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Abstract

This paper considers prescriptive evacuation planning for a
region threatened by a natural disaster such a flood, a wildfire,
or a hurricane. It proposes a Benders decomposition that gen-
eralizes the two-stage approach proposed in earlier work for
convergent evacuation plans. Experimental results show that
Benders decomposition provides significant improvements in
solution quality in reasonable time: It finds provably optimal
solutions to scenarios considered in prior work, closing these
instances, and increases the number of evacuees by 10 to 15%
on average on more complex flood scenarios.

Introduction

Emergency evacuation is becoming increasingly critical
with the rising number of natural disasters (e.g., floods, fires,
hurricanes) and rapid urbanization across the globe. Evacua-
tions, once rare events, are becoming increasingly common:
On average, there is an evacuation of 1,000 or more people
every two or three weeks in the United States alone (Murray-
Tuite and Wolshon 2013). Moreover, the global trend to-
wards urbanization makes planning for city-level evacua-
tions imperative. For example, in Australia and Chile, 85%
of the population lives in cities (Kates 2010).

This paper considers prescriptive evacuation planning
(e.g., (Bish and Sherali 2013; Bretschneider and Kimms
2012; Cova and Johnson 2003; Dish, Sherali, and Hobeika
2013; Miller-Hooks and Sorrel 2008; Lim et al. 2012;
Xie, Lin, and Waller 2010)) which has been gaining traction
in the last decade. In prescriptive evacuations, the goal is to
produce an operationally viable set of instructions for the au-
thorities, who will close roads and manage traffic, and clear
directions for evacuees about when to leave their homes and
where to go. This task is computationally challenging be-
cause many factors must be taken into account, including
the nature of the disaster, the layout of the road network,
the locations of evacuees, and human behavior. Prescriptive
evacuation planning contrasts with self-evacuations where
people can choose how to evacuate and when, often leading
to congestion as the demand exceeds the network capacity.

This paper reconsiders the Convergent Evacuation Plan-
ning Problem (CEPP) introduced by Even, Pillac, and
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Van Hentenryck (2015) to eliminate delays associated with
forks in evacuation plans. Indeed, it was observed during
Hurricane Ivan that forks used in contraflow operations in-
duce driver hesitation and may become a significant source
of delays (Wolshon, Catarella-Michel, and Lambert 2006).
Convergent paths are easy to enforce because, once the nec-
essary roads are blocked, minimal vehicle guidance is re-
quired. Even, Pillac, and Van Hentenryck (2015) proposed
a two-stage approach to solve the CEPP. Their first stage is
a tree design problem which chooses a convergent plan by
aggregating the arc capacities, while the second stage is a
flow scheduling problem on the time-expanded graph. They
showed that the Tree Design Problem (TDP) is a relaxation
of the CEPP. This two-stage approach produces high-quality
results very quickly whenever the disaster affects all the road
segments uniformly. However, on more complex disaster
scenarios, the quality of the two-stage approach degrades
and the duality gap is more substantial.

In this paper, we address this limitation and propose a
Benders decomposition exploiting the insights of the two-
stage approach. In particular, the master problem in the
Benders decomposition enhances the TDP with Benders cuts
obtained from the second stage. Since the second stage is a
flow problem which typically has many optimal solution for
specific values of the first-stage variables, the Benders de-
composition may be extremely slow to converge. To remedy
this limitation, we use Pareto-optimal Benders cuts (Magnati
and Wong 1981). The Benders decomposition was evalu-
ated on the real-case study from (Even, Pillac, and Van Hen-
tenryck 2015). For the original case where the evacuation
must conclude by a certain deadline, the Benders decompo-
sition closes all the instances. For the more complex case
of a 1/100 year flood scenario, the Benders decomposition
is shown to produce significant improvements over the two-
stage approach, with benefits exceeding 25% in the best case
and 10% on average. The Benders decomposition is also
shown to find high-quality solutions quickly. Note also that
the Benders decomposition proposed here would also apply
to zone-based evacuations plans that are not convergent.

