
Preventing Illegal Logging: Simultaneous
Optimization of Resource Teams and Tactics for Security

Sara Mc Carthy, Milind Tambe
University of Southern California

Christopher Kiekintveld
University of Texas at El Paso

Meredith L. Gore, Alex Killion
Michigan State University

Abstract

Green security – protection of forests, fish and wildlife – is
a critical problem in environmental sustainability. We focus
on the problem of optimizing the defense of forests against
illegal logging, where often we are faced with the challenge
of teaming up many different groups, from national police to
forest guards to NGOs, each with differing capabilities and
costs. This paper introduces a new, yet fundamental problem:
Simultaneous Optimization of Resource Teams and Tactics
(SORT). SORT contrasts with most previous game-theoretic
research for green security – in particular based on security
games – that has solely focused on optimizing patrolling tac-
tics, without consideration of team formation or coordina-
tion. We develop new models and scalable algorithms to ap-
ply SORT towards illegal logging in large forest areas. We
evaluate our methods on a variety of synthetic examples, as
well as a real-world case study using data from our on-going
collaboration in Madagascar.

Illegal logging is a major problem for many developing
countries. The economic and environmental impacts are se-
vere, costing up to USD $30 billion annually and threaten-
ing ancient forests and critical habitats for wildlife (WWF
2015). As a result, improving the protection of forests is of
great concern for many countries (Dhital, Vololomboahangy,
and Khasa 2015; Thomas F. Allnutt 2013).

Unfortunately in developing countries, budgets for pro-
tecting forests are often very limited, making it crucial to
allocate these resources efficiently. We focus on deploying
resources to interdict the traversal of illegal loggers on the
network of roads and rivers around the forest area. How-
ever, we must first choose the right security team for inter-
diction; there are many different organizations that may be
involved — from local volunteers, to police, to NGO per-
sonnel — each differing in their interdiction effectiveness
(individual or jointly with others), and with varying costs of
deployment. This results in a very large number of resource
teams and allocation strategies per team with varying effec-
tiveness that could be deployed within a given budget. Our
challenge is to simultaneously select the best team of secu-
rity resources and the best allocation of these resources.

Over the past decade, game-theoretic approaches, in par-
ticular security games, have become a major computational

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

paradigm for security resource allocation (Tambe 2011;
Korzhyk, Conitzer, and Parr 2010). The sub-area of security
games relevant to this paper is at the intersection of green
security (i.e., protection of forests, fish and wildlife) (Fang,
Stone, and Tambe 2015; Johnson et al. 2012; Nguyen et al.
2015), and network security games (NSG) (i.e., interdiction
of adversaries on transportation networks) (Jain et al. 2011).
However, previous work in these areas suffer from two lim-
itations relevant to our problem. First, they only consider
the tactical allocation of a given team of resources, without
considering the more strategic question of how to choose
the right team. Indeed, the fact that the tactical question
is already computationally challenging emphasizes the dif-
ficulty of our problem, which requires evaluating the ef-
fectiveness of many teams to select the right one. Second,
previous work has mostly failed to consider heterogeneous
teams, with varying individual and joint effectiveness.

To address these challenges we make the following key
contributions. First, we introduce Simultaneous Optimiza-
tion of Resource Teams and Tactics (SORT) as a new funda-
mental research problem in security games that combines
strategic and tactical decision making and provide a for-
mal model of a SORT problem in an NSG. Second, at the
strategic level, we introduce FORTIFY (Forming Optimal
Response Teams for Forest safetY), a scalable algorithm
for solving this problem. FORTIFY uses a hierarchical ap-
proach to abstract NSGs at varying levels of detail, pro-
viding bounds on the value of different teams of resources
to speed up the search for the optimal team. Third, at the
tactical level, we generalize previous methods for optimiz-
ing tactical resource allocation in network security games
to account for heterogenous teams with varying capabilities.
Lastly, we present experimental results on synthetic prob-
lems, as well as problem instances obtained from joint work
with NGOs engaged in forest protection in Madagascar.

