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Abstract

Understanding speed and travel-time dynamics in re-
sponse to various city related events is an important and
challenging problem. Sensor data (numerical) contain-
ing average speed of vehicles passing through a road
link can be interpreted in terms of traffic related inci-
dent reports from city authorities and social media data
(textual), providing a complementary understanding of
traffic dynamics. State-of-the-art research is focused on
either analyzing sensor observations or citizen observa-
tions; we seek to exploit both in a synergistic manner.
We demonstrate the role of domain knowledge in cap-
turing the non-linearity of speed and travel-time dynam-
ics by segmenting speed and travel-time observations
into simpler components amenable to description us-
ing linear models such as Linear Dynamical System
(LDS). Specifically, we propose Restricted Switching
Linear Dynamical System (RSLDS) to model normal
speed and travel time dynamics and thereby charac-
terize anomalous dynamics. We utilize the city traffic
events extracted from text to explain anomalous dynam-
ics. We present a large scale evaluation of the proposed
approach on a real-world traffic and twitter dataset col-
lected over a year with promising results.

Introduction

There is an increasing body of research on understanding
traffic flow for efficient management of mobility in a city.
Currently, there are over 1 billion cars on roads and this
number is expected to double by 2020 (IBM 2014). Vehic-
ular traffic increased by 236% from 1981 to 2001 while the
world population grew only by 20% (IBM 2014). Increased
urbanization has impacted the mobility of people in cities.
Zero traffic fatalities and minimizing traffic delays are some
of the grand challenges in Cyber-Physical Systems (Rajku-
mar et al. 2010). To overcome these challenges, we need
a deeper understanding of the interactions between various
events in a city and its impact on traffic. Current traffic as-
sessment techniques focus on analysis of fine grained sen-
sor observations to predict delays (Ko and Guensler 2005;
Anderson and Bell 1997; De Fabritiis, Ragona, and Valenti
2008; Sun, Zhang, and Yu 2006). However, these are lim-
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ited and opaque, and do not explain the reasons for traf-
fic flow variations. Increasingly, observations of real-world
systems span Physical, Cyber and Social (PCS) domains
with heterogeneous and multi-modal observations (Sheth,
Anantharam, and Henson 2013). For example, observa-
tions related to traffic spans both sensor and textual modal-
ity. We believe that social media data (Goodchild 2007;
Nagarajan, Sheth, and Velmurugan 2011) can provide bet-
ter understanding of speed dynamics by providing informa-
tion complementary to sensor data. While social data has
played a major role in interpreting situations and applica-
tions such as political debates, civil unrest, crime predic-
tion, disaster relief and coordination (Crooks et al. 2013;
Boulos et al. 2011; Sakaki, Okazaki, and Matsuo 2010), it
has been under-utilized in understanding PCS systems. Ex-
tracting traffic related information from social data has been
carried out by some studies (Wanichayapong et al. 2011;
Zeng et al. 2013).

Important challenges in modeling and explaining speed
and travel time variations, collectively called traffic dynam-
ics, include: i) Modeling nonlinear traffic dynamics due to
various city events, temporal landmarks such as peak-hour
and off-peak hour traffic, and random noise that influence
traffic, ii) Integration of heterogeneous data sources span-
ning both social and sensor data, iii) Scalability issue involv-
ing large data size due to continuous data collection from
sensors, iv) Identifiability of traffic events due to limited
modality of traffic related observations. E.g., many events
effect the average speed of vehicles passing through a road
link, so: can we even identify various events by just studying
traffic dynamics? and v) Uncertain impact due to contextual
dependency. E.g., events may manifest in speed variations
only when a road link has high enough traffic volume.

