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Abstract

In electricity markets, the choice of the right pricing regime is
crucial for the utilities because the price they charge to their
consumers, in anticipation of their demand in real-time, is a
key determinant of their profits and ultimately their survival
in competitive energy markets. Among the existing pricing
regimes, in this paper, we consider ex-ante dynamic pricing
schemes as (i) they help to address the peak demand prob-
lem (a crucial problem in smart grids), and (ii) they are trans-
parent and fair to consumers as the cost of electricity can be
calculated before the actual consumption. In particular, we
propose an axiomatic framework that establishes the concep-
tual underpinnings of the class of ex-ante dynamic pricing
schemes. We first propose five key axioms that reflect the cri-
teria that are vital for energy utilities and their relationship
with consumers. We then prove an impossibility theorem to
show that there is no pricing regime that satisfies all the five
axioms simultaneously. We also study multiple cost functions
arising from various pricing regimes to examine the subset of
axioms that they satisfy. We believe that our proposed frame-
work in this paper is first of its kind to evaluate the class of
ex-ante dynamic pricing schemes in a manner that can be op-
erationalised by energy utilities.

Introduction

Meeting the growing demand for energy while mitigating
the impact of fossil fuels on climate change is a major chal-
lenge for countries round the world. According to the U.S.
EIA, energy demand is predicted to increase by 56% by
2040.1 This challenge is exacerbated by the fact that de-
mand for energy tends to peak at specific times of the day
depending on the needs of industrial, commercial, and do-
mestic consumers.2 For example, domestic consumers tend
to use more energy in the morning and evening than dur-
ing the day. Instead, industrial users tend to use more en-
ergy during the day (DECC-UK 2014). Such peaks pose a
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1http://www.eia.gov/forecasts/ieo/.
2The US Energy Information Administration estimates that the

peak to average ratio across the continental US is 1.7 and rising
(see Fig. 1). This implies that utilities must have an additional 70%
of their average generation capacity reserved for handling peak de-
mand. This induces a huge stress on the stability and economic
viability of the grid.

number of challenges (Strbac 2008) as follows. First, they
require heavy investment into ‘peaking’ power generation
that is used for only a few hours a day. This, in turn, re-
sults in higher costs for end-users. Second, given that power
plants need to ramp up during peak hours, they are typically
powered by fossil fuels and therefore end up generating high
volumes of greenhouse gases. Third, peak demand can cause
instabilities in electricity networks if the required supply ca-
pacity is not available at the times peaks occur and may re-
sult in cascading blackouts (Nedic et al. 2006). In real terms,
according to International Energy Agency 2003, the cost of
energy could have been reduced by approximately 50% by
lowering demand by 5% during the peak hours of the Cali-
fornia electricity crisis in 2000/2001 (IEA 2003).

To alleviate such issues, a number of approaches have
been proposed by researchers in an attempt to diversify con-
sumption (Strbac 2008) (i.e., getting consumers to consume
at different times such that the resulting aggregate actual
consumption profile is ‘diversified’ or ‘flattened’). Indeed,
back in the 1980s, Schweppe and colleagues (Schweppe
et al. 1988) proposed the idea of managing the demand
of energy through incentives that vary over time (i.e., dy-
namic pricing). Thus, by adjusting prices according to de-
mand, they aimed to get demand to follow supply as opposed
to generation always ramping up when demand is higher.
This approach is typically termed demand-side manage-
ment (DSM) or demand response (DR)3. Thus, by applying
demand-side management techniques, utilities have sought
to encourage consumers to shift their consumption from
peak hours to off-peak hours (Palensky and Dietrich 2011;
Spees and Lave 2007). These pricing regimes tend to take
a number of forms ranging from time-of-use pricing (TOU)
whereby consumption at peak time is heavily penalised, to
real-time pricing (RTP) whereby energy is priced accord-
ing to demand at every half-hour. However, while a number
of simulations have shown the pros and cons of such pric-
ing regimes (Ramchurn et al. 2011), they have never been
rigorously analysed to determine the trade-offs they create
for utilities. Choosing the right pricing regime is crucial for
utilities because the price they charge to their consumers, in
anticipation of their demand in real-time, is a key determi-

3Demand response is also specifically used in industry to de-
scribe the arbitrary curtailment of consumer demand.
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nant of their profits, and ultimately their survival in com-
petitive energy markets. Moreover DR pricing schemes may
be susceptible to gaming, due to the presence of incentives
(Borlick 2010).

