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Abstract

Sensor selection has become an active topic aimed at energy
saving, information overload prevention, and communication
cost planning in sensor networks. In many real applications,
often the sensors’ observation regions have overlaps and thus
the sensor network is inherently redundant. Therefore it is
important to select proper sensors to avoid data redundancy.
This paper focuses on how to incrementally select a subset of
sensors in a streaming scenario to minimize information re-
dundancy, and meanwhile meet the power consumption con-
straint. We propose to perform sensor selection in a multi-
variate interpolation framework, such that the data sampled
by the selected sensors can well predict those of the inactive
sensors. Importantly, we incorporate sensors’ spatial informa-
tion as two regularizers, which leads to significantly better
prediction performance. We also define a statistical variable
to store sufficient information for incremental learning, and
introduce a forgetting factor to track sensor streams’ evolve-
ment. Experiments on both synthetic and real datasets vali-
date the effectiveness of the proposed method. Moreover, our
method is over 10 times faster than the state-of-the-art sensor
selection algorithm.

1. Introduction

In recent years, sensor networks have become very popu-
lar for collecting continuous data streams, such as audio
and visual data. In many real-world scenarios, a sensor net-
work may consist of a large number of sensor nodes; The
large quantity of sensors may cause bottlenecks in the areas
such as battery supplies, communication, and information
overload (Kollios et al. 2005; Zhang and Ji 2005). In order
to overcome these limitations, sensor selection becomes a
promising and effective way to reduce the number of sen-
sor nodes used. Up to now, sensor selection has been widely
studied for various applications, such as traffic flow forecast-
ing (Chan et al. 2012), robotics (Hovland and McCarragher
1997), target tracking (Wang et al. 2004), wireless sensor
networks (Abrams, Goel, and Plotkin 2004), and sensor net-
work management (Rowaihy et al. 2007). However, many of
the approaches above are based on a simplified assumption
that the “sensors can perfectly observe a particular sensing
region, and nothing outside the region” (Golovin, Faulkner,
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and Krause 2010). By this assumption, the data collected
would have no redundancy. However, in many real-life ap-
plications, the sensor network is redundant, i.e., a small frac-
tion of the sensor nodes in the whole network are necessary
to collect the data and describe the underlying phenomenon.
An example of redundant sensor network is that different
cameras are installed in a room monitoring people’s activi-
ties. In order to stress sensor selection in the real-life scenar-
ios, we do not make the assumption that the sensor network
is not redundant. On the contrary, we follow the method (Ag-
garwal, Xie, and Yu 2011) to use the assumption that the
sensor network is inherently redundant. In such a case, the
goal of sensor selection is to select a suitable subset of sen-
sors so as to minimize the loss of information (e.g., predic-
tion errors of inactive sensors), subject to the battery power
consumption constraint.

In a redundant sensor network, data streams collected
by different sensor nodes usually have predictable rela-
tionships, and such relationships can be used to determine
which subset of sensors are necessary and thus be in active
mode (Aggarwal, Bar-Noy, and Shamoun 2011). Recently,
the distributed online greedy (DOG) method proposed in
(Golovin, Faulkner, and Krause 2010) aims to take advan-
tage of utility-feedback to repeatedly select sensors online.
The method in (Aggarwal, Bar-Noy, and Shamoun 2011)
uses external domain-specific linkage knowledge for sensor
selection. However, such linkage information is often hard
to acquire beforehand in practice. The key idea of the tech-
nique in (Aggarwal, Xie, and Yu 2011) is to use regression
analysis to determine an active sensor subset with minimal
power consumption. This small active sensor set is used to
predict the observation values of the other inactive sensors.

In the methods above, the most relevant previous work to
this paper is (Aggarwal, Xie, and Yu 2011), where the au-
thors address a similar problem for sensor selection. How-
ever, their method has the following limitations. i) The con-
nection between sensor selection and multi-variate interpo-
lation is not fully utilized in their method. But these two
parts are actually interleaved and can benefit from each
other, so it is natural to incorporate multi-variate interpo-
lation into not only prediction, but also sensor selection.
ii) The location information of sensor nodes is not consid-
ered in their sensor selection method. However, sensors with
smaller distances usually collect more similar data, which
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provides additional information that can be exploited. iii)
The time window based strategy when handling streaming
data may lose too much historical information. A method
with no information loss is desired in such streaming appli-
cations.

In this paper, we propose an efficient algorithm, called
Spatially Regularized Streaming Sensor Selection (SRSSS),
which is an effort to bridge the above gaps. The main con-
tributions of this paper are:

• We propose a framework to realize sensor selection in
virtue of multi-variate interpolation, which can help ob-
tain an informative sensor subset to better predict inactive
sensors.