We address the challenging task of modeling non-linear
traffic dynamics utilizing a Restricted Switching Linear Dy-
namical System (RSLDS) for learning normalcy models.
RSLDS captures the non-linearity of speed and travel-time
dynamics by segmenting speed and travel-time observa-
tions into simpler components amenable to description us-
ing linear models such as Linear Dynamical System (LDS)
(Bishop 2006). We provide a rationale for using LDS to
model traffic dynamics by motivating the modeling needs
and connecting it to the capabilities of LDS. We address
the heterogeneity challenge by using events extracted from

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3793



tweets and available formal traffic reports (textual data) to
explain anomalies in traffic dynamics (sensor data). We deal
with the large data size challenge through a scalable imple-
mentation of our approach on Apache Spark.

Our work is one of the first efforts in associating textual
observations with sensor anomalies in the domain of traffic.
Using our approach, we address research questions such as:
Do the traffic events reported by city authorities manifest in
the speed and travel time variations? How do we formally
model speed and travel time dynamics? How do we capture
normalcy and thereby characterize anomalies? Can we uti-
lize city events extracted from tweets to explain anomalies?

Related Work
Related work can be organized into generic and time se-
ries based approaches based on the modeling principles em-
ployed.

Generic Approaches

Sustainability researchers are studying traffic conditions
using sensors on road and GPS sensors on vehicles to
predict congestion. Current research on traffic data ana-
lytics predominantly uses a single modality such as sen-
sor data for understanding delays (Ko and Guensler 2005;
Lee, Tseng, and Tsai 2009; Anderson and Bell 1997;
Pattara-Atikom, Pongpaibool, and Thajchayapong 2006;
De Fabritiis, Ragona, and Valenti 2008; Sun, Zhang, and
Yu 2006). Work on traffic diagnostics connects events to
congestions utilizing historical data and applies it to the
near real-time observations for explaining congestions in
terms of city events (Lécué, Schumann, and Sbodio 2012;
Daly, Lecue, and Bicer 2013). Inferring the root cause of
traffic congestion is investigated by (Chawla, Zheng, and Hu
2012). The origin and destination of a car is modeled as a la-
tent variable and the flow of cars observed from GPS data is
modeled as the observed variable. The root cause does not
include the city events that may influence traffic and even
cause a change in the origin and the destination of cars.
(Horvitz et al. 2012) use a Bayesian Network (Koller and
Friedman 2009) structure extraction based approach to ex-
tract insights from a combination of traffic sensor data and
incident reports. They derive insights that are not obvious to
city authorities and present a traffic alert system to deliver
these predictions to commuters.

Time Series Based Approaches

If we consider speed and travel time observations as time
series observations, our proposition of explaining textual
observations using speed and travel time anomalies can be
viewed as a time series annotation task. In a related work
(Fanaee-T and Gama 2014), variations in the number of bi-
cycles hired at various locations in a city, modeled as time
series data, is explained using events in the city such as
temporal landmarks, concerts, sports matches, parades, bad
weather, and public holidays. Events are detected using lo-
cation and date specific search queries to a search engine.
An ensemble approach is used to build a model that con-
nects major events to the number of bikes being hired. An-
notating physiological dynamics of premature babies for risk

assessment has been carried out by (Quinn, Williams, and
McIntosh 2009), where, variations in physiological obser-
vations such as heart rate, blood pressure, and body tem-
perature are modeled using a Switching Linear Dynamical
System (SLDS).

Understanding city events using a holistic approach of an-
alyzing both sensor and textual data however has received
limited attention. We aim to fill this void by proposing algo-
rithms to relate city events from textual data to anomalies in
sensor data. Our approach uses domain knowledge to build
and apply multiple linear models to learn normal speed and
travel time dynamics.We seek explanations in terms of city
events, from both formal (e.g., incident reports) and informal
(e.g., twitter) sources, for deviations in traffic dynamics.

Preliminaries

We define representation of city traffic related events and the
road network. We also provide a brief overview of Linear
Dynamical System (LDS) and propose Restricted Switching
Linear Dynamical System (RSLDS) to characterize traffic
dynamics.

Traffic Event Representation

We use a quintuple 〈êt, êl, êst, êet, êi〉 to represent an event
where, êt represents the event type, êl is the location of the
event, êst is the start time of the event, êet is the end time
of the event, and êi represents the estimated impact of the
event. We use a unified representation of events for both
511.org reported events and traffic events extracted from
twitter.