Motivating Domain and Game Model

Forests in Madagascar are under great threat, with valu-
able hardwood trees such as rosewood and ebony being ille-
gally harvested at an alarming rate. There is broad interest
in improving forest protection via patrolling from different
groups, e.g., NGOs, the Madagascar National Parks, local
police and community volunteers. However, there is very
limited coordination among these groups. As a result there

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3880

Figure 1: Illegal logging in progress in at risk area of Mada-
gascar, images provided by our partnering NGOs working in
the area.

is limited attention paid at the strategic level to optimize the
selection of the right team of resources from among these
groups, and the tactical level to optimally allocate the re-
sulting team’s resources. Our model is designed to address
these problems.

Model: We now describe our model for SORT. At the tac-
tical level, the decision of how to optimally allocate a team is
a NSG problem. We model the physical space using a graph
G = (N,E), consisting of source nodes s ∈ S ⊂ N , target
nodes t ∈ T ⊂ N , and intermediate nodes. The attacker
(illegal loggers) acts by traversing a path from a source si to
a target node ti. For illegal logging, the si may be attacker’s
originating villages and ti may be areas containing valuable
trees. Each target node ti has a payoff value that is domain
dependent. Based on the research of collaborating domain
experts in Madagascar, these depend on the density of valu-
able trees in a particular area, and the distance to the coast
(for export) and local villages.

Previously models in NSGs assume a defender limited
to homogenous resources with no probability of failure, no
joint effectiveness and the ability to only cover a single
edge (Jain, Conitzer, and Tambe 2013; Okamoto, Hazon,
and Sycara 2012). This is insufficient to capture the com-
plexities present in the illegal logging domain, and so we
present a new model of the defender for green NSGs.

The defender conducts patrols in the network to interdict
the attacker by placing resources on edges of the graph, as
shown in Figure 2. The defender has K types of resources
each of which can conduct a patrol along Lk connected
edges. Multiple environmental factors can cause a resource
to fail in detecting an attacker, such as limited visibility or
collusion with the adversaries. We model this using an inter-
diction probability Pk for each resource type. The defender
has a total budget B; each resource type has a cost bk, and
a team consists of mk resources of type k for k = 1 . . .K.
Multiple resources placed on a single edge results in a higher
probability of detecting the attacker, which models coordi-
nation among resources.

A defender pure strategy Xi is an allocation of all re-
sources in a given team to a set of edges of the graph, satis-
fying the connectedness and length constraints for each re-
source. An attacker pure strategy Aj is any path starting at
a source node sj and ending at a target node tj . Figure 2
shows three attacker pure strategies. Although these strate-
gies take the shortest path from source to target, it is not a

G(N,E) Graph representing security domain
Gc Compact Graph representing security domain
τ(ti) Payoff of the ith target ti
K Number of defender resource types
Lk Number of edges covered by the kth

resource type
bk Cost of the kth resource type
Pk Detection probability of resource type k
B Total budget for the team
mk Number of defender resources of type k

X = {Xi} Set of defender pure strategies
x = {xi} Defender’s mixed strategy over X
A = {Aj} Set of attacker pure strategies
a = {aj} Attacker’s mixed strategy over A
Ud(Xi,a) Defender utility playing Xi against a
Ua(x, Aj) Attacker utility playing Aj against x

Table 1: Notation and Game Description

si ti

sj tj

sk tk

Figure 2: Pure strategies for the Defender (bold line) and
Attacker (dashed line going from s to t).

requirement in the game. The allocation of one resource of
size Lk = 2 is shown, which intersects paths i and j. The
attacker and defender can play mixed strategies a and x, i.e.,
probability distributions over pure strategies. The probabil-
ity of detecting an attacker on edge e if the defender follows
a pure strategy Xi, allocating mk,e number of resources of
type k to edge e is given in Equation 1.

P (e,Xi) = 1−
∏K

1
(1− Pk)

mk,e (1)

The total probability that a defender pure strategy Xi pro-
tects against an attacker pure strategy Aj is given by the
probability intersection function in Equation 2, where we
take the product over all the edges in the attack path.

