therefore, we
also prefer to examine recall (equivalently, sensitivity or true
positive rate). Table 1 shows our results compared with other
papers’ report. Mean-field variational inference has the high-
est accuracy while it is not significantly better than the oth-
ers. However, SigVI achieved at least 5% improvement on
recall than any other algorithm. This is, in turn, consistent
with the short pattern capture property, since more positive
cases are detected by SigVI.

Conclusion and Future Work

In this paper, we propose a unified variational inference
framework to learn a general flu diffusion model – hGCH-
MMs. Our VI algorithm is based on minimizing the KL di-
vergence between true posterior of generative model and the
proposed recognition model. Differing from standard vari-
ations EM, our approach can learn the parameters of both
models simultaneously even in a dynamic and heterogenous
set-up. In particular, the experimental results imply that our
inference method is possible to generalize the application of
hGCHMMs to more broader diseases, such as high conta-
gious avian influenza, which proves difficult to model pre-
viously. Like deep neural networks, our developed varia-
tional inference may suffer the problem of blow-up param-
eters even regularization is imposed during training. The re-
cent success of deep learning lies on the sufficient training
data, which is usually impossible to obtain in the research of
health informatics. An important avenue of future research
might explore the MCMC method which can likewise over-
come the problem of non-conjugacy, especially the efficient
Hamiltonian Monte Carlo (Neal 2011). In addition, (Sali-
mans, Kingma, and Welling 2015) bridges the gap between
variational inference and MCMC, thus making it more pos-
sible to develop robust inference method.
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