In wholesale power markets, the cost of electricity is com-
posed of two parts: a forward market price and a balancing
market price (Wang, Lin, and Pedram 2013). The first part is
the cost of electricity based on the unit cost of electricity at
that time and the electricity consumption estimated (poten-
tially months ahead) for that time period. This component
corresponds to the forward market price of electricity. The
second part deals with the deviation of the consumer’s actual
consumption from her expected demand at that time. This
component can be regarded as the penalty. This is the part
that affects the amount bought in the (real-time) balancing
market (or for single operator power systems, the generation
costs).

Intuition for the Axiomatic Work

Against this background, in this paper, we propose an ax-
iomatic framework to evaluate demand-side management
schemes. In particular, we work with ex-ante dynamic pric-
ing schemes where, given any value of actual consumption
by the consumer (at any time slot), the consumer can cal-
culate the cost of electricity. Ex-ante pricing schemes are
transparent and fair to consumers as the cost of electric-
ity can be calculated before the actual consumption, as op-
posed to what happens in ex-post pricing schemes (as stated
in (Bandyopadhyay et al. 2015b)). We propose five key ax-
ioms that reflect the criteria that are vital for energy utilities
and their relationship with the consumers. The following key
principles form the basis for defining the set of axioms in this
paper:

• The higher is the consumption of electricity by a cus-
tomer, the higher is the cost she has to pay.

• The cost of electricity should be designed in such a way
that it would encourage consumers to reduce consumption
during peak demand hours. One intuitive approach can be
to increase the price of energy at the peak hours.

• In order to reduce their costs on the wholesale market,
utilities aim to incentivise their consumers to shift their
consumption from peak to off-peak hours.

• The utility buys energy from the forward market by antic-
ipating the energy demand from its consumers. Any un-
expected change in the consumption pattern of its con-
sumer can force the utility to buy energy from the real-
time wholesale market, at much higher price. So the utility
should also penalize consumers for any such unexpected
consumption patterns.

Building upon these intuitions, we perform a thorough
analysis of our proposed axiomatic framework and show that
it is impossible for any cost function to satisfy all the axioms
simultaneously. We then analyse multiple pricing regimes to
determine the subset of axioms that they satisfy and draw
conclusions as to how these mechanisms would work under
different assumptions about the consumer behaviour. To our
knowledge, this is the first formal framework that allows for
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Figure 1: Peak-to-Average Energy Demand for Continental
US. Courtesy US EIA (www.eia.gov/electricity/annual/).

an analytic evaluation of various pricing regimes which, in
turn, informs the design of pricing regimes by energy utili-
ties.

Related Work

Axiomatic approaches have been applied to many areas of
research in computer science and economics. In more de-
tail, an axiomatic framework is a natural solution to decision
problems for domains where the end goals are intuitively
clear but not mathematically rigorous yet. In a typical ax-
iomatic framework, intrinsic properties of the solution con-
cept are stated in the form of axioms, and then the consis-
tency of the axioms together in the form of some possibil-
ity or impossibility results are shown. For example, cluster-
ing has been studied extensively for the last few decades;
however, there exists multiple definitions for clustering. Re-
cently axiomatic approaches to clustering have been pro-
posed (Kleinberg 2003; Zadeh and Ben-David 2009). Simi-
larly, this approach has been adopted in many other domains
such as social choice theory (Kelly 2014; Grandi 2011),
and ranking & diversification (Gollapudi and Sharma 2009;
Altman and Tennenholtz 2005). Following these lines, in
electricity markets, we notice that the objectives of dynamic
pricing are intuitively clear, but not yet mathematically rig-
orous. In this paper, we argue that an axiomatic approach
provides a formal basis to construct and evaluate dynamic
pricing mechanisms for Demand Response.

