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Abstract

We address the problem of robust decision making for
stochastic network design. Our work is motivated by spatial
conservation planning where the goal is to take management
decisions within a fixed budget to maximize the expected
spread of a population of species over a network of land
parcels. Most previous work for this problem assumes that
accurate estimates of different network parameters (edge ac-
tivation probabilities, habitat suitability scores) are available,
which is an unrealistic assumption. To address this short-
coming, we assume that network parameters are only par-
tially known, specified via interval bounds. We then develop
a decision making approach that computes the solution with
minimax regret. We provide new theoretical results regarding
the structure of the minmax regret solution which help de-
velop a computationally efficient approach. Empirically, we
show that previous approaches that work on point estimates
of network parameters result in high regret on several stan-
dard benchmarks, while our approach provides significantly
more robust solutions.

1 Introduction

Several dynamic processes over a network such as spread
of information and opinions, viral marketing (Domingos
and Richardson 2001; Kempe, Kleinberg, and Tardos 2003;
Leskovec, Adamic, and Huberman 2007), and disease prop-
agation among humans (Anderson and May 2002) can be
described as a diffusion or cascade over the network. The
spread of wildlife over a network of land patches can be
described using a similar diffusion process, also known as
metapopulation modeling in ecology (Hanski 1999). Our
work is motivated by the spatial conservation planning prob-
lem where goal is to find strategies to conserve land parcels
to maximize the expected spread of the endangered wildlife.
Conservation strategies, which correspond to network de-
sign, include deciding which land parcels to purchase for
conservation within a fixed budget. This problem has re-
cently received much attention in the AI community (Shel-
don et al. 2010; Ahmadizadeh et al. 2010; Golovin et al.
2011; Kumar, Wu, and Zilberstein 2012; Wu et al. 2013;
Wu, Sheldon, and Zilberstein 2014; Xue, Fern, and Sheldon
2014; 2015; Wu, Sheldon, and Zilberstein 2015).
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A key assumption implicit in most such previous ap-
proaches is that accurate estimates of different parameters
of the underlying network diffusion process, such as edge
activation probabilities and habitat suitability scores, are
known. However, this assumption is practically unrealistic.
Even using learning approaches to estimate parameter val-
ues from observed data (Kumar, Wu, and Zilberstein 2012)
may not lead to precise estimates due to missing, noisy data.
Therefore, in our work we develop conservation strategies
in the presence of partially specified diffusion process pa-
rameters. We assume the commonly used notion of interval
bounds (Boutilier et al. 2003), where only upper and lower
bounds on different parameter values are known. The deci-
sion problem in this case is that of computing a robust con-
servation strategy that minimizes the maximum regret (min-
imax regret) within the space of feasible parameter values.

The independent cascade (IC) model (Kempe, Klein-
berg, and Tardos 2003) is the basic building block that de-
scribes the diffusion process in social networks as well as in
metapopuplation modeling in ecology (Hanski 1994). Re-
cently, there is increasing interest in modeling the effects of
adding random noise to edge parameters of the network—
probabilities puv that model the strength of influence from
node u to v (Adiga et al. 2014; Goyal, Bonchi, and Lak-
shmanan 2011; He and Kempe 2014). However, He and
Kempe show that most independent random noise models
can be subsumed within the IC model and as such, do not
add anything new to the IC model. From a practical per-
spective, the noise in estimating network parameters may not
be random or independent due to systemic bias in algorith-
mic techniques and observed data. Therefore, it is better to
consider an adversarial setting which provides a worst case
analysis (He and Kempe 2014). This motivates our goal of
computing the minimax regret solution.