Literature Review

Hamacher and Tjandra (2002) classifies approaches to evac-
uation planning into microscopic and macroscopic cate-
gories. Microscopic evacuation planning seeks to accurately
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model individual evacuee behavior, while macroscopic ap-
proaches, such as the one used in this paper, treat evacuees
collectively as flows. Objectives for evacuation planning
algorithms include finding the maximum flow, the quick-
est flow, or the minimum cost flow. The work by Ford
and Fulkerson (1958) on the Maximum Dynamic Network
Flow Problem (MDFP) for shipping goods is the foundation
for much of later work on maximum flow evacuation prob-
lems. The same authors also defined the notion of a time-
expanded graph for solving dynamic network flow problems
(Ford and Fulkerson 1962). Chen and Chin (1990) intro-
duced the quickest (single) path problem for data transmis-
sion, which was generalized to include multiple paths by
Burkard, Dlaska, and Klinz (1993) in the quickest flow prob-
lem (QFP). The QFP was extended by Hoppe and Tardos
(1995) to include multiple sources and sinks in the quickest
transshipment problem (QTP).

There are several key requirements for evacuation prob-
lems not shared by other dynamic network flow problems.
Emergency services typically prefer zone-based evacuations
in which all residents in a residential areas are assigned
the same evacuation path time in order to avoid confusion
and increase compliance. Similarly, traffic control mea-
sures should be simple for authorities to enact. Few pa-
pers have proposed plans consistent with these requirements.
Huibregtse et al. (2011) developed a two-stage approach for
giving instructions to evacuees, where the first stage creates
possible paths and departure times and the second stage as-
signs them to evacuees. Even, Pillac, and Van Hentenryck
(2015) proposed the two-stage approach described in the in-
troduction. In the first stage, they solve a relaxation of the
maximum flow problem with aggregated arc capacities (the
TDP problem), generating an evacuation network with con-
vergent paths. This tree is then passed into the second stage,
the Flow Scheduling Problem (FSP), which schedules the
flow of evacuees on the corresponding time-expanded net-
work. They also use a dichotomic search to find the mini-
mum clearance time. Pillac, Cebrian, and Van Hentenryck
(2015) proposes a column-generation approach that solves a
more general problem: the joint mobilization and evacuation
planning problem that schedules both the evacuation and the
mobilization resources needed to enforce the plan.

Few studies have applied Benders decomposition to evac-
uation planning. Chen and Miller-Hooks (2008) introduced
the Building Evacuation Problem with Shared Information
(BEPSI), using Benders decomposition to solve the quickest
flow problem in a building evacuation. The BEPSI is not a
zone-based evacuation: the evacuation plan chooses dynam-
ically where to send evacuees at every node and time steps.
Andreas and Smith (2009) solved a variant of the quickest
flow problem, using arc traversal penalty functions to en-
courage earlier evacuation. The model includes a number
of possible scenarios, each with a given probability, and the
objective is to minimize the expected sum of arc traversal
penalties. The master problem chooses an evacuation tree
and the subproblem solves a flow problem. However, con-
trary to our model, the master problem does not explicitly
consider the flow variables and generates subtour constraints
on the fly, making the relaxation much weaker.

(a) Evacuation scenario (b) Evacuation graph

(c) Time-expanded graph

Figure 1: Modeling of an Evacuation Planning Problem.
(from Even, Pillac, and Van Hentenryck (2015)).

Convergent Evacuation Planning

Following (Even, Pillac, and Van Hentenryck 2015), an
evacuation scenario is represented by an evacuation graph
G = (N = E ∪ T ∪ S,A), where E , T , and S are respec-
tively the set of evacuation, transit, and safe nodes, and A is
the set of arcs. Each evacuation node i has a demand di, and
each arc e is characterized by its travel time se, its capac-
ity ue, and the time fe at which it becomes unavailable due
to flooding. Figure 1 offers an example of how evacuation
instances are modeled. Figure 1a shows an evacuation sce-
nario with one evacuation node, labeled “0”, and two safe
nodes, labeled “A” and “B.” The times on each arc indicate
when that arc will be flooded. Figure 1b is the correspond-
ing evacuation graph. The evacuation node has a demand
of 20 vehicles. Arc (0, 1) has a travel time of 2 min and a
capacity of 5 vehicles/min, and is flooded at 13:00.