DR, in general, can be defined as the change of electric-
ity usage by end consumers from their normal consumption
pattern in response to some incentive based program (e.g.,
price or CO2 emission reduction) implemented by the utility
company (Albadi and El-Saadany 2007). DR programs help
modulate the aggregate load to follow generation. A respon-
sive consumer may be dispatched to supply “negawatts” of
power by curtailing or shifting her load and DR programmes
typically target specific consumers that are particularly high
energy consumers.

A number of pricing mechanisms have been proposed for
demand response in the literature. Game theory and mech-
anism design techniques are also used to address the prob-
lems in smart grids. For example, a novel multi-armed ban-
dit incentive mechanism for demand response is proposed
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by (Jain, Narayanaswamy, and Narahari 2014). The formu-
lation of an energy consumption scheduling game among
users is carried out by (Mohsenian-Rad et al. 2010) and
a game theoretic approach to optimize time-of-use pricing
strategies is taken by (Yang, Tang, and Nehorai 2013). A
non-cooperative game among all the consumers under some
ex-post real-time pricing mechanisms is proposed and the
characteristics of Nash equilibrium and socially efficient so-
lutions are studied by (Bandyopadhyay et al. 2015b). How-
ever, so far, no analytical framework exists to help devise
pricing mechanisms and analyze their performance in elec-
tricity markets. To the best of our knowledge, our work is
the first approach to axiomatize the intrinsic and expected
properties of electricity pricing schemes and analyze differ-
ent pricing mechanisms based on this axiomatic framework.

Basic Definitions

Consider that the cost of electricity usage is computed on a
daily4 basis. Let a day be divided into T equal time slots.
Energy consumed by individual consumers is recorded at
each time slot and they are charged accordingly by the util-
ity. At the start of each day, each consumer would reveal
her expected demand (via a software agent residing on her
smart meter to act on her behalf), dti, ∀i ∈ {1, 2, . . . , n}
and ∀t ∈ {1, 2, . . . , T}. Otherwise, due to the availability
of improved forecasting techniques (Bandyopadhyay et al.
2015a), the utility can as well suggest the consumers about
their demand forecasts based on their past consumption his-
tory.

Note that the actual consumption of the consumers may
vary from their expected demand. For each i and t, let yti ∈
Yi be the actual consumption 5 for i-th consumer in the time
slot t. Based on the consumers’ revealed expected demand
profile, the utility may be able to compute the aggregate level
expected demand profile by all the consumers for the day.
However, there can be a significant mismatch between the
aggregate level actual consumption profile and the aggregate
level expected demand profile, which may lead the utility
to buy energy at a higher cost from the real-time market or
be left with a significant amount of surplus energy, and it
results in losses in both the cases (as explained in the first
section). Our approach attempts to address this issue in this
paper using an axiomatic framework.

A consumer needs to pay the cost to the utility based on
her real-time electricity consumption. This cost would de-
pend also on the deviation of the actual consumption yti from
the expected demand dti for consumer i. We propose that the
cost incurred by consumer i at time slot t is determined by a
cost function C which can be defined as follows.

C : R3
≥0 → R≥0

It takes the following three parameters: (i) the total aggre-

gated expected demand dt =
n∑

j=1

dtj , at time t (ii) the ex-

4The same analysis can be done when the cost is calculated on
a weekly or monthly basis.

5Similar types of set up have been used in (Jain,
Narayanaswamy, and Narahari 2014; Vinyals et al. 2014)

pected demand dti for the consumer i at time t; and (iii) the
actual consumption yti by consumer i at time t. The output
of the cost function is a non-negative real number. So the
total cost paid by consumer i in a day is given by:

Ci =

T∑
t=1

C(dt, dti, y
t
i), ∀i = 1, 2, · · · , n (1)

Note that, if the total expected aggregated demand vector
d is revealed by the utility to all the consumers, for any given
actual consumption value, any consumer can compute the
cost of electricity just by knowing her own expected demand
profile (which is reported to the utility at beginning of the
day). Hence this cost function is ex-ante. The ex-ante cost
functions (as defined above) would ensure the transparency
of the cost incurred by consumers and also such functions do
not require the individual consumers to reveal their actual
consumption data (thus respecting the privacy concerns of
the consumers). Table 1 summarizes the key notations used
in the rest of this paper.