• We leverage spatial information for sensor selection. Our
motivation is based on an observation that geographically
closer sensors tend to generate more redundant infor-
mation. Thus, we intuitively should select sensors well-
separated geographically to reduce redundancy. Mean-
while, when predicting inactive sensors, the nearby active
sensors in their neighborhood have higher weights than
the distant ones. To the best of our knowledge, this is the
first work to incorporate spatial information into sensor
selection to accurately predict inactive sensors.

• We enable SRSSS to select sensors in an incremental
fashion by defining a statistical variable, which stores suf-
ficient information of historical observation with no infor-
mation loss. In addition, we introduce a time-forgetting
factor such that more recent data have higher weights in
data streams; thus our algorithm also responds fast if the
underlying distribution changes.

• We design an efficient algorithm to optimize the pro-
posed objective function. Extensive experiments demon-
strate the effectiveness and efficiency of our approach.

2. Proposed Method

Notations. In this paper, matrices are written as boldface
uppercase letters and vectors as boldface lowercase letters.
Given a matrix A, we denote its (i, j)-th entry, i-th row, j-th
column as Aij , Ai, and Aj , respectively.

2.1 Problem Formulation

We formulate the sensor selection problem as follows. The
sensors work in two types of modes: the power-efficient
mode (or equivalently, inactive mode) and the active mode.
In the power-efficient mode, the sensors do not collect data,
which is battery power-efficient. In the active mode, the sen-
sors use a higher sampling rate to collect data, which is ex-
pensive in terms of battery power consumption and storage
costs. Therefore, although in the active mode sensors can
collect the most accurate data for decision-making, it is not
desirable to keep all the sensors in active mode. We further
assume that the sensors can switch between the two modes
at any time. The question we are interested in is the follows:
how to select a subset of sensors to be on power-efficient (or
inactive) mode and the rest on active mode so that we can
save energy as well as not losing much information com-
pared to when all sensors in active mode.
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Figure 1: Schematic illustration of algorithm formulation.
Time flow goes vertically; same horizontal level denotes the same
instant time. Algorithm alternates between model update and pre-
diction. A green circle means a data collected from an active sen-
sor; Red triangles mean all the sensors are collecting the data. A
question mark denotes that at that moment, the sensor is in power-
efficient mode and is not collecting data; and we need to predict
what the data are supposed to be from the data collected by the
active sensors.

To make the problem formulation clearer, we use Fig-
ure 1 to illustrate. Our algorithm repeatedly alternates be-
tween two phases: the model update phase and the predic-
tion phase. In the model update phase, all the sensors are
collecting data. In the prediction phase, only a subset of sen-
sors, the active sensors, are collecting data, and the data of
inactive sensors are predicted from the data collected by the
active sensors. At time t1, the algorithm is under model up-
date phase. Each sensor collects one data sample. We use
these data and the previous data collected in model update
phase to determine which subset of sensors to be turned on
in the coming model prediction phase. For example the algo-
rithm decides to turn sensor 1 and sensor k on active mode
and the rest in inactive mode. At this phase the algorithm
also learns a mapping relation between output from sensor
1 and sensor k to the ones from the rest of the sensors. This
phase costs 1 unit of time. Algorithm now immediately en-
ters the prediction phase. At time t2 = t1 + 1, we use the
active sensors (e.g., sensor 1 and sensor k) to collect data
and the inactive sensors are not collecting data. We can pre-
dict the data of the inactive sensors based on the output from
active sensors and the mapping relation we learned at time
t1. This phase lasts for L units of time. Our model switches
back to model update phase immediately at time t3 = t2+L,
all the sensors start to collect the data again. Again by the
mapping relation we are able to see how far our approxima-
tion differs from the true values. The model update phase
redetermines which subset of sensors to be in the active and
relearns the mapping relationship from the current and pre-
vious data collected in the model update phase. This phase
again costs 1 unit of time. And suppose now sensors 2 and
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k are selected as active sensors. We enter the next phase of
prediction at time t4 = t3 + 1; the new active sensors (e.g.,
sensors 2 and k) frequently sample data, and output from
new power-efficient sensors are predicted based on the new
active sensors. This phase will again last for L units of time.
And our model switches back to model update phase. The
process continues.

