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Abstract

Conservation is an ethic of sustainable use of natural
resources which focuses on the preservation of biodi-
versity, i.e., the degree of variation of life. Conservation
planning seeks to reach this goal by means of deliber-
ate actions, aimed at the protection (or restoration) of
biodiversity features. In this paper we present an intel-
ligent system to assist conservation managers in plan-
ning habitat restoration actions, with focus on the activ-
ities to be carried out in the islands of the Great Bar-
rier Reef (QLD) and the Pilbara (WA) regions of Aus-
tralia. In particular, we propose a constrained optimi-
sation formulation of the habitat restoration planning
(HRP) problem, capturing aspects such as population
dynamics and uncertainty. We show that the HRP is NP-
hard, and develop a constraint programming (CP) model
and a large neighbourhood search (LNS) procedure to
generate activity plans under budgeting constraints in a
reasonable amount of time.

Introduction

Conservation planning has always relied on the establish-
ment of natural reserves (spatial prioritisation) as the prin-
cipal means of enacting conservation. However, the clash
with the economic interests in the areas to be preserved,
and the increasing scarcity of the latter, are rendering this
practice more and more difficult to justify. For this reason,
habitat restoration and biodiversity offsetting practices have
recently gained popularity (Maron et al. 2012) among con-
servation managers. These approaches try to balance out the
effects of development activities by promoting environmen-
tal recovery in other areas, alleviating at least partially the
negative effects of economic development on biodiversity.

Habitat restoration consists of selecting actions to perform
at particular locations in order to reduce specific threats to
the biodiversity features. For instance, poison baits may be
placed to reduce the number of cats predating on migratory
birds, or herbicide may be sprayed to reduce the occurrence
of a specific weed and thus encourage the return of a partic-
ular type of grassland. One of the main sources of complex-
ity, when making conservation management decisions in this
context, is represented by population dynamics. Populations
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evolve over time according to complex laws depending on
natural growth rates, carrying capacity of habitats, threat fac-
tors, etc. The variety of different species, the complexity of
their interactions, and the ever stringent budget limitations,
make it very difficult for a human decision maker to design
an plan for the habitat restoration operations which takes
into account all of the available data. As a consequence, con-
servation managers are calling for the development of intel-
ligent decision support systems, aimed at assisting them in
the planning of these activities. The ordering of actions is
also important, as their efficacy depends on the population
levels at the location and time at which they are applied.

This research project is instigated by, and conducted in
cooperation with, two agencies: the Queensland Parks and
Wildlife Service and the Western Australian Department of
Parks and Wildlife. The main aim of the study is to replace
ad-hoc decision making with a more disciplined and defensi-
ble approach. It also serves as a tool to investigate and show
the effect of various budgeting scenarios on the conserva-
tion objectives. The focus of protection were islands off the
coast of Australia, in Queensland (in the Southern part of
the Great Barrier Reef) and Western Australia (near the Pil-
bara region). Islands are, in many ways, ideal locations for
restoration activities. They are often remote, and so access
to the areas can be restricted. Also, they offer the possibility
of completely eradicating a threat with a reduced probabil-
ity of re-introduction. This gives long-term benefits to the
protected features. Finally, islands are often less attractive
locations for development, and hence the economic impact
of restoration activities is rather limited.

The main contributions of this paper are: i) a formula-
tion of the habitat restoration planning (HRP) as a con-
strained optimisation problem, featuring a population dy-
namics model based on real-world data being currently
elicited by the conservation managers involved in this
project, ii) a formal proof of complexity, showing that the
HRP problem belongs to the NP class, iii) a constraint pro-
gramming (CP) model built upon robust optimisation prin-
ciples, and iv) a large neighbourhood search (LNS) scheme
to efficiently find solutions to the problem.

Related work

Conservation planning has been traditionally a manual task
carried out by conservation managers. In the last three
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decades, however, in an attempt to make more informed de-
cisions, a lot of research has been devoted to the study con-
servation planning from an optimisation perspective. While
we acknowledge the vast body of research, in particular re-
garding spatial prioritisation and reserve connectivity (see
(Williams, ReVelle, and Levin 2005) for a survey), in the fol-
lowing, for space reasons, we decided to focus on projects
that eventually led to the development of decision support
tools for conservation managers.