P (Xi, Aj) = 1−
∏

e∈Aj

(1− P (e,Xi)) (2)

The attacker obtains a payoff of τ(ti) if he is successful in
reaching a target, and a payoff of zero he is caught. We as-
sume a zero sum model, so the defender receives a penalty
opposite of the attacker’s payoff. For this zero-sum game,
the optimal defender mixed strategy is the well-known min-
imax strategy. The game value is denoted F (λ), and is func-
tion of a team of resources λ selected from some set of re-
sources R. The strategic aspect of the SORT problem can
be formulated as the optimization problem in Equation 3,
where the utility F (λ) is maximized subject to budgetary
constraints.

max
λ⊂R

{
F (λ) :

∑
k∈λ

bk ≤ B

}
(3)

Theorem 1 The SORT problem is NP-Hard even if we can
evaluate F (λ) in constant time. The proof uses a reduction
to knapsack. All absent proofs are located in the appendix.1

1Supplemental material and proofs are available at

3881

FORTIFY: The Hierarchical Search

In NSGs F (λ) is computationally difficult to calculate, be-
cause it requires finding the optimal tactical allocation to
assess the utility of a given team λ. Since there are expo-
nentially many possible teams, the sequential approach of
evaluating F (λ) exactly for every team and picking the best
one is impractical. Instead, in our approach to SORT, we in-
tegrate the analysis of the strategic and tactical aspects of the
problem to search the space of teams much more efficiently.
We use fast methods to quickly evaluate upper bounds on
the utilities for specific teams. Using these bounds we select
the most promising team to evaluate in more detail, itera-
tively tightening the bounds as the search progresses until
the optimal team is identified.

FORTIFY uses a three layer hierarchical representation
NSG to evaluate the performance of teams at different levels
of detail. Starting from the full representation of the game,
each layer abstracts away additional details to approximate
the game value F (λ). We call the bottom later without any
abstraction the Optimal Layer, the Reduced Layer is in the
middle, and the Compact Layer is the most abstract.

FORTIFY is described in Algorithm 1 and Figure 3. Ini-
tially (line 1), we enumerate all teams Λ, that maximally sat-
urate the cost budget B (so that no additional resources can
be added to the team). Each team λ ∈ Λ proceeds through
the layers of the hierarchy by being promoted to the next
layer; the first team to make it through all layers is the op-
timal team. When a team is promoted to a new layer, it
is evaluated to compute a tighter upper bound on the value
based on the abstraction specified for that layer.

At the start of the algorithm we have no information on
the team values, so each team is evaluated and ordered based
on the Compact Layer (line 2-3). Next, the team with the
highest bound is promoted to the Reduced Layer (line 9).
This team can then be again promoted to the Optimal Layer
or another team can be promoted to the Reduced Layer. The
next team to be promoted is always the one with the highest
current upper bound on the value, regardless of which layer
it is in. When a team is evaluated in the Optimal Layer we
know the true value of the team, so if this value is higher than
the upper bounds on all remaining teams this team must be
optimal (line 8), and the algorithm terminates.

http://teamcore.usc.edu/papers/2016/SortAppendix.pdf

Algorithm 1: FORTIFY(B,R)
1: Λ ← getTeams(B,R), Λc = ∅,Λr = ∅,Λ∗ = ∅
2: for each λ ∈ Λ:
3: λ.value ← Compact Layer(λ)
4: Λc ← Λc ∪ {λ}
5: repeat:
6: λmax ← argmaxλ.value(Λc,Λr,Λ∗)
7: if (λmax ∈ Λ∗) return λmax

8: else: λ.value ← NextLayer(λmax)
9: ΛNextLayer ← ΛNextLayer ∪ {λmax}

Λ
Compact

Layer
Reduced

Layer
Optimal
Layer

Λc Λr Λ∗Promote

Max:

Done

start

λ λ λ

Figure 3: Flowchart for the FORTIFY. Λ is the initial set
of teams. Λc, Λr and Λ∗ are the sets of teams which have
passed through the compact, reduced and optimal layers.
After all teams pass through the compact layer one team
(with max value) is promoted at each step.

Algorithm 2: Optimal Layer(λ)
1: Initialize X, A
2: do:
3: (U∗

d ,x, a) ← MiniMax(X, A)
4: X ← DefenderOracle(a)
5: X ← X ∪ { X }
6: Aj ← LinearAttackerOracle(x)
7: if Ua(x, Aj) - Ua(x, a) ≤ ε then
8: Aj ← AttackerOracle(x)
9: A ← A ∪ { Aj }

10: until convergence then return (U∗
d ,x)