Mathematically, let Φ = {1, 2, . . . , n} be the index set of
the sensor nodes. Each prediction mode takes L units of time
and each model update phase takes 1 unit of time. Suppose
that the model update phase starts at time kL, k = 0, 1, . . . .
And the prediction phase starts at time kL + 1 and ends
at kL + (L − 1). Let Xk = {x1, . . . ,xn} ∈ R

(k+1)×n

denote the data streams collected by all the sensors in the
model update phase up to time kL; reader can think of k
as the number of rounds k our model has gone through
model update phase. Based on Xk, our goal is to find a sen-
sor subset φk = {l1, . . . , ls} ⊂ Φ to be active, where s is
also learned, and online learn a project matrix Wk mapping
from Xφ

k = {xl1 , . . . ,xls} to XΔ
k = Xt \Xφ

k
1, subject to

the power consumption constraint. When the sensors φk are
working actively, we expect that the data of the inactive sen-
sors ϕk = Φ \ φk can be predicted as accurately as possible
based on Wk and the future data collected by φk. Based on
all the data collected in the next round of model update, i.e.,
at time (k+1)L, we will incrementally choose a new subset
φk+1 to be active. In a word, we will design an incremental
algorithm to perform sensor selection.

2.2 Objective Function

We aim to realize sensor selection in a multi-variate inter-
polation framework. In the meantime, we hope that the se-
lected active sensors are not too close to each other, thus the
data streams are with less redundancy. In addition, for each
power-efficient sensor, we claim that its data output should
rely more on the active sensors closer to it. In light of these
points, we formulate our objective function for model update
as follows:

(Wk+1, zk+1) =

argmin
W,z

k∑
i=1

μk−i‖Xi
kDzW(I−Dz)−Xi

k(I−Dz)‖22

+ α

n∑
i,j=1

‖yi−yj‖2|Wij |−β
n∑

i,j=1

‖yi−yj‖2zizj+λ‖W‖2F

s.t. z = [z1, . . . , zn] ∈ {0, 1}n, cT z ≤ P (1)

where Xi
k denotes the i-th row of matrix Xk, i.e., the ob-

servation values of the i-th tick collected by all the sensors.
W ∈ R

n×n is the project matrix to be learned. Wij denotes
the (i, j)-the element of W. Let z = [z1, . . . , zn] ∈ R

n be
an indicator vector to represent which sensors are selected
to be active. zi = 1 (or 0) indicates that the i-th sensor is
selected as active (or not). Dz is a diagonal matrix with

1For two sets A,B, we use A \B to denote all the elements in
A but not B

(Dz)ii = zi. Let yi be the location coordinates of the i-
th sensor, and I is the identity matrix. ‖ · ‖2 denotes the l2
norm of a vector, and ‖ · ‖F denotes the Frobenius norm
of a matrix. c = [c1, . . . , cn]

T are the power costs required
to activate the corresponding sensors. μ ∈ [0, 1] is a time-
forgetting factor to favor more recent data. α, β, λ ≥ 0, are
three non-negative regularization parameters.

In the first term of the objective function (1), Xi
kDz turns

the values of Xi
k to be zeros when the corresponding sensors

are not active. Xi
kDzW predicts data from all sensors based

on the ones from active sensors, while Xi
kDzW(I − Dz)

considers only predictions for inactive sensors by putting
zero predictions for active sensors. Hence the goal of the
first term in (1) is to minimize the prediction loss on the
inactive sensors. The following two terms incorporate spa-
tial information. The second term in (1) aims at penalizing
the coefficients Wij with large distances between sensors,
so that the prediction relies more on local information from
the closer active sensors. The third term maximizes the dis-
tances among the selected active sensor nodes, in order to
make data streams collected by the active sensors less re-
dundant. The last term in (1) controls the complexity of the
learned projection matrix W. The inequality constraint in
(1) is to restrict the battery power consumption of sensors to
meet the energy budget requirement.

However, (1) is a quartic problem on variable z, which is
computational expensive.
Theorem 2.1: The objective function (1) is equivalent to

(Wk+1, zk+1)=argmin
W,z

k∑
i=1

μk−i‖Xi
kDzW−Xi

k(I−Dz)‖22

+ α

n∑
i,j=1

‖yi−yj‖2|Wij |−β
n∑

i,j=1

‖yi−yj‖2zizj+λ‖W‖2F

s.t. z = [z1, . . . , zn] ∈ {0, 1}n, cT z ≤ P, (2)

Problem (2) now is quadratic about z. The complete proof
of Theorem 2.1 is provided in Appendix.

Since in the context of data streams for sensor network,
it is impractical to load all the historical data into memory
or scan a sample multiple times for model update. There-
fore, we introduce a statistics to store sufficient information
of the historical data with respect to our objective function,
without storing the individual data. It can be regarded as a
way of information compression, and there is no informa-
tion loss with respect to (1) (Li et al. 2015). Notice that only
the first term in the objective function (2) involves historical
data Xk, hence we focus on the first term.