Marxan (Ball, Possingham, and Watts 2009) is possibly
the most widespread conservation planning tool in existence.
It aims at identifying a minimum cost reserve network, i.e.,
a set of conservation areas (or conservation units), so that
certain biodiversity feature targets are met. The cost being
minimised is a combination of economic, social, and po-
tential development costs. From a computational standpoint,
Marxan solves a weighted set covering problem, where each
set has multiple weights representing the amount of features
in a specific area. C-Plan (Pressey et al. 2009) is a conser-
vation planning tool for reserve selection, seeking to solve
the same set covering problem addressed by Marxan. C-
Plan achieve this by using a measure of irreplaceability, i.e.,
the likelihood of needing any planning unit for meeting the
targets. Irreplaceability tries to explain why a set of units
should be selected, and is a dynamic measure: the irreplace-
ability score of each unit changes as more units are added
or removed to the reserve. RobOff (Poulzols and Moilanen
2013) is a conservation planning tool explicitly designed for
biodiversity offsetting. Its goal is to allocate resources to var-
ious conservation actions, some of which can have uncer-
tain effects on biodiversity over time. Unlike Marxan and
C-Plan, the analysis carried out by RobOff is non-spatial. In
(LeBras et al. 2013), the authors describe a MIP and a local
search approach to solve the reserve selection problem. Un-
like previous works, however, the focus is more on guaran-
teeing connectivity between the conservation areas, which is
believed to be a fundamental requirement for preserving bio-
diversity in the long term. The work builds on the previous
literature on robust network design, and aims at connecting
areas which are of interest to certain species.

Most of the approaches in literature focus their attention
in identifying promising areas for prioritisation. To the best
of our knowledge little effort has been spent so far in the
context of habitat restoration. Furthermore, at the time of
writing, none of the available tools for spatial conservation
planning embed complex population dynamics in their opti-
misation models.

Problem
In this section we first provide a formal definition for the
habitat restoration planning (HRP) problem in terms of
problem entities, population dynamics, and objectives. We
then provide some complexity results and discuss the role of
uncertainty.

Entities

The following entities reflect the data being currently
elicited by the conservation managers involved in this
project.

Features (or biodiversity features). The features are rep-
resented by a set F of (animal and plant) species that must be
preserved. Each feature ft ∈ F has a target σft , the desired
relative increase in population.

Threats. The threats are a set T of species, often intro-
duced accidentally in the ecosystem that constitute unnatu-
ral dangers to the biodiversity features and must be reduced
in order to allow the populations of features to recover.

Locations. The locations are represented by a set L of
independent environments that can harbour features and
threats. For each location l ∈ L and each feature ft ∈ F,
we are given an initial level xft,l and a saturation level x̄ft,l

of ft at l. The initial level represents the minimum possible
amount of features at location l and reflects the assumption
that, before any habitat restoration activity is carried out, the
environment is in a state of equilibrium, where the popula-
tions of features are at their minimum and the threats at their
maximum. Conversely, the saturation level represents what
is called in biology the carrying capacity, i.e., the maximum
amount of individuals that an enclosed environment is able
to sustain in terms of resources (food, water, soil). Because
of incomplete census data about threats, we can only quan-
tify threat populations as fractions; in particular, for each
threat th ∈ T and each location l ∈ L, we have an initial
level ȳth,l ∈ [0, 1] of th at l. The minimum and maximum
levels for threat are assumed to be 0 and 1 respectively.

Actions. We are also given a set A of conservation actions
that target threats and can be planned at specific locations,
e.g., shooting or baiting. Each action a ∈ A has a unit cost,
which is dependent on the location l ∈ L where it is to be
applied and is denoted by ca,l. Intuitively, the cost should ag-
gregate information about travelling to a location, operator
salaries, and materials. As such, it serves as an approxima-
tion to the real cost of performing the action.