Optimal Layer

We first introduce the optimal layer of FORTIFY in order
to explain how the full NSG is solved. This step is com-
putationally expensive as there are an exponential number
of attacker and defender strategies and explicitly enumerat-
ing them all in computer memory is infeasible. Incremen-
tal strategy generation addresses the first challenge, allow-
ing us to obtain the optimal defender mixed strategy with-
out enumerating all pure strategies (McMahan, Gordon, and
Blum 2003). This approach decomposes the problem into
(1) master MiniMax linear program (LP) and (2) oracles for
the defender and attacker which incrementally generate pure
strategies to add to the current strategy space via a separate
optimization problem. The master LP computes a solution
restricted to the set of pure strategies generated by the ora-
cles. The steps are shown in Algorithm 2. The formulation
for the MiniMax LP is standard, but we provide new formu-
lations for both oracles. The key novelty in our work is that
the model complexities imply that we have a non-linear op-
timization problem to solve in both oracles; we address this
by constraining the variables to be binary valued, and we
take advantage of efficient constraint programming methods
in commercial tools like CPLEX.
Minimax: The game value is computed (line 3) by solving
for the minimax strategy using a LP formulation (4). The
inputs are the current set of attacker and defender pure
strategies, A and X and the outputs are the game utility U∗

d ,
and mixed strategies, x and a. Ud(x, Aj) is the defender
utility playing x against the pure strategy Aj .

max
U∗

d
,x

U∗
d s.t. U∗

d ≤ Ud(x, Aj) ∀j = 1 . . . |A| (4)

Defender Oracle: The defender oracle returns the best re-

3882

sponse strategy Xi to add to the MiniMax LP. The objective
is to maximize the utility expressed in Equation (5), given
an input distribution a over the current attacker strategies A,
where aj the probability of attacker taking path Aj .

Ud(Xi,a) = −
∑

j
aj(1− P (Xi, Aj))τ(tj) (5)

A pure strategy implies a single allocation of the given
team’s resources. Resources are allocated by setting the bi-
nary decision variables λk

m,e ∈ {0, 1} which corresponds to
the mth resource of type k being allocated to edge e. Our
contributions formalize the constraints needed to accommo-
date arbitrary path coverage as well as failure probability.
Path constraints are enforced with

∑
e
λk
m,e = Lk and in

Equations (6-7). Equation (6) ensures every allocated edge
is connected to at least one other edge. Since the number of
nodes in any path of length Lk should be Lk + 1, Equation
(7) counts the number of nodes which are either a source or
target of allocated edges, making sure not to double count
nodes which belong to multiple edges. λk

n,m ∈ {0, 1} and
equals 1 if a node n is the source or target of any allocated
edge λk

e,m = 1.

λk
m,e ≤

∑
e1∈in(ns)

λk
m,e1+

∑
e2∈out(nt)

λk
m,e2

ns←source(e)
nt←target(e) if Lk ≥ 1 (6)

λk
m,e ≤ λk

m,n s.t. n ← source(e)
∨ target(e)

∑
n

λk
m,n = Lk+1 (7)

Attacker Oracle: The attacker oracle computes a best re-
sponse strategy Aj which maximizes his utility (Equation
8), playing against the defender mixed strategy x. An op-
timization problem in the form of (8-9) is solved for each
target tj ; the best path for each target is computed and the
target with the highest utility is chosen. The decision vari-
ables γe ∈ {0, 1} are binary and correspond to edges e ∈ Aj .

Ua(x, Aj) =
∑
i

xi(1− P (Xi, Aj))τ(tj) (8)

∑

e∈out(s)

γe = 1;
∑

e∈in(t∗)
γe = 1;

∑

e∈in(n)

γe =
∑

e∈out(n)

γe
n �=source
n �=target (9)

Exactly solving the Attacker Oracle is computationally
expensive. Therefore, in line 6, we introduce a new Linear
Attacker Oracle approximation to quickly generate an
approximate best response. Here the probability intersection
function is approximated with an additive linear function,
P (Xi, Aj) =

∑
e∈Aj

P (e,Xi) so we can write the oracle as an

LP. (In the attacker oracle, the value of P (e,Xi) does not
need to be approximated, as it does not depend on attacker’s
decision variables, but rather on defender’s variables and
thus is calculated outside the attacker oracle.) In the event
that the approximation steps fail to generate a strategy that
increases the oracle’s expected utility (line 7), the oracle
computes the optimal solution as a final step (line 8) to
ensure that the algorithm converges to the true game value.