We now proceed to present an axiomatic framework
wherein we enumerate a set of desirable properties that the
cost function should satisfy. We also consider certain real-
world cost functions to understand how far they satisfy the
above set of desirable properties.6

Notations Description

N = {1, . . . , n} Set of consumers
T Number of discrete time slots in a day
i, j Index for the consumers
t Index for the time slots
yti Consumption of consumer i at time t
yi = (y1i , . . . , y

T
i ) Consumption profile of consumer i

dti Expected demand for consumer i at time t
di = (d1i , . . . , d

T
i ) Demand profile for consumer i

dt =
n∑

i=1

dti Aggregate demand at time t

d = (d1, . . . , dT ) Aggregate demand profile by all
consumers

Table 1: Notations used in this paper

An Axiomatic Framework
Here we formulate five axioms to capture the desirable prop-
erties (as discussed in the previous sections) of the ex-ante
dynamic cost function and these are important from the per-
spective of both the consumers and the utilities.
Axiom 1 (Continuity of Cost Function) The function
C(dt, dti, y

t
i) is continuous. Hence, ∀(d̄t, d̄it, ȳit) ∈ R

3
≥0,

lim
(dt,dt

i,y
t
i)→(d̄t,d̄i

t,ȳi
t)
C(dt, dti, y

t
i) = C(d̄t, d̄i

t
, ȳi

t).

This axiom ensures that there would not be any jump in
the cost of electricity. If the cost function is not continuous,
there can be sudden increase or decrease of cost even for a
slight change of consumption (or expected demands), which
would not be fair to the consumers.

6We chose cost functions that are typically used in open energy
markets such as in the UK and the US.
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Axiom 2 (Consumption Monotonicity) The cost function
C(dt, dti, y

t
i) is strictly monotonically increasing with the

actual consumption value yti . That is, ∀dt, dti, and for any
two yti and ȳi

t such that yti > ȳi
t, then C(dt, dti, y

t
i) >

C(dt, dti, ȳi
t), ∀i, t.

This axiom captures the fact that whenever a consumer
increases her consumption at any particular point of time
(assuming all other variables remain the same), then the con-
sumer needs to pay more. This axiom is important because
otherwise some consumer can adjust her expected demand
at some point of time in such a way that she would get some
incentive to increase her actual consumption at that point of
time.

Axiom 3 (Peak Demand Compatibility) The cost function
C(dt, dti, y

t
i) is strictly monotonically increasing with the

aggregate demand value dt. That is, ∀dti, yti , and for any
two dt and d̄t such that dt > d̄t, then C(dt, dti, y

t
i) >

C(d̄t, dti, y
t
i), ∀i, t.

This axiom captures the effect of peak demand hours on
the cost incurred due to the consumption of electricity. Typ-
ically, the cost of electricity is high during peak demand
hours and it is low during off-peak hours to encourage con-
sumers to shift their consumption from peak to off-peak
hours. Here the notion of peak demand hours is captured by
the aggregated expected demand dt at some time t. When
the value of dt is very high, we say that the time slot t is at
peak demand. In an attempt to curtail demand, utilities tend
to fix a high price for electricity at the time of peak demand.
The above axiom essentially captures this requirement.