Time. Actions can be planned along a planning horizon
H = {1, . . . , h} of length h. The same discretisation is used,
consistently to describe the evolution of feature and threat
populations in time according to population dynamics (see
below). While actions can be planned on every time step t ∈
H, we consider an additional starting step 0 (the state of the
environment before the planning) for populations. We will
refer to the full time horizon as {0} ∪H whenever needed.
We denote the features and threats levels at location l ∈ L
and time step t ∈ {0}∪H with xft,l,t and yth,l,t respectively.

Budget. We are given an overall maximum budget B that
we can spend on actions, expressed in the same unit of mea-
surement as the actions costs. In addition to this, we allow a
per-time step budget Bt(t ∈ H), since funding for conser-
vation is often made available in a “staggered” way.

Growth rates. Each feature has a natural growth rate
αft ∈ R

+, which is the speed at which the population would
grow at each time step in complete absence of threats. For
instance, αft = 0.6 means that, at time step t + 1, the pop-
ulation of ft will be 60% larger than the population at time
t. Similarly, each threat has a growth rate βth ∈ R

+. Note
that both αft and βth represent maximal growths; the actual
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Figure 1: Population dynamics example.

increase in populations depend on the threat levels (for fea-
tures) and on the applied actions (for threats).

Threat impact and action effect. Given a feature ft ∈ F
and a threat th ∈ T, the effect of th on ft is described with a
impact rate ιth,ft ∈ [0, 1], to be interpreted as the maximum
fraction of population of ft eliminated by th at each time
step, where the real fraction also depends on the level of the
threat. Similarly, the effect εa,th ∈ [0, 1] of an action a ∈ A
on a specific threat th ∈ T is the fraction of population of th
that the action is expected to eliminate in a single time step.

For simplicity of notation, we define the set of threats im-
pacting a given feature ft as Tft = {th ∈ T | ιth,ft > 0}
and the set of actions impacting a given threat th as Ath =
{a ∈ A | εa,th > 0}.

Thresholds. When a conservation action a ∈ Ath is ap-
plied, the population of th decreases according to the action
effect εa,th . As a consequence, the populations of features
Fth may start to recover. In nature, this rebound is usu-
ally not immediate. We model this behaviour with thresholds
θft,th ∈ [0, 1] that are given for each suitable 〈ft , th〉 pair. In
particular, the threshold θft,th is the level of threat th below
which we can start to see an increase in the population of ft .
Since each feature ft can be threatened by multiple species
Tft , yth,l < θft,th must hold for all th ∈ Tft in order to see
an increase in its population. Moreover, the amount of in-
crease in the population of ft at a given time step t depends
on the additive and multiplicative distances of the threat lev-
els from their relative ft-thresholds. Figure 1, obtained by
running the solver on an island with one feature and two
threats, exemplifies the thresholding mechanism. The red
curve represents the evolution of feature ft ∈ F at a location
l ∈ L, while the blue and green curves represent the lev-
els of two threats th1, th2 ∈ Tft at the same location. The
dashed lines depict the thresholds θft,th1

and θft,th2
. At the

beginning of the planning horizon no actions are applied, the
threat levels grow until they reach the carrying capacity of
the island and the feature population reaches its minimum.
It is not until some actions are applied, and both threats de-
scend below their respective thresholds, that the population
of ft starts to grow. As the level of th2 grows, the increase
rate in the population of ft starts to decrease, and it goes flat
as soon as the threat level reaches the threshold.

Population Dynamics

The population dynamics models the evolution of popula-
tions, over time at each considered location. In the follow-
ing, we will use the generic term population to refer both to
features and threats, although their evolution follows slightly
different rules. Moreover, the populations of features and
threats must always lie withing their respective minimum
and maximum levels. Such “clamping” is easy and is ex-
cluded from the following equations for simplicity.