Let A := Dz(W+I)−I; we can rewrite the first term in
(2) as:∑k

i=1
μk−i‖Xi

kA‖22 =
∑k

i=1
μk−iXi

kAAT (Xi
k)

T

=
∑k

i=1
μk−itr(Xi

kAAT (Xi
k)

T )

=
∑k

i=1
μk−itr((Xi

k)
TXi

kAAT )

= tr(Ck
xxAAT ) (3)
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where Ck
xx =

∑k
i=1 μ

k−i(Xi
k)

TXi
k, and tr(·) denotes the

trace of a matrix. Notice that the statistics Ck
xx can be up-

dated online by Ck+1
xx = μCk

xx + (Xk+1
k+1)

TXk+1
k+1, whose

memory complexity is a constant: O(n2). After that, the
first term of (2) can be calculated by (3). Therefore, we can
rewrite the objective function (2) using the following matrix
form:

(Wk+1, zk+1) =

argmin
W,z

tr
(
Ck

xx(Dz(W + I)− I)(Dz(W + I)− I)T
)

+ α‖S�W‖1 − βzTSz+ λ‖W‖2F
s.t. z = [z1, . . . , zn] ∈ {0, 1}n, cT z ≤ P, (4)

where Sij = ‖yi − yj‖2, and � denotes the element-wise
multiplication of two matrices.

2.3 Optimization Algorithm

The main formula (4) is not convex with respect to W and
z simultaneously, and z has binary constraint. Hence it is
unrealistic to expect a suitable algorithm to easily find the
global minimum. In order to solve the optimization problem
fast, we propose an efficient optimization algorithm that is
based on the popular alternating direction method of multi-
pliers (ADMM) (Boyd et al. 2011; Lin, Liu, and Su 2011).

Before applying ADMM, we first transform (4) into the
following equivalent formulation by introducing three vari-
ables Ŵ, v, and ξ,

min
W,z

tr
(
Ck

xx(Dz(W + I)− I)(Dz(W + I)− I)T
)

+ α‖S� Ŵ‖1 − βzTSz+ λ‖W‖2F
s.t. W = Ŵ, z = v, cT z+ ξ = P, (5)

v ∈ {0, 1}n, ξ ≥ 0.

It is clear that (5) is to minimize a smooth non-convex
function plus separable convex regularization functions sub-
ject to linear coupling constraints; thus we can apply the
ADMM type algorithm. We first present the related aug-
mented Lagrangian function of (5),

The augmented Lagrange function of (5) is

L(W,Ŵ, z,v, ξ,Λ1,Λ2,Λ3) :=

tr
(
Ct

xx(Dz(W + I)−I) (Dz(W + I)−I)T
)

+α‖S� Ŵ‖1−βzTSz+λ‖W‖2F+
ρ1
2
‖W−Ŵ+

Λ1

ρ1
‖2F

+
ρ2
2
‖z− v +

Λ2

ρ2
‖22 +

ρ3
2
(cT z+ ξ − P +

Λ3

ρ3
)2,

where parameters Λ1,Λ2, and Λ3 are the Lagrange multipli-
ers and ρ1, ρ2, and ρ3 are the constraints violation penalty
parameters with respect to the linear constraints respectively.
Based on the basic Gauss-Seidel structure in a ADMM-type
algorithm, we will introduce how to solve these subproblems
separately in detail.

i) Compute the subproblem of Wt+1:

Wk+1=argmin
W

tr
(
Ck

xx(Dzk(W+I)−I)(Dzk(W+I)

−I)k
)
+ λ‖W‖2F +

ρ1
2
‖W − Ŵk +

Λk
1

ρ1
‖2F .

Taking the partial derivative of the equation above with re-
spect to W, and setting it to zero, we obtain:

(DzkCk
xxDzk + (λ+

ρ1
2
)I)W

= DzkCk
xx(I−Dzk) +

ρ1
2
(Ŵ − Λk

1

ρ1
).

Therefore, the optimal Wk+1 can be obtained by

Wk+1 =(DzkCk
xxDzk+(λ+

ρ1
2
)I)−1

× (DzkCk
xx(I−Dzk)+

ρ1
2
(Ŵk−Λk

1

ρ1
)). (6)

ii) Further we calculate the subproblem about Ŵk+1, i.e.,

Ŵk+1=argmin
̂W

α‖S� Ŵ‖1+ ρ1
2
‖Ŵ −Wk+1−Λk

1

ρ1
‖2F .

We can obtain a closed-form solution of Ŵk+1 by the ma-
trix shrinkage operation Lemma (Lin et al. 2009):

Ŵk+1
ij =max

{
|(Wk+1 +

Λk
1

ρ
)ij | − αSij

ρ1
, 0

}
· sgn

(
(Wk+1 +

Λk
1

ρ1
)ij

)
, (7)

where sgn(t) is the signum function of t.
iii) zk+1 is the minimizer for

min
z

tr
(
Ck

xx(Dz(W
k+1+I)−I)(Dz(W

k+1+I)−I)T
)

− βzTSz+
ρ2
2
‖z−vk+

Λk
2

ρ2
‖22

+
ρ3
2

(
cT z+ξk−P+

Λk
3

ρ3

)2

.