Road Network

The fundamental building block of a road network is called
a link, represented by l. 511.org provides location informa-
tion for all the links in San Francisco Bay Area. A road r, is
an ordered sequence of links, i.e., r = [l1, l2, ..., ln], where,
n is the number of links in road r. The location of a link is
specified by start and end lat-long which can be used to re-
construct the road. We collect speed and travel time observa-
tions from 511.org for 3,622 links. The whole road network
N is a set of roads, N = {r1, r2, ..., rm}, where m is the total
number of roads in the road network.

Linear Dynamical Systems

Time series data with hidden and observed variables natu-
rally occur in the domains such as traffic, healthcare, finance,
and system health monitoring. A LDS model (Barber 2012)
incorporates both hidden and observed variables as shown
in Figure 1(a) with T hidden nodes h1:T and T observed
nodes s1:T respectively for modeling observations at T time
points. A hidden variable captures the state of a system that
is not directly observable, e.g., in the context of diseases and
symptoms, a disease is hidden while a symptom is observ-
able. In the domain of traffic, the volume of vehicles pass-
ing through a link may not be available (511.org does not
provide volume data). Further, there may be many other un-
observed factors influencing traffic dynamics such as road
conditions, visibility, and random effects. These unobserved

3794



(a) (b)

Figure 1: (a) A Linear Dynamical System for T time points
with hidden nodes h1:T and observed nodes s1:T . (b) A Re-
stricted Switching Linear Dynamical System (RSLDS) with
each switch variable indexed by day of week and hour of
day (di, hj).

variables at time t may be represented using a hidden node
ht in the LDS model. The average speed of vehicles and av-
erage travel time through a link are the observed variables
represented using st in the LDS model. LDS is formally de-
fined using Equations(1a) and (1b) where At is called the
transition matrix and Bt is called the emission matrix. ηht
and ηst represent the transition and emission noise, respec-
tively.

ht = Atht−1 + η
h
t , η

h
t ∼ N (η

h
t |h̄t,Σ

h
t ) (1a)

st = Btht + η
s
t , η

s
t ∼ N (η

s
t |̄st,Σs

t) (1b)

The hidden state at any time ht depends only on the previ-
ous hidden state ht−1 (Markovian assumption) and the tran-
sition from ht−1 to ht is governed by the transition matrix.
The observation at any time, st, depends only on the cur-
rent hidden state ht and is governed by the emission matrix.
Their joint probability distribution over all the hidden states
and observations is given by

p(h1:T , s1:T ) = p(h1)p(s1|h1)

T∏

t=2

p(ht|ht−1)p(st|ht) (2)

where, the terms p(ht|ht−1) and p(st|ht) are given by

p(ht|ht−1) = N (ht|Atht−1 + h̄t,Σ
h
t ) (3a)

p(st|ht) = N (st|Btht + s̄t,Σ
s
t ) (3b)

This model offers to capture variation in the transition and
emission matrices along with the Gaussian noise. For the
domain of traffic, we assume that the transition and emis-
sion matrices do not vary over time. Such a model is called
a stationary model. Thus, At ≡ A, Bt ≡ B, Σh

t ≡ Σh,
Σs

t ≡ Σs, h̄t = 0, and s̄t = 0.
The hidden state ht is normally distributed with mean

Atht−1 and covariance Σh. The observation st is normally
distributed and has mean Btht and covariance Σs.