Algorithm 3: CompactGraph(G(N,E))
1: for each si ∈ N , tj ∈ N :
2: {Ej} ← mincut(si,tj)
3: for each e ∈ Ej :
4: Ac ←ShortestPath(si, e, tj)
5: Ac ← Ac ∪ {Ac}
6: N c ← N c∪ newNode(Ac)
7: for each Ac

i ∈ Ac, Ac
j ∈ Ac:

8: wi,j ← D(i, j)
9: Gc ← newEdge(i, j, wi,j)

10: return Gc

Compact Layer

The compact layer uses an abstract representation of the
game model which reduces the problem in two ways: (1)
the attacker is restricted to using only a subset of possible
paths, (2) the defender chooses to allocate resources directly
to attacker paths rather than edges in the graph.

Formally, the compact layer constructs a new graph
Gc(N c, Ec) in Algorithm 3, where the attacker paths are
represented by nodes N c of the graph. We describe this us-
ing an example, transforming part of the graph from Figure
2 into it’s compact representation in Figure 4. To choose
the subset of attacker paths, for each source-target pair of
nodes we (1) calculate the min-cut for each target, and (2)
find the shortest possible paths from source to target that go
through each of the min-cut edges (lines 1-6). The three at-
tacker paths Ai, Aj and Ak in Figure 2 are among several
calculated from the min-cut of the graph. These three paths
become nodes i, j, and k respectively, in part of the new
compact graph. In order for a resource to cover paths i and
j it’s path coverage Lk must be at least as large as the mini-
mum separation distance between the paths, plus any edges
required to intersect the paths. We define this as D(i, j),
which is 3 for the example in Figure 2. Edges are added be-
tween any nodes i and j with weight D(i, j), equal to the Lk

required to cover both corresponding paths. These distances
are calculated using Dijkstra’s algorithm, and no edges are
added between two nodes if the distance is greater than the
largest path coverage of any defender resource.

The defender can choose to cover any subset of nodes in
Gc with a resource of type k as long as the induced subgraph
has the property that (1) the subgraph is fully connected
and (2) all edges have weight less than Lk. For example,
the three paths in Figure 4 (i-j-k) can be all covered by a
resource of size 4. If the defender has a resource of size 3,
she can only cover paths (i-j) or (j-k).

The compact layer solves this abstract representation of
the game for a single team. The problem is decomposed
into master MiniMax and a single Defender Oracle. There
is no oracle for the attacker, as the attacker’s strategy space
is enumerated using the compact graph and fixed at the

Figure 4:
Compact Graph

i j k
3

4

3

3883

Algorithm 4: Compact Layer
1: Gc ← CompactGraph(G(N,E))
2: Initialize mixed strategy a ← Uniform(Ac)
3: do:
4: Xc

i ← CompactDefenderOracle(a)
5: Xc ← Xc ∪ {Xc

i }
6: (x, a) ← MiniMax(Xc,Ac)
7: until convergence Ud(Xc

i , a) - Ud(x, a) ≤ ε
8: return Ud(x, a)

start of the algorithm. The game value is calculated using
Algorithm 4. The compact graph and subset of attacker
paths are first generated (line 1). The attacker’s mixed
strategy is initialized with a uniform distribution (line 2).
The compact defender oracle continuously adds strategies
to the master LP until the defender’s value cannot be
improved. Convergence occurs when the oracle can no
longer find a strategy to add that will improve the defender’s
utility (line 7).

Compact Defender Oracle The same objective function
(Equation 5) is maximized, however the constraints are mod-
ified to reflect the compact game representation. P (Xi, Aj)
is linearly approximated by Equation 10 and is capped at
1. Here, we want to conservatively over-estimate the de-
fender’s interdiction probability to ensure that the com-
pact layer returns an upper bound. Therefore, when a de-
fender resource covers a node in Gc, we assume that the
corresponding attacker path is interdicted by the entire en-
tire patrol of length Lk of that resource. The probabil-
ity of catching the attacker on the compact graph is set to
(1 − (1 − Pk)

Lk).The defender chooses to allocate the mth

resource of type k to a node nj corresponding to attacker
path Aj by setting the decision variables ηk

j,m ∈ {0, 1}.

P (Xi, Aj) =
∑

P c
kη

k
j,m D(i, j)ηk

i,mηk
j,m ≤ Lk (10)

Lemma 1 Playing against the same attacker strategy, the
Optimal Defender Oracle’s strategy space is a subset of the
Compact Defender Oracle strategy space.