Threats update. In the population dynamics of threats,
there are two competing processes: growth and elimination
by means of actions. At each time step t ∈ H, at each loca-
tion l ∈ L, the population of a specific threat th ∈ T evolves
according to the following update rule

yth,l,t = yth,l,t−1

(
1−
∑

a∈Ath

εa,th · za,l,t
)

× βth , (1)

where yth,l,t is the level of threat th at location l and time t,
and za,l,t is the number of actions of type a ∈ Ath applied
at location l and time t. Note that the growth applies to the
population of the threat after it is reduced by the actions.

Features update. The update rule for features can be bro-
ken down in two cases
- If all threats th ∈ Fft are sub-critical, i.e., all their popu-

lations are below their thresholds θft,th , then

xft,l,t = xft,l,t−1

⎛
⎝1 + αft ·

∏
th∈Tft

1− yth,l,t
θft,th

⎞
⎠ , (2)

where the growth of the population of ft takes into ac-
count both the natural growth rate αft of ft and the levels
of threats to ft . If the threat populations are exactly the
threshold, then the fraction is 1 and the population of ft
does not change.

- If at least one threat th ∈ Fft is super-critical, i.e., its
population is above the threshold θft,th , then
xft,l,t = xft,l,t−1 (3)

×
⎡
⎣1−min

⎛
⎝1, ∑

th∈Tft,l,t

yth,l,t − θft,th
1− θft,th

· ιth,ft
⎞
⎠
⎤
⎦

where Tft,l,t = {th ∈ Tft | yth,l,t > θft,th} denotes the
set of threats, among the ones that affect ft , that are super-
critical at location l ∈ L and time t ∈ H, and the decrease
of the population of ft takes into account both the impact
ιth,ft and the level yth,l,t of each threat. If the threat pop-
ulations are exactly on the threshold, then population of
ft does not change.
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Model soundness. No ecosystem model can provide a
completely accurate representation of the complex dynam-
ics occurring in nature. Indeed, our goal is not to represent
the environment faithfully, but rather to provide an useful
approximation that enables more informed decisions. Our
model relies on a number of parameters to control the sim-
ulation, i.e., thresholds, growth rates, impacts, and effects.
Of these, thresholds are an artificial parameter, introduced
to model the delayed rebound of feature populations upon
the reduction of threats. Growth rates, impacts, and effects
can be estimated by historical data and expert consultation.
Given that this information can be noisy, our model ac-
knowledges and explicitly addresses uncertainty in form of
confidence intervals (see section “Uncertainty”).

In order to assess the soundness of our model, we con-
sulted two experts in population dynamics, and asked them
to review it. While the experts agreed that our model repre-
sents a solid example of ecological system modelling, they
both identified some shortcomings that should be addressed
in the future, in particular: i) the potential difficulty in elic-
iting the necessary data, ii) the necessity of modelling more
complex interaction between species (competition, meso-
predator release, etc.), and iii) the necessity to address ge-
ographical aspects (connectivity, reintroduction, dispersal,
etc.). The elicitation of the population data is an ongoing
process, and our model is consistent with the data currently
available to us. Having said that, we expect that minor adap-
tations to the model will be necessary once the final data
is available. Modelling more complex interactions between
species requires a radical redesign of the population dynam-
ics, and is the subject of our future research. Regarding ge-
ographical aspects, our model is designed to plan activities
to be carried out in an insular context, therefore reintroduc-
tion and dispersal are relatively low-probability phenomena,
however this probability is not zero. We will discuss these
aspects in the “Conclusions and future work” section.

Objective

The habitat restoration planning problem has two conflicting
goals. On the one hand, we would like to reach the conserva-
tion targets for all the features. On the other hand, we would
like not to exceed the conservation budget. The first goal can
be formalised with the constraint∑

l∈L
xft,l,h ≥ σft ·

∑
l∈L

xft,l,0, ∀ft ∈ F. (4)

where h − 1 = max(H) is the latest time step in the plan-
ning horizon and σft are the desired relative increases in the
feature populations. Similarly, the second goal can be stated
as ∑

t∈H

∑
l∈L

∑
a∈A

ca,l · za,l,t ≤ B. (5)

where ca is the unit cost of each action, B is the total bud-
get, and za,l,t represents the number of times action a was
applied at time t and location l. In this formulation, we also
consider the possibility that, because of the staggered avail-
ability of funding, at each time step t, the maximum amount
of budget to spend is limited by a per-time step budget Bt.