In order to model the evolution of the evacuation over
time, we discretize the time horizon and use a time-expanded
graph Gx = (N x = Ex ∪ T x ∪ Sx,Ax). To construct the
time-expanded graph from the static graph, we create copies
of nodes over time and replace each arc e = (i, j) with arcs
et = (it, jt+s(i,j)), for each time that e is available. Figure
1c illustrates the corresponding time-expanded graph.

Definition 1. A graph G = (N ,A) is connected if for all
k ∈ E , there exists a path from k to a safe node.

Definition 2. A graph G = (N ,A) is convergent if for all
i ∈ E ∪ T , the outdegree of i is 1.

As stated by Even, Pillac, and Van Hentenryck (2015), any
connected evacuation graph G contains a connected and con-
vergent subgraph G′. If an evacuation graph is connected
and convergent, each evacuation node will have a unique
path to a safe node. The Convergent Evacuation Planning
Problem (CEPP) is defined as follows:

Definition 3. Given a connected evacuation graph G, the
Convergent Evacuation Planning Problem (CEPP) consists
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of finding a convergent subgraph G′ of G and a set of evac-
uee departure times that maximize the flow from evacuation
nodes to safe nodes.

The MIP Model

This section presents a Mixed-Integer Programming (MIP)
model for solving the CEPP. The model is adapted from
(Even, Pillac, and Van Hentenryck 2015): Variable xe is bi-
nary and indicates whether arc e is selected and variable ϕet
is continuous and represents the flow on arc et ∈ Ax. The
evacuation is scheduled over a discretized time horizon H.

max
∑
k∈E

∑
et∈δ+(k)

ϕet (1)

s.t.∑
et∈δ−(i)

ϕet −
∑

et∈δ+(i)

ϕet = 0 ∀i ∈ T x (2)

∑
e∈δ+(i)

xe ≤ 1 ∀i ∈ E ∪ T (3)

ϕet ≤ xe · uet ∀e ∈ A, ∀t ∈ H (4)∑
et∈δ+(k)

ϕet ≤ dk ∀k ∈ E (5)

ϕet ≥ 0 ∀et ∈ Ax (6)
xe ∈ {0, 1} ∀e ∈ A (7)

In the models, δ−(i) and δ+(i) denote the set of incoming
and outgoing edges of node i respectively. Constraints (2)
require flow conservation at each of the transit nodes, con-
straints (3) ensure that the output paths are convergent, con-
straints (4) are the capacity constraints, constraints (5) state
that no more than the demand can be evacuated for each res-
idential area, and the objective (1) maximizes the total evac-
uee flow. Even, Pillac, and Van Hentenryck (2015) showed
that this MIP model does not scale to the Hawkesbury-
Nepean evacuation instances: After 24 hours of running
time, the number of people evacueed in the MIP model was
substantially smaller than in their two-stage approach.

Benders Decomposition

This section presents a Benders Decomposition approach for
zone-based evacuation planning. The key idea behind Ben-
ders decomposition is to separate the choice of the converg-
ing paths (restricted master problem) from the flow schedul-
ing (subproblem). The Restricted Master Problem (RMP)
chooses convergent paths, while the Subproblem (SP) uses
these paths to schedule the evacuees over time. If the ob-
jective values of the RMP and SP are the same, the solution
of the SP is optimal. Otherwise, the Benders decomposition
approach generates a cut that removes at least the current
convergent paths and the process is repeated. This paper
uses Pareto-optimal Benders cuts to improve convergence.