Theorem 2 If the Compact Oracle strategy space contains
the full strategy space of the DefenderOracle, then the game
value of the Compact Layer will always upper bound the
true game value.

Algorithm 5: ReducedLayer
2: Initialize mixed strategy a ← CompactLayer(Ac)
3: do:
4: Xc

i ← DefenderOracle(a)
5: Xc ← Xc ∪ {Xc

i }
6: (x, a) ← MiniMax(Xc,Ac)
7: until convergence Ud(Xc

i , a) - Ud(x, a) ≤ ε
8: return Ud(x, a)

Reduced Layer

The Reduced Layer uses the same restricted strategy space
for the attacker as the Compact Layer. However, the
defender uses the original, unrestricted strategy space to
allocate resources. While the reduced layer is more difficult
to solve than the compact layer, it allows us to iteratively
tighten the upper bounds and avoid more computation in the
Optimal Layer. The evaluation of teams in this layer follows
Algorithm 5. We additionally reduce the computation effort
spent in this layer by warm starting the attacker’s mixed
strategy with the solution from the compact layer.

Evaluation

We present four sets of experimental results: (1) We eval-
uate the scalability and runtime performance of FORTIFY
on several classes of random graphs. We benchmark with a
sequential search which sequentially evaluates enumerated
teams with cost saturating the budget. (2) We also evaluate
the impact of the initial compact layer on the runtime by
comparing the runtimes of FORTIFY with and without the
compact layer. (3) We investigate the benefit of optimizing
team composition as well as the diversity of optimal teams
and (4) we demonstrate that FORTIFY can scale up to
the real world by testing performance on a case study of
Madagascar using real graph data. All values are averaged
over 20 trials. The experiments were run on a Linux cluster
with HP-SL250, 2.4 GHz, dual-processor machines. We use
the following graphs:

(1) Grid graphs Labeled Gw,h,s,t consist of a grid with
width w, height h, sources s, targets t and nearest neighbor
connections between nodes. We define start and end points
for the attacker, with sources located at one end and targets
at another.

(2) Geometric graphs provide a good approximation of
real road networks (Eppstein and Goodrich 2008) allowing
us to model the networks of villages and rivers in forest re-
gions. n nodes are distributed randomly in a plane and are
connected based on their distance which determines the den-
sity d of the graph. We label them Rn,s,t,d.

Scalability

We first evaluate the performance of FORTIFY using two
sets of resource types, and target values of 50. Each set con-
tains 4 resource types, with varying costs of b={5, 6, 7, 8}.
The first set of resource types Λ1 have varied path cov-
erages L1= {1, 2, 3, 4} and constant detection probability
P 1 ={1, 1, 1, 1} while the second set Λ2 has constant path
coverage L2={2, 2, 2, 2} and varied detection probabilities
P 2={0.5, 0.6, 0.7, 0.8}. Experiments that did not terminate
in 3 hrs were cutoff and are shown as missing bars. Figure
5 show the runtimes for our algorithms run on both graph
types for both Λ1 and Λ2 teams. The budget varies on
the x-axis and the runtime is shown on the y-axis in log
scale. FORTIFY consistently outperform the sequential
method; on both the grid and geometric graphs. FORTIFY

3884

FORTIFY FORTIFY-NoCompact Sequential

10 15 20 25

102

103

104

Budget

L
og

-R
un

tim
e(

s)

a) 15 20 25 30 35

102

103

Budget

L
og

-R
un

tim
e(

s)

c)

15 20 25 30

102

103

104

Budget

L
og

-R
un

tim
e(

s)

b) 10 15 20 25 30

102

103

Budget

L
og

-R
un

tim
e(

s)

d)

Figure 5: Runtime scalability comparing FORTIFY against
Sequential and No-Compact method. (a) Λ1 teams on a
G5,20,5,5 graph. (b) Λ2 teams on a G4,4,4,4 graph. (c) Λ1

teams on a R70,5,5,0.1 graph. (d) Λ2 teams on a R25,4,4,0.1

graph.

performs particularly well on the grid graphs, and scaling
past budgets of 25 while all instances of the sequential
search were cut off. We observe a peak in the runtime for
teams with perfect detection probability in 5 (a) and (C)
around a budget of 20-25, which is due to the deployment
vs saturation phenomenon which occurs in these types of
network models (Jain, Leyton-Brown, and Tambe 2012).