This is an unconstrained quadratic programming problem.
By some straight-forward computation, we can rewrite it as:

min
z

zTHz+ bT z, (8)

where

H =Ck
xx � (

(Wk+1 + I)(Wk+1 + I)T
)

− βS+
ρ2
2
I+

ρ3
2
ccT ,

b =− 2diag((Wk+1 + I)Ck
xx)

+ ρ2(−vk +
Λk
2

ρ2
) + ρ3(ξ − P +

Λk
3

ρ3
)c,

where diag(A) is a vector whose entries are the diagonal
elements of A. Thus, the optimal zk+1 can be obtained by:

zk+1 =
1

2
H−1b. (9)
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iv) Computing the subproblem about vk+1 is to solve

min
v

‖zk+1 − v +
Λk
2

ρ2
‖2, s.t. v ∈ {0, 1}n. (10)

This is a simple integer programming problem. We can eas-
ily obtain the optimal vk+1 by:

vk+1
i =

{
1 if (zk+1 +

Λk
2

ρ2
)i ≥ 0.5;

0 otherwise.
(11)

v) As for the subproblem about ξk+1, we also can easily
obtain a closed-form solution:

ξk+1 = max(P − cT zk+1 − Λk
3

ρ3
, 0). (12)

The key steps of the proposed SRSSS algorithm are sum-
marized in Algorithm 1. When initializing Algorithm 1, we
first use the typical mini-batch version ADMM to optimize
(5). It means we run the SRSSS Algorithm with respect to a
specific C0

xx that is constructed by the mini-batch data.

Algorithm 1 The SRSSS Algorithm
Input: Data arrive sequentially. Set α, β, and γ;
Initialize:
(W0,Ŵ0, z0,v0,Λ0

1,Λ
0
2,Λ

0
3, ρ1, ρ2, ρ3, τ,maxρ)

are initialized by adopting ADMM on a mini-batch data;
for t = 0, 1, 2, . . . , do

if t = kL, k = 0, 1, 2, · · · , enter model update :
1. update Wk+1 by (6);
2. update Ŵk+1, zk+1 by (7) and (9);
3. update vk+1 and ξk+1 by (11) and (12);
4. let φk, the set of active sensors in the next phase,

be the indices of value 1 in vk+1;
5. update the multipliers
Λk+1
1 = Λk

1 + ρ1(W
k+1 − Ŵk+1);

Λk+1
2 = Λk

2 + ρ2(z
k+1 − vk+1);

Λk+1
3 = Λk

3 + ρ3(c
T zk+1 + ξ − P );

6. update the parameter ρ1, ρ2 and ρ3 by
ρi = min(τρi,maxρ), i = 1, 2, 3;

end if
if t>kL and t<(k+1)L, remain in prediction phase:

7. predict output from sensors [n]− φk from the
output by sensors in φk and Wk+1;

end if
end for

Output: Vector vk+1.

3. Experiments

In this section, we empirically evaluate the proposed sensor
stream selection algorithm, SRSSS, on two data sets, one
challenging synthetic dataset and one real-world dataset.

3.1 Experimental Setting

Compared methods To evaluate the performance of
SRSSS, we compare it with PES MULTIVARIATE (RL)

(Aggarwal, Xie, and Yu 2011) that is the most related work
to ours. We call it PMRL here for convenience. We also
compare our method with some feature selection and active
learning algorithms, since this sensor selection problem can
be alternatively viewed as a feature selection problem or an
active learning problem by treating each sensor as a feature
or an instance. We choose two unsupervised feature selec-
tion methods and two representation based active learning
methods as alternatives in the experiments: Laplacian score
(LS) (He, Cai, and Niyogi 2005), JELSR (Hou et al. 2011),
TED (Yu, Bi, and Tresp 2006), and RRSS (Nie et al. 2013).
After obtaining the active sensors by the methods above, we
use multi-variate interpolation to infer the output from the
inactive sensors for fair comparisons.
Parameter setting There are some parameters to be set in
advance. For PMRL, LS, JELSR, TED, and RRSS, we set
the parameters window size to 10 to load the data for each
update, same as in (Aggarwal, Xie, and Yu 2011). The pa-
rameter maxlap is set to 5 for PMRL. For SRSSS, the forget-
ting factor μ is set to 0.9 throughout the experiments. For all
the methods, the power constraint P is set to 10, and the pre-
diction interval L is set to 5 throughout the experiments, un-
less otherwise stated. The regularization parameters for all
the methods are tuned by cross-validation on a mini batch
dataset. In the experiments, we use the first 100 observation
values to tune parameters. In addition, we need to generate
a synthetic power requirement for each sensor. In the ex-
periments, the power requirements of different sensors are
uniformly distributed in the range [0, 1].
Experiments protocol We conduct the experiments on a
laptop with 2.8 GHz Intel i-5 CPU and 12GB memory by
a single thread, and implement the algorithms using MAT-
LAB R2014b 64bit edition. In the experimental study, we
use a popular regression prediction metric, Mean Absolute
Error (MAE), to measure the prediction quality.