Problem Formulation

Speed and travel time dynamics in the domain of traffic fol-
lows a more or less recurring pattern based on the hour of
the day and the day of the week. Traffic dynamics may vary
abnormally due to various city traffic related events, vary-
ing road conditions, and random effects. We are not guaran-
teed to have access to all the active city traffic related events
and their interactions. A Gaussian Mixture Model (GMM)
approach to model speed and travel time variations (Sun,

Zhang, and Yu 2006) do not capture the temporal dependen-
cies fundamental to traffic dynamics. Time series techniques
such as autoregressive (AR) and autoregressive-integrated-
moving-average (ARIMA) models (Lee and Fambro 1999;
Moorthy and Ratcliffe 1988) capture temporal dependen-
cies. However, relating later values of speed and travel time
with corresponding earlier values alone is not adequate as
they cannot capture the latent variables crucial in modeling
traffic dynamics. An LDS model offers a better foundation
for representing additional factors that are difficult to cap-
ture separately in modeling traffic dynamics. The volume of
vehicles through a link, associated interactions, and random
effects (noise) on traffic dynamics is being approximated by
the hidden states (h1:T ) of the LDS model and the noise
terms ηht and ηst as shown in Figure 1(a). The average speed
of vehicles passing through a link and average travel time
for a link, obtained from sensor data, represents the observed
node (s1:T ) in Figure 1(a).

We broadly categorize various factors that influence traf-
fic into internal and external factors. Internal factors include
day of the week, time of the day, and location. External
factors include city traffic related events such as accidents,
breakdowns, music and sporting events. We propose a Re-
stricted Switching Linear Dynamical System (RSLDS) as
shown in Figure 1(b). We learn one LDS model for each
hour of the day and for each day of the week, giving us 24
× 7 (168) LDS models for each link. A switch variable in
RSLDS is used to index and select an LDS model on (di,
hj), where, di is day of week (ranging over 7 days) and hj
is hour of day (ranging over 24 hours). Our approach is sim-
ilar to Switching Linear Dynamics System (SLDS) (Quinn,
Williams, and McIntosh 2009) that allows discrete switches
to select an appropriate LDS model. However, SLDS model
assumes a Markovian transition between switch configura-
tions, which is violated in the domain of traffic. For exam-
ple, the external factors such as accidents and breakdowns
may occur randomly and independently.

Approach
We present our approach to learn models for normal traf-
fic dynamics, tagging anomalies, and utilizing events from
textual stream to explain the anomalies below.

Learning Normalcy in Traffic Dynamics

Figure 2 outlines the process of learning normal traffic dy-
namics. LDS is a linear model and cannot faithfully capture
the non-linearity in speed dynamics over time. RSLDS deals
with non-linearity by piecewise linear approximation using
a collection of LDS models by selecting appropriate linear
regime from the collection based on the switch state. Hour
of the day has a major influence on traffic dynamics, e.g.,
morning peak hours (7 am to 9 am) and evening peak hours
(5 pm to 7 pm) on a work day typically has slow moving
traffic. Day of the week is another important influencer of
traffic dynamics, e.g., weekend pattern is different as offices
are closed but social, music, or sporting events may occur at
certain locations and time durations. We use both the day of
the week and the hour of the day to index traffic dynamics
and learning normalcy model.

3795



Figure 2: Learning normal traffic dynamics from speed and
travel time observations resulting in 168 LDS models.

Indexing Traffic Dynamics Data In Step 1 of Figure 2,
we partition data from a link based on the day of week
(Mon-Sun) and further, on the hour of the day (1-24). Hourly
speed dynamics for each Monday between May 2014 and
Jan 2015, and each hour is shown in Figure 4. Each of the
24 subplots corresponds to the time series of speed variation
over each hour of the day. We observe approximate cluster-
ing of speed dynamics (light colored lines) in most of the
plots, indicating a general hourly trend in speed dynamics.
In the first seven hours of the day, starting 12 AM to 7 AM,
the average speed of the vehicles remain high and stable,
around 80 to 100 km/h. After 7 AM, we observe a decreas-
ing trend in speed until 9 AM, which may be due to morn-
ing commute. After an increasing trend in speed around 10
AM, possibly due to subsiding commuter traffic, the speed
of vehicles is observed to be stable from 11 AM to 1 PM. A
decreasing trend is observed between 1 PM and 2 PM with
speeds plummeting to 20 to 30 km/h after 2 PM until 6 PM.
This can be due to lunch time and evening rush hour traffic
respectively. Closer to 7 PM, peak hour rush subsides re-
sulting in increasing speed trend till 8 PM. After 9 PM, the
speed resumes and stabilizes between 80 to 100 km/h.