This constraint strengthens the previous one and can be ex-
pressed with∑

l∈L

∑
a∈A

ca,l · za,l,t ≤ Bt ∀t ∈ H. (6)

Since budget is the most stringent constraint in the context
of conservation, we decided to consider Equations 5 and 6
as hard constraints and to transform Equation 4 into an ob-
jective function to minimise.

Our objective function is a weighted sum of a quadratic
term penalising solutions that fail to reach the conserva-
tion targets (conservation term) and of a linear term pro-
moting solutions that improve over the conservation targets
(improvement term)

minimise wcons

∑
ft∈F

[
max (0,Δft)

2
]

−wimpr

∑
ft∈F

[max (0,−Δft)] , (7)

where

Δft = σft −
∑

l∈L xft,l,h∑
l∈L xft,l,0

is the overall relative increase in the population of ft ∈
F since the start. The terms of the objective function are
weighted differently, so to prefer meeting the targets for all
features, rather than exceeding the targets only for some of
them; wcons is the relative importance of reaching the tar-
gets (σft ), and wimpr is the relative importance to improve
on the targets. In our setup wcons = 104 and wimpr = 1.

Uncertainty

An issue in conservation planning is that information is often
uncertain. Population levels, for instance, are usually only
known as confidence intervals. For this reason, we allow
(but not require) some of the input data of our problem for-
mulation to be expressed as intervals, including the popula-
tion levels (xft,l,t and yth,l,t), the effect of actions on threats
(εa,th ), and the impacts of threats on features (ιth,ft ).

We will show that our constraint-programming model
takes this kind of uncertainty into account and that the gen-
erated solutions acknowledge uncertainty explicitly. We also
discuss an approach that we initially explored to represent
uncertainty and the limitations that motivated why it was not
considered appropriate. Figure 2 shows a solution for a prob-
lem involving uncertainty. The uncertainty (at step 0 and in
the action effects) is propagated along the planning horizon
to enclose all the values that the population levels can take
as various decisions are taken. In practice, we maintain pop-
ulation levels for the best- and worst-case scenarios; all the
intermediate values are possible realisations of the popula-
tions. Optimisation is carried out on the worst-case scenario,
nevertheless taking into account all the possible outcomes at
each step allows us to provide managers with an informative
representation of the effect of a given conservation plan.
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Figure 2: Population dynamics example with uncertainty.

Complexity

We briefly show that the HRP problem, in its decision vari-
ant, i.e., the problem of finding out whether it is possible to
reach given feature targets subject to budget constraints, is a
complex computational task, since it is NP-hard. We sketch
the proof that reduces the Set Covering Problem (SCP),
whose decision variant is known to be NP-complete (Karp
1972), to a special case of the HRP problem.

The SCP is stated as follows. Given a set of elements
U = {1, 2, . . . ,m}, called the universe, a family S =
{s1, s2, . . . , sn}, si ⊆ U of n sets such that

⋃
i∈1,...,n si =

U, and an integer k, find a sub-family C ⊆ S of cardinality
at most k, so that the union of the sets in C is the universe.
Given an instance of the SCP, we can reduce it to an instance
of HRP in the following way
- we consider a horizon H = {1} of 1 time step (∪ {0}),
- for every set s ∈ S we instantiate a location ls ∈ L,
- for every element e ∈ U we instantiate a feature fte ∈ F,

whose growth rate is αfte = 1, i.e., at each time step, in
absence of threats, the population doubles,

- at every location ls ∈ L, at time step t = 0, we set
the population of each feature fte ∈ F to the minimum
(xfte,ls