The Restricted Master Problem

The RMP is built on top of the TDP, which was shown to
be a relaxation of the CEPP where the evacuation flows and

arc capacities are aggregated over time (Even, Pillac, and
Van Hentenryck 2015). The TDP is formulated as a MIP
model with a binary arc selection variable xe and a continu-
ous flow variable ψe for each arc e ∈ A:

max
∑
k∈E

∑
e∈δ+(k)

ψe (8)

subject to∑
e∈δ−(i)

ψe −
∑

e∈δ+(i)

ψe = 0 ∀i ∈ T (9)

∑
e∈δ+(i)

xe ≤ 1 ∀i ∈ E ∪ T (10)

ψe ≤ xe

∑
t∈H

uet ∀e ∈ A (11)

∑
e∈δ+(k)

ψe ≤ dk ∀k ∈ E (12)

ψe ≥ 0 ∀e ∈ A (13)
xe ∈ {0, 1} ∀e ∈ A (14)

Constraints (9) impose flow conservation at each transit
node, constraints (10) ensure a convergent plan, constraints
(11) and (12) enforce the capacity and demand constraints,
and the objective (8) maximizes the total evacuee flow.

The Subproblem

The output of the TDP is a convergent evacuation graph G.
The SP is a Flow Scheduling Problem (FSP) which sched-
ules the flow of evacuees on the associated time-expanded
graph Gx. The FSP can be formulated as follows:

max
∑
k∈E

∑
et∈δ+(k)

ϕet (15)

subject to∑
et∈δ−(i)

ϕet −
∑

et∈δ+(i)

ϕet = 0 ∀i ∈ T x (16)

ϕet ≤ xe · uet ∀e ∈ A, ∀t ∈ H (17)∑
et∈δ+(k)

ϕet ≤ dk ∀k ∈ E (18)

ϕet ≥ 0 ∀et ∈ Ax (19)

Constraints (16) are the flow conservation constraints, con-
straints (17) and (18) are the capacity and demand con-
straints, and the objective (15) maximizes the flow.

The Benders Cuts

The dual of the FSP is given by:

min
∑
e∈A

xe

∑
t∈H

uet · yet +
∑
k∈E

dk · yk

subject to∑
i∈T x

(
δ−(i)(et)− δ+(i)(et)

)
yi
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+ yet +
∑
k∈E

δ+(k)(et)yk ≥ E(e) ∀e ∈ E , ∀t ∈ H

yet ≥ 0 ∀et ∈ Ax

yk ≥ 0 ∀k ∈ E

where {yi}, {yet}, and {yk} are the dual variables associ-
ated with constraints (16), (17), and (18) respectively and
the indicator function A(x) for a set A is defined as

A(x) =

{
1 if x ∈ A
0 if x /∈ A.

The Benders cuts are thus of the form:

z ≤
∑
e∈A

xe

∑
t∈H

uet · yet +
∑
k∈E

dk · yk. (20)

The RMP then becomes an extension of the TDP with the
set of Benders cuts C, i.e.,

max z

subject to

z ≤
∑
k∈E

∑
e∈δ+(k)

ψe

z ≤
∑
e∈A

xe

∑
t∈H

uet · ycet +
∑
k∈E

dk · yck ∀c ∈ C

∑
e∈δ−(i)

ψe −
∑

e∈δ+(i)

ψe = 0 ∀i ∈ T

∑
e∈δ+(i)

xe ≤ 1 ∀i ∈ E ∪ T

ψe ≤ xe

∑
t∈H

uet ∀e ∈ A

∑
e∈δ+(k)

ψe ≤ dk ∀k ∈ E

ψe ≥ 0 ∀e ∈ A
xe ∈ {0, 1} ∀e ∈ A

It is important to note that the two-stage approach of (Even,
Pillac, and Van Hentenryck 2015) can be viewed as the first
iteration of this Benders decomposition. As a result, the
Benders decomposition inherits directly a high-quality start-
ing point contrary to (Andreas and Smith 2009) whose mas-
ter problem only reasons about the flow variables through
the Benders cuts, and not through aggregation.1

Pareto-Optimal Benders Cuts

The Benders decomposition presented so far is guaranteed
to converge in a finite number of iterations. However, in
practice, the algorithm rarely converged within a reasonable
amount of time. Convergence can be accelerated by using
stronger Benders cuts through the Magnanti-Wong method

1Even, Pillac, and Van Hentenryck (2015) counteracts the fact
that a loose time horizon may reduce the quality of the TDP by
finding the smallest time horizon that preserves the value of the
first stage. We also include this insight to seed the decomposition.