Selecting Typical Traffic Dynamics In Step 2 of Figure 2,
we select typical traffic dynamics by iterating through the in-
dex of Step 1. Algorithm 1 describes the selection of a typi-
cal traffic dynamics for each hour. The input to Algorithm 1
is the speed observations indexed over internal factors. Each
hour contains multiple speed sequences [s(m,1), ..., s(m,n)]
(if there are five Mondays with 60 observations for an hour,
then, m = 1 to 5 and n = 60; speed observations are sampled
n times an hour to create each of the m sequences). For com-
puting the average speed at each of the n sampling point, we
sum up all the speed values at each sampling index (1 to n)
over all the m sequences and divide it by m. Average speed
sequence serves as the centroid of all the speed sequences.
To select a speed sequence that exists in the real-world (that
is, it is realizable), we choose the speed sequence that is

Figure 3: Utilizing 168 LDS models to tag anomalies, which
can be tied to a city event reported on textual stream.

closest to the centroid using a point-wise Euclidean distance
metric, obtaining the medoid.

Algorithm 1 Select medoid for hourly speed plots
Require: Multiple speed observation sequences collected for each (di, hj) where di = Monday

to Sunday and hj = 1 to 24, each set containing n speed observations, [sm,1, ..., sm,n]
where, m indexes over number of speed sequences collected for (di, hj)

Ensure: [s1..., sn] representing the medoid for each M(di, hj)
for each day d from Monday to Sunday do

for each hour h of the day ranging from 1 to 24 do

Select speed values [s(m,1), ..., s(m,n)] from (di, hj)

Find the average speed [a1..., an] from m samples
Select speed sequence [s1..., sn] closest to average
Set M(di, hj) = [s1..., sn]

end for

end for

The result of running Algorithm 1 is shown in Figure 4
with mean speed plot (dashed line) and medoid (solid line).

Learning LDS parameters In Step 3 of Figure 2, we
learn the parameters of the LDS utilizing the representative
traffic dynamics chosen based on Algorithm 1. The LDS pa-
rameters are learned for every day of week and every hour of
day. LDS is parameterized by θ = {A,Σh,B,Σs, μπ,Σπ}
where A is the transition matrix, Σh is the transition covari-
ance, B is the emission matrix, Σs is the emission covari-
ance, μπ and Σπ are the mean and covariance of the initial
state density p(h1) in Equation 2. Since the joint distribution
of LDS contains hidden variables, Expectation Maximiza-
tion (EM) algorithm is used for learning the LDS parameters
(Ghahramani and Hinton 1996; Barber 2012). From Equa-
tion 2, the joint distribution can be rewritten as

ln p(h1:T , s1:T |θ) = ln p(h1|μπ,Σπ) +

T∑

t=2

ln p(ht|ht−1,A,Σh) +
T∑

t=1

ln p(st|ht,B,Σs)
(4)

Equation 4 has explicit parameterization and represents
the log likelihood of data given the parameters. EM al-
gorithm chooses the initial parameters θold and evaluates
p(h1:T |s1:T , θold) in the expectation step. In the maxi-
mization step, the expectation of the log likelihood func-
tion represented by Eh1:T |θold [ln p(h1:T , s1:T |θ)] is maxi-
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Figure 4: Hourly plot of speed variations over time for all
the Mondays from May 2015-June 2015 for a link.

mized with respect to θ. The parameters are updated to
Anew,Σnew

h ,Bnew, Σnew
s , μnew

π , and Σnew
π . After maxi-

mization step, if the convergence criteria is not satisfied, the
new parameter setting for LDS, θnew replaces θold and the
algorithm returns to the expectation step.