) which we define as

xfte,ls
=

{
1 if e ∈ s

0 otherwise

- saturation levels x̄fte,ls are set to 2, although it is impos-
sible for the populations to grow by more than one in one
time step. Also, as a consequence, it does not make sense
to apply an action more than once for each location,

- we consider a single threat th ∈ T, whose impact rate
ιth,fte on each feature fte ∈ F is 1, and whose threshold
is θfte,th = 1,

- we consider a single action a ∈ A, with cost ca,l =
1 ∀l ∈ L and effect εa,th = 1, i.e., when applied at a
location ls ∈ L, the action completely eradicates th at
that location,

- for every fte ∈ F, the target σfte is defined by

σfte = 2,

that is, we want the population of each feature to double.

- we finally set the budgets B = B1 = k.

Because of Equation 1, applying the action at a specific loca-
tion ls, brings the level of threat to 0, at the cost of 1 budget
unit. This allows all the populations of the features at ls to
develop at their maximum potential, according to Equation
2. Since αfte = 1 and xfte,ls,0 = xfte,ls

= 1, ∀fte ∈ F, ls ∈
L, in absence of threat th , all the populations of features fte
at ls becomes xfte,ls,1 = 2 at the next time step, reaching
the target. Given the budget constraint, we can “weed out”
at most k locations, which corresponds to choosing k sets to
cover the universe. We have therefore shown that, by using
the above reduction, we can use an HRP solver to solve any
SCP instance. The above mapping, together with the main
theorem in (Karp 1972), concludes the proof that the HRP
problem is NP-hard.

Our approach

In the following we outline a constraint programming (CP)
model for the HRP problem. We then introduce a large
neighbourhood search (LNS) scheme to obtain solutions
from it in a practical amount of time. The choice of CP was
mainly driven by the non-linearity of the constraints, which
rules out approaches based on linear optimisation, e.g., LP
or MIP.

Model

Our CP model derives immediately from the presented prob-
lem formulation, therefore we will avoid an extensive dis-
cussion of the constraints, and focus on the handling of un-
certainty.

Variables. The decisions variables of this problem are the
number of actions of each type a ∈ A to be executed at each
location l ∈ loc at each time step t ∈ H, and are denoted
by za,l,t. Such variables are integral and upper-bounded by
a value

min(
min(B,Bt)

ca,l
, 
ε−1

a,l �),

dependent on the budget available at time t and on the small-
est effect εa,l an action a has on any threat at location l, de-
fined as

εa,l = min
th∈T|yth,l,0>0

εa,th .

This bounding is conservative, i.e., it doesn’t exclude so-
lutions, and greatly reduces the search space, avoiding the
exploration of solutions where an action is applied a lot of
times but without effect.

The population levels, except for the ones at time step zero
which are fixed to the input values, are auxiliary variables
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updated by the solver through constraint propagation. In or-
der to properly handle uncertainty, each population level
xft,l,t (resp. yth,l,t) is represented by an interval, i.e., two
variables xft,l,t and x̄ft,l,t (resp. y

th,l,t
and ȳth,l,t) denoting

the minimum and maximum population levels at each step.
In a previous attempt, we tried to model uncertainty using

a single variable for each population level, treating its do-
main as a confidence interval, and transforming the update
rules in inequalities. Unfortunately, the semantics of con-
straint propagation is unsuitable for use in this context. To
understand why, imagine a search procedure where the cost
is upper-bounded by adding constraints dynamically, e.g.,
branch & bound. The propagation triggered by the update
in the upper bound of the cost updates the minimum feature
levels. However, because the update rules are inequalities,
the minimum feature levels can be raised until they reach the
maximum feature levels without any changes in the threat
levels. In other words, the mechanical explanation for the
minimum feature levels is lost, subsumed by the new cost
bound.

Constraints. The constraints encapsulate the update rules
in Equations 1, 2, and 3 but are adapted to deal with the two-
variable modelling of uncertainty. In particular, we main-
tain the worst- and the best-case scenarios using two variants
of each constraint, differing in what extreme of each uncer-
tainty interval is used. The best-case scenario variant of the
constraints are generated from the update rules by replacing
x, y, ε, and ι with x̄, y, ε̄, and ι. The worst-case scenario vari-
ant of the constraints are generated from the update rules by
replacing x, y, ε, and ι with x, ȳ, ε, and ῑ. Moreover, all pop-
ulation levels are clamped to lie within the location limits.
The objective function is the worst-case scenario variant of
Equation 7.