Axiom 4 (Dynamic Incentive) Suppose the total demand
at time t1 and t2 is dt1 and dt2 such that dt1 > dt2 . Con-
sider any consumer i ∈ N and her expected demands at
these two time slots are dt1i and dt2i respectively and the
actual consumption is yt1i and yt2i respectively. Then for
|dt1i − yt1i | = |dt2i − yt2i |, it holds that |C(dt1 , dt1i , dt1i ) −
C(dt1 , dt1i , yt1i )| > |C(dt2 , dt2i , dt2i )− C(dt2 , dt2i , yt2i )|

The above axiom captures the incentives (or penalties) a
consumer receives by decreasing (or increasing) her actual
consumption from her expected demand at a peak hour (t1)
to a non-peak hour (t2). That is, when the aggregated de-
mand is high at some point of time and a consumer reduces
her consumption compared to her expected demand at that
time, then the reduction of cost (incentive) for the consumer
is more than when the aggregated demand is low at some
point of time and that consumer reduces the same amount
of consumption (compared to her expected demand). In the
same vein, when a consumer increases her consumption
from her expected demand at some time wherein the aggre-
gated expected demand is high, then the consumer is penal-
ized more than that when she increases the same amount
of consumption wherein the expected aggregated demand is
low. Thus this axiom would motivate consumers to reduce
their consumption further during peak-demand hours.

Axiom 5 (Demand Consumption Mismatch) For any
fixed values of dt and yti , the cost function C(dt, dti, y

t
i) is

strictly monotonically increasing with |dti − yti |. That is,

∀dt, yti , and for any two dti and d̄i
t such that |dti − yti | >

|d̄it − yti |, then C(dt, dti, y
t
i) > C(dt, d̄i

t
, yti); and when

|dti − yti | = |d̄it − yti |, then C(dt, dti, y
t
i) = C(dt, d̄i

t
, yti).

For a given value of actual consumption and the aggregate
expected demand, this axiom ensures that the cost would in-
crease with the increase in the difference between the ex-
pected demand and the actual consumption for any con-
sumer. The above axiom penalizes the consumers as her ex-
pected demand deviates from her actual consumption. It is
to be noted that the main purpose for the utility to collect the
expected demand profiles from all consumers is to get an es-
timate on the actual consumption profiles for the individuals
and also at the aggregate level. Thus it would help the util-
ity to buy optimal amount of electricity from the electricity
generators to avoid any shortage or wastage. So it is desir-
able that a consumer’s expected demand on each time slot
should be close to her actual consumption at that time slot.

An Impossibility Theorem

In this section, we present the key result of this paper. This
result is in the form of an impossibility theorem, which states
that there does not exist any cost function satisfying all the
above five axioms simultaneously. To establish this result,
we first prove a few supporting lemmas.

Lemma 1 For any aggregate level expected demand dt and
|dt1i − yt1i | = |dt2i − yt2i |, it holds that |C(dt, dt1i , dt1i ) −
C(dt, dt1i , yt1i )| = |C(dt, dt2i , dt2i )− C(dt, dt2i , yt2i )|.
Proof: Consider a function u such that u(dt1 , dt1i , yt1i ) =

|C(dt1 , dt1i , dt1i ) − C(dt1 , dt1i , yt1i )|. Clearly the function u
is continuous due to Axiom 1.

Now let dt1 = dt + ε and dt2 = dt. When ε > 0, then
Axiom 4 implies that u(dt1 , dt1i , yt1i ) > u(dt2 , dt2i , yt2i ).
When ε < 0, then Axiom 4 implies that u(dt1 , dt1i , yt1i ) <

u(dt2 , dt2i , yt2i ). Since u(.) is continuous at (dt2 , dt2i , yt2i ),
we have that

limε→0 u(d
t1 , dt1i , yt1i ) = u(dt2 , dt2i , yt2i ).

This further implies that |C(dt, dt1i , dt1i )−C(dt, dt1i , yt1i )| =
|C(dt, dt2i , dt2i )− C(dt, dt2i , yt2i )|.

For notational convenience, for a fixed i, t, and dt, let
us assume that C(dt, dti, y

t
i) = fdt(dti, y

t
i) = f(dti, y

t
i) =

f(d, y). Using this notation, the above lemma can be inter-
preted as: f(d, d+ δ)− f(d, d) is independent of d, i.e., the
penalty for deviating from the expected demand is only de-
pendent on the magnitude of deviation, but not on the actual
consumption.