Removing the Compact Layer: We also compare the per-
formance of FORTIFY with and without the compact layer
in Figure 5. It is apparent that this layer is crucial to the per-
formance of the algorithm, particularly for the grid graphs
in parts (a-b) as FORTIFY without the compact layer per-
forms almost as poorly as the sequential method. In fact,
removing the compact layer can cause FORTIFY to perform
worse than the sequential method for small budgets due to
the overhead required for the approximation.

Team Composition

We demonstrate the value of optimizing over team composi-
tion by looking at the loss in game value incurred by playing
a uniform random team which saturates the budget.

Games are played on G4,4,4,4 and R25,4,4,0.1 graphs with
target values of 50. The results are shown in Figure 6 with
budget on the x-axis and game value on the y-axis. As ex-
pected, the game value decreases with budget as we form
larger teams, however the relative benefit increases as well,
with almost a 300% loss in solution quality at budgets of 25
without our team optimization algorithm. This is due to the
increase in the space of possible teams which can be formed,
making it more likely to form a suboptimal team.

10 15 20 25

0

−20

Budget

G
am

eV
al

ue Optimal-Grid
Uniform-Grid
Optimal-Rand
Uniform-Rand

Figure 6: Team optimization comparison. Teams
have 6 resource types, and vary both edge coverage
L = {2, 2, 5, 3, 3, 6}, and detection probability P =
{0.7, 0.9, 0.7, 0.6, 0.6, 0.6} with costs b = {5, 8, 10, 5, 8, 10}.

Real World : Madagascar Protected Forests

We demonstrate the ability of FORTIFY to scale up to real
world domains, evaluating the performance on a network
constructed from GIS data of at-risk forest areas in Mada-
gascar. We present the following model which was built
working closely with domain experts from NGOs. Graph:
Figure 1 shows the road and river networks used by the pa-
trolling officers, as well as the known routes taken by groups
of illegal loggers. We used this to build the nodes and edges
of our network. Edges correspond to distances of 7-10 km.
10 target locations were chosen by clustering prominent for-
est areas. 11 villages in the surrounding area were chosen
as sources. Several domain experts identified the risk level
and level of attractiveness for logging, based on the size of
the forest, the ease of access and the value of the trees. Us-
ing this information we assigned values ranging from 100 to
300 to each of the targets. Resources: Communal police-
men and local volunteers conduct patrols in the forest. A
typical patrol covers 20 km in a day and patroller can con-
duct two types of patrols, a short patrol covering 2 edges
and a long patrol covering 3 edges. Based on expert input,
we assign the detection probability for communal police as
0.9 for short patrols and 0.8 for long patrols; and for vol-
unteers, 0.7 for short patrols and 0.6 for long patrols. The
lower probabilities for volunteers are because they must call
backup for interdiction, which may allow the adversary to
escape. Thus, in total we have 4 resource types available
L = {2, 3, 2, 3}, P = {0.7, 0.6, 0.9, 0.8}. The costs are pro-
portional to the salaries patrollers receive for a day of pa-
trolling b = {5, 5, 8, 8}. Experiment: The runtime experi-
ments are shown in Table 2 for increasing budgets. Data is
averaged over 20 runs. FORTIFY can scale up to real world
networks, able to handle both the large graph size and num-
ber of source and target nodes, even for large budgets. The
value of performing this optimization is shown in Figure 7
with the solution quality (game value) on the y-axis and bud-
get on the x-axis, where we compare the optimal game value
to the average value achieved by randomly generated teams.

Conclusion and Related Work

We study a fundamentally new problem in Security Games–
SORT. This new problem addresses the environmental pro-
tection challenge of optimal investment and deployment of

3885

B Runtime(s) GV
10 203 -266
15 388 -256
20 653 -239
25 1308 -230
30 1742 -220
35 2504 -216
40 3675 -204

Table 2: Runtime on Mada-
gascar Graph

10 20 30 40

−200

−250

−300

Budget

G
am

eV
al

ue

Optimized Random

Figure 7: Team optimiza-
tion on Madagascar Graph

security resource teams. We use the rising threat of illegal
logging in Madagascar as a motivating domain where we
must work with a limited budget to coordinate and deploy
such teams. To address this problem, we develop FORTIFY,
a scalable solution addressing both aspects of the SORT
problem, with the ability to both model and solve real world
problem instances. FORTIFY provides a valuable tool for
environmental protection agencies.