Search

Large neighbourhood search (LNS) (Shaw 1998; Ropke and
Pisinger 2006) is a neighbourhood search meta-heuristic
based on the idea of iteratively relaxing a subset of the deci-
sion variables of a solution (destroy step), and re-optimising
them until a better solution is generated (repair step). The
large neighbourhood is represented by all the possible so-
lutions that can be reached by re-optimising a relaxed one.
In order to make the exploration efficient, LNS is often cou-
pled with filtering techniques aimed at containing the size of
the neighbourhood by culling low quality or unfeasible solu-
tions. We use the presented CP model as a filtering engine,
a technique successfully applied to a range of combinato-
rial optimisation problems, also in the field of computational
sustainability (Di Gaspero, Rendl, and Urli 2015).

Initial solution. LNS requires starting from a feasible ini-
tial solution. In order to identify it we perform a tree-search
in the search space of the above CP model, using a rather
simple branching strategy which chooses the first unas-
signed decision variable and assigns it the lowest value in
its domain.

Destroy step. At each iteration, we relax all the decision
variables related to δ islands selected uniformly at random,

where δ (the destruction rate) is updated during the search
according to the following adaptive strategy. At the begin-
ning of the search δ is set to 1; if the solver spends iimax

iterations without finding a better solution, where iimax is a
parameter of the solver, δ is increased by 1. If an improving
solution is found, or if the solver has spent iimax iterations
at δ = δmax, where δmax is the number of locations, δ is
reset to 1. In the latter case, the search is restarted from a
new initial solution but the cost is upper bound by the cost
of the current incumbent.

Repair step. We re-optimise the relaxed solution by run-
ning a branch & bound tree search with a random branching
strategy, subject to the constraint that the cost of any new so-
lution must be smaller than the cost of the incumbent (best
solution found so far). Each branch & bound search has a
time budget of n · tvar, where n is the number of relaxed
variables, and tvar is a parameter of the solver.

Experimental results

Our solver was implemented in GECODE 4.4.0 (Schulte,
Tack, and Lagerkvist 2015), and has been tested by explor-
ing the effects of different budgeting scenarios on a master
instance involving 13 islands, 46 features, and 19 threats.
The chosen horizon for this validation was 10 periods. The
instance is generated from incomplete survey data that will
be fully available only during the next year, and represents
only about 10% of the extent of the real problem faced by
conservation managers. The missing data, namely the im-
pact of actions on threats εa,th , and the effect of threats on
features ιth,ft , have been replaced with synthetic values. The
validation experiments were run on a Linux cluster of 2×2.8
GHz AMD 6-Core Opteron 4184 nodes with 64 GB of RAM
each, using a time limit of 1 hour per optimisation run.

The solver parameters were tuned automatically through
an F-Race (Birattari et al. 2010). The tuning experiments
were run on 800 random extracts (subsets) of the master
instance, involving 70 − 100% of the islands and budgets
B ∈ {0.5, 1, 2, 5} millions. The tuning procedure fixed the
parameters to iimax = tvar = 50. The detail of the tuning
process are beyond the scope of this paper. The tuning ex-
periments were run on a 2.9 GHz Intel Core i7 with 8 GB of
RAM running MacOS 10, using a time limit of 5 minutes.

Figure 3 shows some preliminary results of this valida-
tion. From the plot, the correlation between the budget in-
crease and the quality of the produced plans is quite clear.
In particular, when the budget is large enough, i.e., > 1M,
the solver manages to produce plans that meet almost al-
ways all the conservation targets. The experiments reveal a
diminishing returns effect when the budget becomes larger,
suggesting that the solver can be also used to estimate the
needed conservation budget, a useful information to justify-
ing funding requests.