Algorithm 1 The two-stage algorithm for clearance time
minimization
Require: G the evacuation graph, h the time horizon
Ensure: A convergent evacuation plan of minimum clearance time
1: h† ← min

{
t ∈ [0, h] | z(TDP (G, t)) =∑i∈E di

}

2: h∗ ← min
{
t ∈ [h†, h] | z(BD (G, t)) =∑i∈E di

}

3: return h∗, BD (G, h∗)

(Magnati and Wong 1981). At each iteration of the Ben-
ders decomposition, the Magnanti-Wong method generates
a Pareto-optimal cut which is not dominated by any other
Benders cut. The method requires a core point, i.e., a point
within the relative interior of the convex hull of the feasibil-
ity domain of the first-stage variables. Finding such a core
point is easy for this application, since the SP is always fea-
sible and thus never generates feasibility cuts: it suffices to
assign, say, xo

e = 1
2 to all the binary variables xe. Note also

that only one core point is needed for all iterations. To ob-
tain a Pareto-optimal Benders cuts, we solve the dual of the
Magnanti-Wong Problem, which is given by:

max
∑
k∈E

∑
et∈δ+(k)

ϕet+

ξ
∑
k∈E

∑
et∈δ+(k)

ϕ̄et (21)

subject to∑
et∈δ−(i)

ϕet −
∑

et∈δ+(i)

ϕet = 0 ∀i ∈ T x (22)

ϕet + x̄e · uet · ξ ≤
1

2
uet ∀e ∈ A, ∀t ∈ H (23)∑

et∈δ+(k)

ϕet + dk · ξ ≤ dk ∀k ∈ E (24)

ϕet ≥ 0 (25)

where {x̄e} are from the optimal solution of the RMP and
{ϕ̄et} are from the optimal solution of the Benders subprob-
lem. In order to generate a Pareto-optimal Benders cut, the
coefficients {yet} and {yk} in the cut come from constraints
(23) and (24) respectively.

Minimizing Clearance Time

Emergency services are often interested in determining the
minimum clearance time, i.e., the smallest amount of time
to evacuate the entire region. More precisely, the minimum
clearance time h∗ is defined as

h∗ = min

{
h ∈ R|z(CEPP (G, [0, h])) =

∑
k∈E

dk

}
.

To compute the clearance time, we use a binary search over
the time horizon, an idea already present in (Even, Pillac,
and Van Hentenryck 2015). We first perform a dichotomic
search on the TDP (TDP-DS), giving us a lower bound on
the clearance time, followed by a dichotomic search on the
Benders decomposition algorithm (BD-DS), seeded with the
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Figure 2: The Behavior of the Benders Decomposition in the
Deadline Setting for Instance HN-2.5.

tree from the TDP-DS. Algorithm 1 outlines this approach
and uses a binary search is used in Steps 1 and 2 to compute
the minimum clearance time for the TDP and CEEP.

Experimental Results

This section presents experimental results for a case study of
the evacuation of the Hawkesbury-Nepean (HN) floodplain,
which is located near Sydney. The HN evacuation graph has
80 evacuation nodes, 184 transit nodes, 5 safe nodes, and
580 edges. We use time horizons of 600 min for scenarios
without flooding and 1000 min for scenarios with flooding,
discretized into 5 minute time-steps. Since the population in
HN region is growing steadily, we consider several scenarios
that scale the population by a factor x ∈ [1.1, 3], with 38343
vehicles in the base instance. Each instance was run for one
hour, unless the algorithm converged earlier. For the Ben-
ders decomposition, the reported CPU times are the times to
the best solution. The algorithms were implemented using
JAVA 8 and GUROBI 6.0 and the results were obtained on a
64 bit machine with a 1.4 GHz Intel Core i5 processor and
4 GB of RAM. Algorithms based upon the work by Even,
Pillac, and Van Hentenryck (2015) were reimplemented.