Lemma 2 The function f(·) can be written as:
f(d, y) = g(d) + h(y − d),

for some functions g(·) and h(·).
Proof: From Lemma 1, f(d1, d1 + δ) − f(d1, d1) =
f(d2, d2 + δ)− f(d2, d2), ∀d1, d2, and δ is any real number
consistent with the function definition. That is, this differ-
ence should be independent of d1 and d2, and depends only
on δ. Hence, f(d, d+δ)−f(d, d) = h(δ), for some function
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h, with h(0) = 0. Now,
f(d, y)− f(d, d) = h(y − d)

⇒f(d, y) = f(d, d) + h(y − d) = g(d) + h(y − d)

for some function g(.).
Lemma 3 The function h(.) is an odd function. That is,
h(δ) = −h(−δ), ∀δ.
Proof: From Lemma 1, we have that
f(d, d+ δ)− f(d, d) = f(d, d)− f(d, d− δ).

Then, using Lemma 2, we get
g(d) + h(δ)− g(d)− h(0) = g(d) + h(0)− g(d)− h(−δ)

⇒h(δ) = −h(δ).
Lemma 4 The function g(.) is linear; i.e., g(d) = ad + b
for any arbitrary constants a and b.
Proof: We get from Axiom 5 that
f(d− δ, d) = f(d+ δ, d).

Then, using Lemma 2, we get
g(d− δ) + h(δ) = g(d+ δ) + h(−δ)

⇒g(d+ δ)− g(d− δ) = 2h(δ) [From lemma 3].
This proves that g(.) is a linear function on the variable d.

The above results state that any cost function satisfying
the axioms must be such that for a given aggregate ex-
pected demand, it decomposes additively into a linear func-
tion which varies with the expected demand and an odd
function that varies with the difference between expected
demand and actual consumption. We now formally state and
prove the impossibility theorem.
Theorem 1 There does not exist any cost function that si-
multaneously satisfies all the five axioms.
Proof: Let us assume that there exists a cost function C(.)
that satisfies all the five axioms. We prove this theorem by
establishing a contradiction to this assumption. Towards this
end, we choose any arbitrary value and fix it for the variable
dt for the rest of this proof. Consider the function f(d, y) as
stated above wherein d and y are the expected demand and
actual consumption respectively. We omit the subscript i and
the superscript t (as before) for this analysis.

Case 1: Let us consider two different values of expected
demand d1 and d2 such that d1 < d2 < y, where y is the
actual consumption. Clearly from Axiom 5, we get
f(d1, y) > f(d2, y)

ad1 + b+ h(y − d1) > ad2 + b+ h(y − d2)

[From Lemma 2 and Lemma 4]
∴ h(x1)− h(x2) > a(x1 − x2), (2)

where x1 = y − d1 and x2 = y − d2.
Case 2: Consider that d1 = y + δ, and d2 = y − δ. Then,

f(d1, y) = f(d2, y) [From Axiom 5]
a(y + δ) + b+ h(−δ) = a(y − δ) + b+ h(δ) [Lemma 4]
aδ − h(δ) = −aδ + h(δ) [From Lemma 3]
⇒ aδ = h(δ)

Hence for any choice of x1 and x2, h(x1) − h(x2) =
a(x1 − x2), which is a contradiction to Equation (2). Hence
proved.

Existence of Cost Functions Satisfying Subsets

of Axioms
In this section, we consider meaningful subsets of axioms
and check if there exists any cost function satisfying each
such subset of axioms.
Theorem 2 There exists a cost function that satisfies Ax-
ioms 1, 2, 3, and 4 simultaneously.
Proof: Consider the following cost function:

C(dt, dti, y
t
i) = Adtyti (3)

where A > 0 is an arbitrary constant. Clearly, this cost func-
tion satisfies Axiom 1. The cost would definitely increase
with unilateral (keeping other variables fixed) increase of
both dt and yti respectively. Thus, this cost function satis-
fies Axiom 2 and Axiom 3.