Detecting Anomalous Traffic Dynamics

Figure 3 outlines the process of learning normalcy in terms
of log likelihood score and utilizing it to tag anomalies. In
the training phase, we utilize the 168 LDS models learned
for each link indexed by internal factors, θ(di, hj), for es-
timating the log likelihoods, ln p(h1:T , s1:T |θ(di, hj)) as
shown in Equation (4). In the training phase, we learn the
typical likelihood values after aggregating the log likelihood
scores for the entire dataset partitioned by (di, hj), thereby
capturing normalcy. We utilize a non-parametric approach
of five number summary (minimum, first quartile, median,
third quartile, and maximum) over the log likelihood scores
for each partition indexed by (di, hj). The log likelihood
range (minimum and maximum) exists for each day of the
week and the hour of the day, (di, hj). In the testing phase,
we compute the log likelihood score for the observed data
using the appropriate LDS model θ(di, hj). If the log likeli-
hood value for a particular day of week and the hour of the
day is less than the minimum log likelihood value (retrieved
from matrix L in Figure 3), we tag the traffic dynamics as
anomalous.

Traffic Events for Explaining Anomalies

For every city traffic event collected from textual data, we
detect anomalies in traffic pattern as outlined in Figure 5.
We examine the city traffic events using their location, start
time, and end time. Based on the location of the event, we
select links within a radius r km from the event. We run
the anomaly detection step on the temporally selected data
points from these links. If an event from the textual stream
has a corresponding anomaly in the link data, we hypoth-
esize that the event explains the anomaly and the anomaly
is explained by the event. Algorithm 2 determines textual
events E, that explains anomalies in sensor data. The radius
r is an input parameter which can be changed but it is set
to 0.5 km in our experiments. The adjusted duration of an
event, Δte = (êst − h, êet + h), where, h is set to 1 hour

Figure 5: City traffic events (textual data) used to explain
anomalies in traffic dynamics (sensor data).

(lowest granularity of our analysis), is used to select sensor
data from all the links within the radius of r km from the
event location, êl. If the selected link data has anomalies,
possibly explained by the textual event, then the event is ac-
cumulated in Eexplained as shown in Algorithm 2.

Algorithm 2 Explaining Traffic Events by Anomalies
Require: Set of city traffic events E containing event tuples 〈êt, êl, êst, êet, êi〉, latitude and

longitude of all the 3,622 links in the road network, log likelihood range matrix L indexed by
(di, hj), radius parameter r km to select the links, and time parameter h for adjusting event
duration

Ensure: Eexplained containing all events with corresponding anomalies in sensor data
for each event quintuple 〈êt, êl, êst, êet, êi〉 in E do

Find hourly time range Δte = (êst − h, êet + h)
Let M be all the links within the radius of r km from the event location êl
for each link l ∈ M do

Select data for link l filtered by duration Δte
H(di, hj) ← Compute the hourly log likelihood on selected data using Equation (4)
if hourly log likelihood H(di, hj) < minimum log likelihood from L(di, hj) then

Eexplained ← 〈êt, êl, êst, êet, êi〉
end if

end for

end for

Evaluation

We conducted a large scale evaluation of our approach on
real-world traffic sensor and twitter data collected for a year.

Traffic Dataset from 511.org and Tweets: We collected
1,638 city traffic related events from 511.org and we ex-
tracted 39,208 city traffic events from over 20 million tweets
collected from May 2014 to May 2015 for San Francisco
Bay Area, utilizing an openly available city traffic event
extraction tool (Anantharam 2014), resulting in a total of
40,846 city traffic events. 511.org also provides minute by
minute speed and link travel time data for 3,622 links result-
ing in over 1.4 billion time series data points. Out of 3,622
links, 1,088 links do not have any data points for the entire
year. Further, there are partially missing data points in the
time series for the remaining 2,534 links.

Evaluation Strategy: Traffic events from 511.org are re-
liable since it is reported by city authorities. We use these
events as a reference in our evaluation. Algorithm 2 iterates
over 1,638 events from 511.org to explain anomalies in traf-
fic. We evaluate Algorithm 2 for finding 511.org event mani-
festations in sensor data. Further, we extend the evaluation to
39,208 events extracted from twitter and report our results.