3.2 Results on the synthetic dataset

We first conduct the experiments on a challenging syn-
thetic dataset. Here we use parallel discrete event simula-
tion (PDEs) (Fujimoto 1990) to generate synthetic sensor
data2. To be more specific, we simulate an open environment
and the sensors detecting temperature. Our environment is
a square region with Dirichlet boundaries temperature set
at constant zero. There are 200 sensors randomly placed to
form the sensor network. The overall simulation time period
is 1000 time units. Heat comes from 20 diffusion sources,
whose locations randomly change 50 times, i.e., once per 20
time units. The sensors’ data sampling rate is one per time
unit.

Table 1 lists the MAE of the six aforementioned algo-
rithms under different prediction interval L, the amount of
time each prediction phase lasts. By building better connec-
tion with multi-variate interpolation, and leveraging spatial
information, SRSSS achieves the best performance among
all the methods. Figure 2 (a) displays the locations of all the
sensors. The active sensors selected by PMRL and SRSSS at

2The toolbox is downloaded from
http://www.ulb.ac.be/di/labo/projects.html.
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Figure 2: Sensor selection by PMRL (b) and SRSS (c) at
t = 100. The selected sensors are marked as solid red dots.
The sensors selected by SRSSS represent the original data
set (a) better.

Table 1: MAEs of different methods on the synthetic dataset.
L LS JELSR TED RRSS PMRL SRSSS
5 0.754 0.378 0.400 0.305 0.506 0.263

7 0.825 0.512 0.372 0.320 0.547 0.311

10 1.733 0.825 0.969 0.730 1.182 0.599

t = 100 are marked as solid red dots in Figure 2 (b) and (c),
respectively. As can be seen, the sensors selected by SRSSS
are more spread-out in space. As is well-known, temperature
is a typical physical measurement that closer observations
in space are more correlated than distant ones. By incorpo-
rating the spatial regularizations, as can be verified by the
results in Table 1, SRSSS selects a better sensor subset for
predicting those inactive sensors.

3.3 Results on the real dataset

We further perform the proposed algorithm on a real-world
dataset derived from the Intel research laboratory at Berke-
ley. This dataset is popular for testing sensor selection al-
gorithms (Aggarwal, Xie, and Yu 2011)3. It has 54 sensors
and 5 days of temperature readings. The sensors 5 and 15
were removed as they do not provide any measurement. The
readings are sampled every 30 seconds, and so the dataset
contains in total 14400 readings from the rest 52 sensors.

The results are reported in Table 2. SRSSS performs bet-
ter than the other methods under different L’s. For example,
SRSSS achieves 23.6%, 27.8%, 21.5% relative error deduc-
tion over PMRL, respectively.

We also verify the effectiveness of the different compo-
nents of the objective function (1) in SRSSS on this dataset.
We set α and β to zeros respectively, and fix the other vari-
ables. We call them WLR (without local regularization) and
WDR (without distance regularization), respectively. The re-

3The dataset is downloaded from
http://www.ulb.ac.be/di/labo/datasets.html.

Table 2: MAEs of different methods on the real dataset.
L LS JELSR TED RRSS PMRL SRSSS
5 0.061 0.048 0.061 0.052 0.055 0.042

7 0.066 0.053 0.074 0.061 0.072 0.052

10 0.085 0.067 0.088 0.077 0.079 0.062
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Figure 3: Effectiveness verification of the components of
SRSSS on the real dataset.

sults are shown in Figure 3 (a). SRSSS is superior to WLR
and WDR, which demonstrates that both the two spatial reg-
ularizations (local information and distance) are beneficial
for selecting informative sensors. In addition, we also test
the effect of the time-forgetting factor μ on the prediction,
whose result is shown in Figure 3 (b). When μ = 1, all the
samples have the same weight for model update. As can be
seen, when μ = 0.9, SRSSS obtains the best performance.
This indicates that the forgetting factor enables SRSSS to
adapt to sensor streams’ evolvement.