To show that it satisfies Axiom 4, let us consider two ag-
gregate expected demands dt1 and dt

2

such that dt1 > dt2 .
Also, consider that |dt1i − yt1i | = |dt2i − yt2i |. Now,

|C(dt1 , dt1i , dt1i )− C(dt1 , dt1i , yt1i )|
=|Adt1(dt1i − yt1i )|
=|Adt1(dt2i − yt2i )| [as |dt1i − yt1i | = |dt2i − yt2i |]
>|Adt2(dt2i − yt2i )| [as dt1 > dt2 ]

|C(dt2 , dt2i , dt2i )− C(dt2 , dt2i , yt2i )|
Hence it satisfies Axiom 4.
Theorem 3 There exists a cost function that satisfies Ax-
ioms 1, 2, 3, and 5 simultaneously.
Proof: Consider the following cost function:

C(dt, dti, y
t
i) = Adt +Byti +D|dti − yti | (4)

where A,B,C > 0 and B > C are arbitrary constants. It is
not difficult to see that this cost function satisfies Axiom 1,
as all the components are continuous in nature.

To prove that it satisfies Axiom 2, we select two actual
consumption values yti and ȳi

t such that ȳit − yti = ε > 0.
Now,
C(dt, dti, ȳi

t)− C(dt, dti, y
t
i)

=B(ȳi
t − yti) +D(|dti − ȳi

t| − |dti − yti |)
Now if dti < yti , then (|dti − ȳi

t| − |dti − yti |) > 0. And if
dti > yti , then |dti − ȳi

t| ≥ |dti − yti | − ε, and so (|dti − ȳi
t| −

|dti − yti |) ≥ −ε. Hence,
C(dt, dti, ȳi

t)− C(dt, dti, y
t
i)

≥Bε−Dε [∵ ȳi
t − yti = ε]

>0 [∵ B > D]

That is, the cost is increasing with the actual consumption
while other variables are fixed. Hence it satisfies Axiom 2.

Now the cost also increases when dt increases, keeping all
other variables fixed, and hence it satisfies Axiom 3. Since
the cost function increases with the term |dti − yti | while dt

and yti are fixed, it satisfies Axiom 5.
So we have shown that, though it is not possible to satisfy

all the five axioms simultaneously, there exist simple and in-
tuitive cost functions that satisfy two different subsets, each
having 4 axioms of this framework. We will discuss more on
this trade-off in the last section.
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Formulation and Evaluation of Various Cost

Functions

In this section, we evaluate different electricity tariffs and
cost functions with respect to our axiomatic framework.
Specifically, we would like to see how different types of
cost functions satisfy different subsets of axioms. Towards
this end, we consider different cost functions which are cur-
rently implemented by the utilities or exists in the literature
or very relevant to our framework. Along with their mathe-
matical properties, we also give intuition about their possible
impact on addressing different problems of smart grid.

Flat Rate Cost: The total cost to the consumers is calcu-
lated on a flat rate over the total consumption over T time
slots. If the cost of a unit of electricity is u at any time
t = 1, 2, · · · , n; then the cost to any consumer i at time t
is:

C(yti) = uyti (5)

So total cost over T time slots is, Ci = u
T∑

t=1
yti . In this set

up, typically consumers do not need to report their expected
demands dti at the beginning of the day. To fit this into our
framework, we assume that the cost function is invariant to
expected demand of the consumer and aggregate level ex-
pected demand.

It is easy to see that this cost function satisfies Axioms
1 and 2. As the cost does not depend on aggregate demand
dt, and expected demand dti, it does not satisfy Axioms 3, 4,
and 5. In general, this type of cost functions have been used
widely in different parts of the world mainly because they
are very simple and easy to understand. However, such cost
functions typically result in uncontrollable peaks in demand.

Time-of-Use Pricing: In this scheme, the unit price of
electricity at some point of time t is predetermined at the
beginning of the day. Suppose this cost per unit is ut > 0 at
time t. Hence the cost to any consumer i at time t is C(yti) =
utyti . Here also we assume that the cost function is invariant
to aggregate level and expected demands.