Evaluation over 511.org Traffic events: We evaluate our
approach by analyzing the co-occurrence of the event in
textual data with the anomaly detected in the sensor data.
Table 1 presents the evaluation summary for all the 1,638
511.org events and 39,208 twitter traffic events. Events with
no links near them (for r = 0.5 km) are placed under No
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Source Total Events No Links Missing Data No Anomalies Anomalies

511.org 1,638 201 901 145 391
Twitter 39,208 36,436 1942 18 812

Table 1: Evaluation results for all the events using Algo-
rithm 2 with parameter setting: h = 1 hour and r = 0.5 km.

Links. If there are links near an event, with data that may be
missing (for the event duration), then they are characterized
as Missing Data. Links near an event with data are used to
tag anomalies and the result is placed under No Anomalies
and Anomalies. We call the events corroborated with anoma-
lies in any of the link sensor data near the event as being ex-
plained. Events without accompanying anomalies in any of
the link sensor data are called un-explained. For a palatable
comparison, we present percentages of events from 511.org
and twitter that explain anomalies in Figure 6. We observe a
larger set of links near events from 511.org relative to twitter
events as shown in Figure 6 (bottom). Out of 33% 511.org
events with complete sensor data, we could explain 72% of
them. Figure 6 (top) presents a sample output of Algorithm 2
after processing 10 events. For events marked in bold, we
found anomalies in traffic dynamics possibly explained by
the event with the following insights: (a) Long-term events
may not manifest as anomalies in sensor data. RSLDS nor-
malcy model is trained over the entire year of average speed
and travel time observations. Long-term events such as con-
struction activities may span several months. Since the data
we have is for a year, such long-term events are part of the
normalcy model and may not be tagged anomalous as ob-
served in Figure 6 (top). Events, such as accidents and dis-
abled vehicles, are short lived events that may manifest as
anomalous traffic. (b) Location and start time of the event
may impact its manifestation in sensor data. Events near
crowded places would most likely manifest as anomalies.
Events occurring during off-peak hours are less likely to
manifest in sensor data compared to the events occurring
during peak-hours. (c) Missing data creates challenges for
associating anomalies with events. Among the 2,534 links
with data, there is missing data for many days in a year due
to maintenance and sensor failures resulting in decreased
coverage.

Evaluation over Twitter Traffic Events: Twitter traffic
events are dispersed widely across the city resulting in re-
duced or missing links near many events. There are 36,436
twitter traffic events with no links near them as shown in Ta-
ble 1 due to significantly lower sensor data coverage. Con-
sequently, we observe that the coverage can be significantly
improved by augmenting information from sensor data with
that from twitter events as shown in Figure 6 (bottom). We
expected a higher twitter traffic event manifestation in sen-
sor data since people will most likely report events of signif-
icant impact while 511.org reports all possible traffic related
events that may have varying impact. Out of 2% twitter traf-
fic events with complete sensor data, we could corroborate
97% of it with anomalies.

Scalability Challenges: There are 2,534 links with data.
For each link, we learn 168 LDS models by analyzing over
1.4 billion data points resulting in a total of 425,712 (=

Figure 6: City traffic events with available and missing link
data and percentage of events explained by Algorithm 2

2,534 × 168) LDS models. The size of the traffic dataset
is around 30 GB. Learning LDS parameters and the crite-
ria for anomaly is computationally expensive. For each link
with one year of data, we estimated 25 minutes for learning
LDS models and 15 minutes for computing the criteria for
anomaly, resulting in a total processing time of 40 minutes
per link. Extrapolating processing time for all the links, we
get 1,689 hours ( 40minutes×2,534

60minutes ) (≈2 months). Initial pro-
cessing was done with 2.66 GHz, Intel Core 2 Duo processor
with 8 GB main memory. We then exploited inherent “em-
barrassing parallelism” to devise a scalable implementation
of our approach on Apache Spark (Zaharia et al. 2010) that
takes less than a day. The Apache Spark cluster used in our
evaluation has 864 cores and 17TB main memory.