3.4 Efficiency

We test the efficiency of our algorithm on both the syn-
thetic and the real datasets. We compare SRSSS with the
sensor selection algorithm PMRL, the feature selection ap-
proach JELSR, and the active learning method RRSS. Fig-
ure 4 shows the runtime of these approaches. SRSSS has the
least runtime time on both datasets. Compared to PMRL,
SRSSS is over 30 and 10 times faster on the synthetic and
the real datasets, respectively.
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Figure 4: The runtime of different methods on both the syn-
thetic and the real datasets.

4. Conclusion

In this paper, we propose a novel streaming sensor selection
for redundant sensor network. By performing sensor selec-
tion in a multi-variate interpolation framework and incorpo-
rating sensors’ spatial information, the information loss of
the inactive sensors can be minimized. By defining a sta-
tistical variable to compress the data without information

3876



loss and introducing a time forgetting factor to set different
weights on samples, the memory usage can be optimized.
Experiments on both synthetic and real datasets demonstrate
the effectiveness and efficiency of our method.
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Appendix

Theorem 2.1: The objective function (1) is equivalent to

(Wk+1, zk+1)

= argmin
W,z

k∑
i=1

μk−i‖Xi
kDzW −Xi

k(I−Dz)‖22

+ α

n∑
i,j=1

‖yi−yj‖2|Wij |−β
n∑

i,j=1

‖yi−yj‖2zizj+λ‖W‖2F

s.t. z = [z1, . . . , zn] ∈ {0, 1}n, cT z ≤ P. (13)

Proof. Let

J(W, z) =

k∑
i=1

μk−i‖Xi
kDzW(I−Dz)−Xi

k(I−Dz)‖22

+α

n∑
i,j=1

‖yi−yj‖2|Wij |−β
n∑

i,j=1

‖yi−yj‖2zizj+λ‖W‖2F .

J̃(W, z) =

k∑
i=1

μk−i‖Xi
kDzW−Xi

k(I−Dz)‖22

+α

n∑
i,j=1

‖yi−yj‖2|Wij |−β
n∑

i,j=1

‖yi−yj‖2zizj+λ‖W‖2F .

We will prove that min J = min J̃ and argmin J =
argmin J̃ .

Given k, we first notice that in order to minimize J , W an
should be bounded. More specifically, the ‖W‖∞ should be
bounded. We will prove this fact now. Notice that

min
W,z

J(W, z) ≤ min
z

J(0, z)

≤min
z

∑k

i=1
μk−i‖Xi

k(I−Dz)‖22 −β
n∑

i,j=1

‖yi−yj‖2zizj

≤
∑k

i=1
μk−i‖Xi

k‖22.
On the other hand,

J(W, z) ≥ −β

n∑
i,j=1

‖yi−yj‖2 +λ‖W‖2∞.

Therefore in order to minimize J , we must have

−β
n∑

i,j=1

‖yi−yj‖2 +λ‖W‖2∞ ≤
∑k

i=1
μk−i‖Xi

k‖22,

and thus we obtain an upper bound for ‖W‖∞.
Thus to minimize J(W, z), we can simply restrict W, z

to a compact space. Therefore the global minimizer exist,
and suppose the minimizer is given by W∗, z∗.

Similarly, we can show that for J̃(W, z), a global min-
imizer exist. Suppose the global minimizer is given by
W̃∗, z̃∗.

We now show that J(W, z∗) ≥ J̃(W∗, z∗). Let W̃ =
W∗(I−Dz∗). Notice that in this case,

W̃(I−Dz∗) = W∗(I−Dz∗)(I−Dz∗) = W∗(I−Dz∗),

as z∗ is a diagonal matrix with diagonal entries being 0 or 1.
And thus we also have that

Dz∗W̃(I−Dz∗) = Dz∗W∗(I−Dz∗).

Therefore we have
min J̃(W, z) ≤ J̃(W̃, z∗)