We consider two main settings: (1) The deadline setting
used in (Even, Pillac, and Van Hentenryck 2015) that re-
quires the evacuation to be completed by a deadline (10
hours); (2) A flood setting in which the flood affects the road
network at various times. In the deadline setting, the road
network is available for the duration of the evacuation. In
contrast, the flood setting uses the flood extent, the timing,
and the height of the water produced by an hydro-dynamic
simulation for a 1 in 100 years event. We study various sce-
narios under which the flood reaches the road network after
8, 9, 10, and 11 hours.

Table 1 displays the results for the deadline setting. The
table reports the number of evacuees reaching safety (in per-
centage) in the tree design problem (TDP), the two-stage
approach (2S), the last restricted master problem (LRMP),
and the Benders decompositions (BD). Both the TDP and
the restricted master problems provide upper bounds on the
number of evacuees reaching safety. The table also gives
the CPU time and the duality gap. The duality gap is com-

puted using the formula z(LRMP ))−z(�)
z(�) where z(�) is the

total number of evacuees reaching safety in model �.
The results show that the Benders decomposition closes

all these instances in less than 10 minutes (2.5 minutes on
average). The Benders decomposition improves the two-
stage approach by an average of 0.4%. Observe that the TDP
provides a very accurate upper bound in this setting. Finally,
Figure 2 depicts the behavior of the Benders Decomposition
over time for Instance HN-2.5.

Table 2 displays the results of the two-stage and Ben-
ders decomposition approaches for the flood setting. The
table presents the same information as before, with the addi-
tion of column BD10 which gives the best evacuation plans
found after 10 minutes. The results indicate that these in-
stances are significantly harder since the Benders decompo-
sition cannot prove optimality in an hour and the duality gap
can be as high as 35% (instance HN-2.0/ 8 h) initially. But
the results also show that the Benders decomposition pro-
vides significant improvements in solution quality compared
to the two-stage approach, bridging most of the initial dual-
ity gaps. The Benders decomposition may improve the two-
stage approach by more than 25% (instance HN-2.0/ 8 h).
For the HN-1.7, HN-2.0, and HN-2.5 instances, the average
improvements are 9.6%, 15.2%, and 9.4%. This is substan-
tial in the context of evacuation planning for the HN region,
since this corresponds to the evacuation of thousands more
people. The duality gaps produced by the Benders decom-
position are reasonably small: For the HN-1.7, HN-2.0, and
HN-2.5 instances, they decrease from 10.7%, 19.1%, and
15.0% initially to 1.0%, 3.1%, and 5.0%. Finally, observe
that the improvements provided by the Benders decompo-
sition remain strong even with a time limits of 10 minutes,
including a 24% improvement on instance HN-2.0/ 8 h.

Table 3 presents the results for minimizing the clearance
time: It compares the results of using a dichotomic search
with and without Benders decomposition. Each TDP iter-
ation in the initial dichotomic search is solved with a time
limit of 300 s. For the Benders decomposition dichotomic
search, each run is given for up to 20 iterations, using the
tree from the TDP-DS as a seed. The results show that
the Benders decomposition approach closes all instances but
one within the time limit.

Conclusion

This paper applied Benders decomposition for finding
zoned-based convergent evacuation plans. The restricted
master problem uses the tree design problem proposed by
Even, Pillac, and Van Hentenryck (2015) as its core and gen-
erates a Pareto-optimal Benders cut at each iteration. The
last RMP value found is an upper bound to the Convergent
Evacuation Planning Problem (CEPP), while the best FSP
value encountered is a lower bound to the CEPP.