Conclusion and Future Work

Normal traffic dynamics can be captured using RSLDS, a
variant of LDS model, that utilizes domain knowledge to
segment nonlinear traffic dynamics into linear components.
Utilizing the normalcy model, we could explain anomalies
in traffic sensor data using traffic events from textual data.
We could also associate real-world events that impact traffic
by determining anomalies in traffic pattern. Further, a large
scale evaluation of our approach on a real-world dataset col-
lected for a year corroborated 72% of 511.org events and
97% of twitter traffic events in terms of anomalous traffic
dynamics. As a future work, RSLDS model capturing tem-
poral dynamics can be utilized to study various traffic event
types and associated speed and travel time dynamics and
predict traffic dynamics based on the traffic events from tex-
tual streams.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. EAR 1520870 titled
“Hazards SEES: Social and Physical Sensing Enabled Deci-
sion Support for Disaster Management and Response”. Any

3798



opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation. We would also like to acknowledge the EU FP7
Citypulse project contract number: 609035 for providing a
broader motivation for this work.

References

Anantharam, P. 2014. Extracting city traffic events from social
streams. https://osf.io/b4q2t/wiki/home/.
Anderson, J., and Bell, M. 1997. Travel time estimation in ur-
ban road networks. In Intelligent Transportation System, 1997.
ITSC’97., IEEE Conference on, 924–929. IEEE.
Barber, D. 2012. Bayesian reasoning and machine learning.
Cambridge University Press.
Bishop, C. M. 2006. Pattern recognition and machine learn-
ing. springer.
Boulos, M. N. K.; Resch, B.; Crowley, D. N.; Breslin, J. G.;
Sohn, G.; Burtner, R.; Pike, W. A.; Jezierski, E.; and Chuang,
K.-Y. S. 2011. Crowdsourcing, citizen sensing and sensor
web technologies for public and environmental health surveil-
lance and crisis management: trends, ogc standards and appli-
cation examples. International journal of health geographics
10(1):67.
Chawla, S.; Zheng, Y.; and Hu, J. 2012. Inferring the root
cause in road traffic anomalies. In Data Mining (ICDM), 2012
IEEE 12th International Conference on, 141–150. IEEE.
Crooks, A.; Croitoru, A.; Stefanidis, A.; and Radzikowski, J.
2013. # earthquake: Twitter as a distributed sensor system.
Transactions in GIS 17(1):124–147.
Daly, E. M.; Lecue, F.; and Bicer, V. 2013. Westland row why
so slow?: fusing social media and linked data sources for un-
derstanding real-time traffic conditions. In Proceedings of the
2013 international conference on Intelligent user interfaces,
203–212. ACM.
De Fabritiis, C.; Ragona, R.; and Valenti, G. 2008. Traffic
estimation and prediction based on real time floating car data.
In Intelligent Transportation Systems, 2008. ITSC 2008. 11th
International IEEE Conference on, 197–203. IEEE.
Fanaee-T, H., and Gama, J. 2014. Event labeling combining
ensemble detectors and background knowledge. Progress in
Artificial Intelligence 2(2-3):113–127.
Ghahramani, Z., and Hinton, G. E. 1996. Parameter estimation
for linear dynamical systems. Technical report, Technical Re-
port CRG-TR-96-2, University of Totronto, Dept. of Computer
Science.
Goodchild, M. F. 2007. Citizens as sensors: the world of vol-
unteered geography. GeoJournal 69(4):211–221.
Horvitz, E.; Apacible, J.; Sarin, R.; and Liao, L. 2012.
Prediction, expectation, and surprise: Methods, designs, and
study of a deployed traffic forecasting service. arXiv preprint
arXiv:1207.1352.
IBM. 2014. Smarter traffic. http://www.ibm.com/
smarterplanet/us/en/traffic congestion/ideas/.
Ko, J., and Guensler, R. L. 2005. Characterization of conges-
tion based on speed distribution: a statistical approach using

gaussian mixture model. In Transportation Research Board
Annual Meeting. Citeseer.
Koller, D., and Friedman, N. 2009. Probabilistic graphical
models: principles and techniques. MIT press.
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