It is clear that this cost function satisfies Axioms 1 and 2.
As the cost does not depend on dt and dti, it does not satisfy
Axioms 3, 4, and 5.

Time-of-use pricing is popular in different parts of Europe
and USA. In such schemes, the price (unit cost of electricity
ut) is high when the demand is high. But they calculate the
peak hours roughly based on historical demands, and this re-
mains fixed for long period of time (may be for few months
or even years). This is why they are not able to capture the
daily behavioral changes of the consumers in electricity con-
sumption. Instead, in our framework, peak hours are deter-
mined based on the aggregate level expected demand profile,
which is calculated at the beginning of the day or so. Hence
our framework should be more efficient in addressing peak-
energy demand problem in smart grids.

Prediction-of-Use Tariff: Prediction-of-Use Tariff has
been discussed in Vinyals (Vinyals et al. 2014). Their set up
is similar to ours in terms of reporting (predicting) the ex-
pected demand and then have an actual consumption in real

7Assuming p̄ = p in equation 6

Cost Function Axiom 1 Axiom 2 Axiom 3 Axiom 4 Axiom 5

Flat Rate Cost � � � � �
Time-of-Use Pricing � � � � �

Prediction-of-Use Tariffs � � � � �7

Cost Function in Eq. 3 � � � � �
Cost Function in Eq. 4 � � � � �

Table 2: Different cost functions satisfying subsets of ax-
ioms of the proposed framework

time. The tariff in Prediction-of-Use is defined as follows:

C(dti, y
t
i) =

{
pyti + p̄(yti − dti), if dti ≤ yti
pyti + p(dti − yti), otherwise

(6)

Here, p, p̄ > 0 and 0 < p ≤ p. As aggregate level expected
demand dt is not present in the function definition, we as-
sume that the function is invariant over dt. This cost func-
tion satisfies Axiom 1. As Ct

i (d
t
i, y

t
i) ≥ Ct

i (d
t
i, ȳi

t) for any
yti > ȳi

t (Vinyals et al. 2014), it satisfies Axiom 2. As this
cost function does not consider the total expected demand at
any point of time to determine the cost at that time, it does
not satisfy Axioms 3 and 4. It is also evident that this cost
function can satisfy Axiom 5 only when p̄ = p.

Clearly, this cost function can penalize a consumer for
over or underestimating her consumption. But it cannot
solve the peak energy demand problem as the price of en-
ergy is invariant to aggregate level (expected) demand.

The summary of this whole evaluation is given in Table
2. We discuss the significance of this evaluation along with
other theoretical results in the next section.

Discussion and Conclusions

We have proposed an axiomatic framework in this paper,
which gives a formal basis to construct and compare differ-
ent cost functions based on the axioms they satisfy. We have
justified the need of the axioms. We have addressed different
issues of smart grids such as the peak-demand problem or in-
centivizing (or penalizing) consumers based on their shift of
load during peak-hours. We have shown that it is impossible
to satisfy all the axioms of our framework simultaneously.
However, we have also presented different cost functions
which satisfy different subsets of axioms in the framework.

Based on their own requirements, utilities need to select
a cost function that satisfies the axioms they need the most.
For example, Axiom 5 talks about penalizing a consumer
for over or under estimating her demand. This would also
encourage consumers to reveal their consumption truthfully
at the beginning of the day. Instead, in a different setting,
when the utility predicts the expected demand of individual
consumers rather than consumers reporting the demands (as
in (Vinyals et al. 2014)), Axiom 5 becomes less relevant to
the utility than the other axioms. So the utility may go for a
cost function as stated in equation 3, which satisfies all the
axioms except Axiom 5 (see theorem 2). Further in Table 2,
we have actually shown different possibility results through
different cost functions, along with their practical interpre-
tation and possible impact on the smart grid. We have not
considered the impact of distributed and renewable gener-
ation in this framework. So an interesting future direction
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to extend the proposed axiomatic framework is to consider
their effect into this framework. In conclusion, we hope that
our axiomatic framework helps to advance the mathematical
understanding of pricing regimes as well as to design new
pricing mechanisms.
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