Experimental results demonstrated the benefits of the
Benders decomposition approach on a real study. For dead-
line evacuations, where the evacuation must be completed
before the flood reaches the road network, the Benders de-
composition algorithm closes all the instances from (Even,
Pillac, and Van Hentenryck 2015). It also closes all the clear-
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2-Stage Approach Benders Decomposition
Instance CPU (s) TDP (%) 2S (%) Gap (%) CPU (s) LRMP(%) BD (%) Gap (%)

HN 1.6 100 99.1 1.0 33.6 100 100 0
HN-1.1 0.9 100 99.8 0.2 22.9 100 100 0
HN-1.2 1.5 100 100 0 1.5 100 100 0
HN-1.4 1.1 100 100 0 1.1 100 100 0
HN-1.7 1.4 100 100 0 1.4 100 100 0
HN-2.0 7.9 96.2 95.5 0.7 160.0 96.1 96.1 0
HN-2.5 3.6 81.1 80.3 1.0 372.5 80.8 80.8 0
HN-3.0 1.5 68.1 67.5 0.9 590.2 68.0 68.0 0
Average 2.4 93.2 92.8 0.5 147.9 93.1 93.1 0

Table 1: Results for the HN Instances in the Deadline Setting.

2-Stage Approach Benders Decomposition

Instance CPU (s) TDP (%) 2S (%) Gap (%) CPU (s) LRMP% BD (%) BD10 (%) Gap (%)

HN-1.7

8 h 1.3 100 88.4 13.1 3372.1 100 96.6 88.4 3.5
9 h 1.4 100 83.0 20.5 604.5 100 99.5 95.5 0.5
10 h 1.6 100 93.3 7.2 882.2 100 100 99.4 0
11 h 2.1 100 98.1 2.0 820.5 100 100 98.4 0
Average 1.6 100 90.7 10.7 1419.8 100 99.0 95.4 1.0

HN-2.0

8 h 1.4 98.8 73.1 35.1 3096.9 98.8 91.5 90.1 8.0
9 h 1.6 99.6 81.5 22.3 895.1 99.6 96.2 94.2 3.5
10 h 1.4 100 88.6 12.8 3137.7 100 98.9 98.0 1.1
11 h 2.2 100 94.3 6.0 2532.0 100 100 98.7 0
Average 1.6 99.6 84.4 19.1 2415.4 99.6 96.7 95.4 3.1

HN-2.5

8 h 1.7 97.4 78.6 23.9 3581.7 97.4 89.6 87.0 8.7
9 h 2.1 98.1 80.2 22.3 1061.3 98.1 90.6 89.5 8.3
10 h 1.4 98.8 89.5 10.4 2238.2 98.8 96.1 93.1 2.7
11 h 1.5 99.5 96.2 3.4 2720.6 99.5 99.2 97.4 0.3
Average 1.6 98.4 86.1 15.0 2400.5 98.4 93.9 91.7 5.0

Table 2: Results for the HN-1.7, 2.0, and 2.5 Instances on the Flooding Setting.

TDP-DS 2S-DS BD-DS

Inst. CPU
(s)

CT
(min)

CPU
(s)

CT
(min)

CPU
(s)

CT
(min)

HN 558.7 340 567.1 365 691.7 340
HN-1.1 313.8 370 321.8 390 704.6 370
HN-1.2 313.2 400 321.3 405 420.0 400
HN-1.4 323.4 455 331.9 455 393.4 455
HN-1.7 618.1 550 627.7 580 889.6 550
HN-2.0 50.2 625 60.5 635 699.0 630
HN-2.5 663.5 795 675.9 815 939.2 795
HN-3.0 335.3 925 346.0 930 488.0 925

Table 3: Clearance Time on the HN Instances.

ance time instances but one. For the flood scenarios, the
Benders decomposition approach provides substantial im-
provements compared to the two-stage approach and pro-
duces high-quality solutions quickly. In particular, it im-

proves the two-stage approach by more than 25% in one
instance and its average improvement over these instances
is about 11.4%, which is considerable in an evacuation set-
ting. These results contrasts with the MIP model developed
in (Even, Pillac, and Van Hentenryck 2015) which were al-
realy dominated by the two-stage approach even when run
for 24 hours.

This paper shows that the Benders decomposition ap-
proach provides an excellent tradeoff between solution qual-
ity and runtime. It should apply to other evacuation scenar-
ios involving road blockages such as bushfires, earthquakes,
and volcanic eruptions. Future work will attempt to integrate
various types of uncertainties, including accidents, break-
downs, and flood predictions. The main difficulty is that the
probability of an accident increases with the flow on the road
segments, creating significant optimization challenges.
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