Since none of the available decision support tools for con-
servation addresses the HRP problem as we formulated it, a
quantitative comparison with other approaches is impossi-
ble. However, as the model evolves, we plan to compare dif-
ferent optimisation techniques. Moreover, a qualitative com-
parison with the other available tools will be carried out as a
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Figure 3: Effect of budgeting. The turquoise and the pink
box plots represent the distributions, over 10 random in-
dependent runs, the of the conservation and improvement
(scaled by 0.05 for clarity) terms of the objective function.

part of our future research.

Conclusions and future work

We have presented a constrained optimisation formulation of
the habitat restoration planning (HRP) problem and shown
that it belongs to the NP complexity class. We have devel-
oped a constraint programming (CP) model which explicitly
acknowledges and addresses uncertainty, and a large neigh-
bourhood search (LNS) search scheme to produce feasible
solutions in a reasonable amount of time. We have produced
some preliminary results, showing the effect of different
budgeting scenarios on the plan produced by our solver, and
the general practicability of the approach.

Our population model has been evaluated by two experts
in population dynamics, who have identified some aspects
to consider for the future iterations of this project. In par-
ticular, we plan to introduce a unitary modelling for threats
and features, which will allow us to model realistic interac-
tions between species, such as competition and mesopreda-
tor releases, in a more natural way. Moreover, we plan on in-
troducing reintroduction and dispersal probabilities that will
especially affect the islands closer to the coast, e.g., Curtis
Island. Finally, more real-world data should become avail-
able in the near future, enabling us to test the scalability of
our approach on a real-scale scenario.
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F-Race and iterated F-Race: An overview. In Experimen-
tal methods for the analysis of optimization algorithms.
Springer. 311–336.
Di Gaspero, L.; Rendl, A.; and Urli, T. 2015. Balancing bike
sharing systems with constraint programming. Constraints
1–31.
Karp, R. M. 1972. Reducibility among combinatorial prob-
lems. Springer.
LeBras, R.; Dilkina, B. N.; Xue, Y.; Gomes, C. P.; McK-
elvey, K. S.; Schwartz, M. K.; Montgomery, C. A.; et al.
2013. Robust network design for multispecies conservation.
In AAAI.
Maron, M.; Hobbs, R. J.; Moilanen, A.; Matthews, Jeffrey
W. C̃hristie, K.; Gardner, T. A.; Keith, D. A.; Lindenmayer,
D. B.; and McAlpine, C. A. 2012. Faustian bargains?
restoration realities in the context of biodiversity offset poli-
cies. Biological Conservation 155:141–148.
Poulzols, F. M., and Moilanen, A. 2013. Roboff: software
for analysis of alternative land-use options and conservation
actions. Methods in Ecology and Evolution 4:426–432.
Pressey, R. L.; Watts, M. E.; Barret, T. W.; and Ridges, M. J.
2009. The c-plan conservation planning system: Origins,
application, and possible futures. In Moilanen, A.; Wilson,
K. A.; and Possingham, H. P., eds., Spatial conservation pri-
oritisation: Quantitative methods and computational tools.
Oxford, UK: Oxford University Press. 211–234.
Ropke, S., and Pisinger, D. 2006. An adaptive large neigh-
borhood search heuristic for the pickup and delivery prob-
lem with time windows. Transportation science 40(4):455–
472.
Schulte, C.; Tack, G.; and Lagerkvist, M. Z. 2015. Mod-
eling. In Schulte, C.; Tack, G.; and Lagerkvist, M. Z., eds.,
Modeling and Programming with Gecode. Corresponds to
Gecode 4.4.0.
Shaw, P. 1998. Using constraint programming and lo-
cal search methods to solve vehicle routing problems. In
Principles and Practice of Constraint Programming—CP98.
Springer. 417–431.
Williams, J. C.; ReVelle, C. S.; and Levin, S. A. 2005. Spa-
tial attributes and reserve design models: A review. Environ-
mental Modeling & Assessment 10(3):163–181.

3914