=
∑k

i=1
μk−i‖Xi

kDz∗W̃−Xi
k(I−Dz∗)‖22

+ α

n∑
i,j=1

‖yi−yj‖2|W̃ij |−β
n∑

i,j=1

‖yi−yj‖2zizj+λ‖W̃‖2F

=
∑k

i=1
μk−i‖Xi

kDz∗W∗(I−Dz∗)−Xi
k(I−Dz∗)‖22

+ α

n∑
i,j=1

‖yi−yj‖2|W̃ij |−β
n∑

i,j=1

‖yi−yj‖2z∗i z∗j +λ‖W̃‖2F

=
∑k

i=1
μk−i‖Xi

kDz∗W∗(I−Dz∗)2−Xi
k(I−Dz∗)‖22

+ α
n∑

i,j=1

‖yi−yj‖2|W̃ij |−β
n∑

i,j=1

‖yi−yj‖2z∗i z∗j +λ‖W̃‖2F

=
∑k

i=1
μk−i‖Xi

kDz∗W̃(I−Dz∗)−Xi
k(I−Dz∗)‖22

+ α

n∑
i,j=1

‖yi−yj‖2|W̃ij |−β
n∑

i,j=1

‖yi−yj‖2z∗i z∗j +λ‖W̃‖2F

=
∑k

i=1
μk−i‖Xi

kDz∗W∗(I−Dz∗)−Xi
k(I−Dz∗)‖22

+ α

n∑
i,j=1

‖yi−yj‖2|W̃ij |−β
n∑

i,j=1

‖yi−yj‖2z∗i z∗j +λ‖W̃‖2F

≤
∑k

i=1
μk−i‖Xi

kDz∗W∗(I−Dz∗)−Xi
k(I−Dz∗)‖22

+α
n∑

i,j=1

‖yi−yj‖2|W ∗|−β
n∑

i,j=1

‖yi−yj‖2z∗i z∗j +λ‖W∗‖2F

=J(W∗, z∗) = min J,

where the equality holds only when ‖W∗‖2F = ‖W̃‖2F , and
A2 denotes A ∗A. Thus we must have W∗ = W̃, i.e., the
columns of W not selected by z∗ has to be 0.

Therefore so far we have proved that W∗ = W̃, and that
minW,z J(W, z) ≥ minW,z J̃(W, z).

We are left to prove that J̃(W̃∗, z̃∗) ≥ J(W∗, z∗). We
want to prove the claim

J̃(W̃∗, z̃∗) ≥ J̃(W̃∗(I−Dz̃∗), z̃∗), (14)

with the equality holds if and only if W̃∗ = W′ :=

W̃∗(I − Dz̃∗). If this is the case, similar as in proving the
other direction, we will have

J̃(W̃∗, z̃∗) = J̃(W̃∗(I−Dz̃∗), z̃∗)

=J(W̃∗(I−Dz̃∗), z̃∗) = J(W′, z̃∗) ≥ J(W∗, z∗).
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To prove the claim (14),

J̃(W̃∗, z̃∗) =∑k

i=1
μk−i‖Xi

kDz̃∗W̃∗ −Xi
k(I−Dz̃∗)‖22

+ α
n∑

i,j=1

‖yi − yj‖2|W̃ ∗
ij | − β

n∑
i,j=1

‖yi − yj‖2z∗i z∗j

+ λ‖W̃∗‖2F
≥
∑k

i=1
μk−i‖Xi

kDz̃∗W̃∗ −Xi
k(I−Dz̃∗)‖22

+ α

n∑
i,j=1

‖yi − yj‖2|W ′∗
ij | − β

n∑
i,j=1

‖yi − yj‖2z∗i z∗j

+ λ‖W′∗‖2F .
The equality holds only when ‖W′∗‖2F = ‖W̃∗‖2F .

Now we are only left to show that∑k

i=1
μk−i‖Xi

kDz̃∗W̃∗−Xi
k(I−Dz̃∗)‖22

≥
∑k

i=1
μk−i‖Xi

kDz̃∗W′−Xi
k(I−Dz̃∗)‖22. (15)

Let A = Xi
kDz̃∗W̃∗−Xi

k(I−Dz̃∗) for writing conve-
niently. Notice that∑k

i=1
μk−i‖A‖22

=
∑k

i=1
μk−i‖A(Dz̃∗ + (I−Dz̃∗)‖22

=
∑k

i=1
μk−i‖ADz̃∗‖22 +

∑k

i=1
μk−i‖A(I−Dz̃∗)‖22

=
∑k

i=1
μk−i‖Xi

kDz̃∗W̃∗Dz̃∗‖22
+
∑k

i=1
μk−i‖Xi

kDz̃∗W̃∗(I−Dz̃∗)−Xi
k(I−Dz̃∗)‖22

≥
∑k

i=1
μk−i‖Xi

kDz̃∗W′−Xi
k(I−Dz̃∗)‖22,

with equality holds only when ‖Xi
kDz̃∗W̃∗Dz̃∗)‖22 = 0.

Combining with the previous argument, we have that

J̃(W̃∗, z̃∗) ≥ J̃(W̃∗(I−Dz̃∗), z̃∗), (16)

with the equality holds if and only if W̃∗ = W′ := W̃∗(I−
Dz̃∗).

Collecting all what we have obtained so far, we have

min J = J(W∗, z∗)

≥ J̃(W∗, z∗) ≥ J̃(W̃∗, z̃∗) ≥ J(W′, z̃∗).

Therefore we have min J = min J̃ , and the minimizer can
be obatined to be the same, such that the columns of W
selected by z has to be 0.
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