We have already discussed the shortcomings of related
work in security games earlier. In addition, there is
significant research in team formation in multiagent sys-
tems, e.g., in network configuration (Gaston and desJardins
2005), board gameplay (Obata et al. 2011) fantasy foot-
ball (Matthews, Ramchurn, and Chalkiadakis 2012) and
multi-objective coalition (Cho et al. 2013)). However, that
work fails to security resource allocation at the tactical level.

Acknowledgements

We would like to thank Dr. Jonah Ratsimbazafy. This re-
search was supported by MURI Grant W911NF-11-1-0332.

References

Cho, J.-H.; Chen, I.-R.; Wang, Y.; Chan, K. S.; and Swami,
A. 2013. Multi-objective optimization for trustworthy tacti-
cal networks: A survey and insights. Technical report, DTIC
Document.
Dhital, N.; Vololomboahangy, R. R.; and Khasa, D. P. 2015.
Issues and challenges of forest governance in madagascar.
Canadian Journal of Development Studies / Revue canadi-
enne d’tudes du dveloppement 36(1):38–56.
Eppstein, D., and Goodrich, M. T. 2008. Studying (non-
planar) road networks through an algorithmic lens. In Pro-
ceedings of the 16th ACM SIGSPATIAL international con-
ference on Advances in geographic information systems, 16.
ACM.
Fang, F.; Stone, P.; and Tambe, M. 2015. When security
games go green: Designing defender strategies to prevent
poaching and illegal fishing. In International Joint Confer-
ence on Artificial Intelligence (IJCAI).
Gaston, M. E., and desJardins, M. 2005. Agent-organized
networks for dynamic team formation. In AAMAS, 230–237.
ACM.

Jain, M.; Korzhyk, D.; Vaněk, O.; Conitzer, V.; Pěchouček,
M.; and Tambe, M. 2011. A double oracle algorithm for
zero-sum security games on graphs. In AAMAS, 327–334.
Jain, M.; Conitzer, V.; and Tambe, M. 2013. Security
scheduling for real-world networks. In AAMAS, 215–222.
Jain, M.; Leyton-Brown, K.; and Tambe, M. 2012. The
deployment-to-saturation ratio in security games. In Con-
ference on Artificial Intelligence (AAAI).
Johnson, M. P.; Fang, F.; ; and Tambe, M. 2012. Patrol
strategies to maximize pristine forest area. In Conference on
Artificial Intelligence (AAAI).
Korzhyk, D.; Conitzer, V.; and Parr, R. 2010. Complex-
ity of computing optimal stackelberg strategies in security
resource allocation games. In AAAI.
Matthews, T.; Ramchurn, S. D.; and Chalkiadakis, G. 2012.
Competing with humans at Fantasy Football: Team forma-
tion in large partially-observable domains. In Proceedings
of the 26th Conference of the Associations for the Advance-
ment for Artificial Intelligence, 1394–1400.
McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003. Plan-
ning in the presence of cost functions controlled by an ad-
versary. In In Proceedings of the Twentieth International
Conference on Machine Learning.
Nguyen, T. H.; Fave, F. M. D.; Kar, D.; Lakshminarayanan,
A. S.; Yadav, A.; Tambe, M.; Agmon, N.; Plumptre, A. J.;
Driciru, M.; Wanyama, F.; and Rwetsiba, A. 2015. Making
the most of our regrets: Regret-based solutions to handle
payoff uncertainty and elicitation in green security games.
In Conference on Decision and Game Theory for Security.
Obata, T.; Sugiyama, T.; Hoki, K.; and Ito, T. 2011. Con-
sultation algorithm for Computer Shogi: Move decisions by
majority. In Computer and Games’10, volume 6515 of Lec-
ture Notes in Computer Science, 156–165. Springer.
Okamoto, S.; Hazon, N.; and Sycara, K. 2012. Solving
non-zero sum multiagent network flow security games with
attack costs. In AAMAS, 879–888.
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.
Thomas F. Allnutt, Gregory P. Asner, C. D. G. G. V. N. P.
2013. Mapping recent deforestation and forest disturbance
in northeastern madagascar. Tropical Conservation Science
6(1):1–15.
WWF. 2015. http://wwf.panda.org/about our earth/
deforestation/deforestation causes/illegal logging.

3886