While He and Kempe [2014] also consider an adversarial
setting for the IC model, our work differs from it signifi-
cantly. The analysis of He and Kempe is mainly focused on
diagnosing instability in the presence of noise. If the net-
work is deemed unstable, there is no algorithmic recourse
presented in (He and Kempe 2014) to compute a robust so-
lution. Our work addresses this issue by computing the min-
imax regret solution for network design in the presence of
noise. Furthermore, directly computing the minimax regret
solution is not tractable as the feasible parameter space is
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Figure 1: Time indexed layered graph. Solid edges are ac-
tive, dashed are inactive for this example cascade.

continuous. We therefore develop new theoretical insights
that characterize the properties of the minimax regret solu-
tion making its computation tractable. To improve tractabil-
ity further, we use an iterative constraint generation pro-
cedure to minimize the maximum regret, and incorporate
the sample average approximation (SAA) framework to ad-
dress the stochasticity in the network design. Empirically,
we show that previous approaches that work on point esti-
mates of network parameters result in high regret on several
standard benchmarks, while our approach provides signif-
icantly more robust solutions. We also provide operational
insights showing how the decision by assuming point esti-
mates of parameters can be disadvantageous in an adversar-
ial setting as it may lead to isolation of wildlife habitats.

2 The Conservation Planning Problem

We first provide an overview of the stochastic network
design problem for conservation planning (Sheldon et al.
2010). In this problem, the goal is to design conservation
strategies to maximize the expected spread of a species
through a network of habitat patches over a given time pe-
riod. The spread of species is modeled as a stochastic cas-
cade or diffusion over a network of habitat patches H, which
are analogous to nodes in a graph. The species can only
survive within habitat patches that are conserved. The habi-
tat patches are grouped into non-overlapping land parcels
1, . . . , L. A land parcel l is available for purchase at a cost
cl. A conservation strategy or the network design problem
is to decide which land parcels to purchase and conserve
within a fixed budget B over the time period T .

The metapopulation model used to describe the stochastic
patch occupancy dynamics (Hanski and Ovaskainen 2000)
is similar to the independent cascade (IC) model. The diffu-
sion process starts from the initial source set S of occupied
patches at time t=0. At each subsequent time step, the fol-
lowing stochastic events can take place. The population at an
occupied patch u at time t can colonize an unoccupied patch
v at time t + 1 with probability puv . Another possibility is
that the population at patch u becomes extinct at time t + 1
with probability 1−puu.

The goal of the conservation planning problem is to select
a set of land parcels to purchase that maximize the expected
number of patches occupied at time T . Let the conservation
strategy be denoted using a binary vector y= 〈y1, . . . , yL〉.
Each binary variable yl denotes whether the corresponding
land parcel l is purchased or not. Let binary random vari-
ables Xvt

(y) denote whether the patch v is occupied or un-
occupied at time t under a given strategy y. Let B denote the
given budget and T denote the plan horizon. The stochastic

network design problem is:

max
y

∑
v∈H

E
[
XvT (y)

]
s.t.

L∑
l=1

clyl ≤ B (1)

Notice that problem (1) is a stochastic optimization prob-
lem (Kleywegt, Shapiro, and Homem-de-Mello 2002) as the
objective function is an expectation over all possible cas-
cades. A principled approach is to solve this problem ap-
proximately by generating N independent cascade scenar-
ios from the underlying stochastic diffusion model. This re-
sults in a deterministic approximation of the given stochas-
tic problem, which is easier to solve. This approach is
also known as sample average approximation (SAA) (Kley-
wegt, Shapiro, and Homem-de-Mello 2002), and has been
used previously for this problem (Sheldon et al. 2010;
Kumar, Wu, and Zilberstein 2012).

SAA Sampling We provide a brief overview of the SAA
scheme for the conservation planning problem; for details
we refer to (Sheldon et al. 2010). We first define a time-
indexed layered graph G= (V,E) as shown in figure 1. In
this graph, there is a node ut for each habitat patch u ∈ H
and time step t. An edge (ut, vt+1) is present if the associ-
ated probability putvt+1

>0.
An SAA cascade k is generated by sampling from a bi-

ased coin with probability putvt+1
independently for each

edge (ut, vt+1) in this graph. If the toss outcome is heads,
the edge is active and is included in the cascade, else it is
inactive. Thus, a cascade k defines a subgraph Gk=(V,Ek)
where only active edges are included in Ek. Given a conser-
vation strategy y, we can determine if a node vt is occupied
in cascade k by checking if there exists a valid path from
some node u0 to vt in Gk such that 1) patch u is occupied at
time 0, 2) all the patches along the path are purchased.

Let the activation of node vt under a cascade k and strat-
egy y be denoted as Xk

vt
(y). The SAA approximation for N

training cascades is given as:

max
y

∑
v∈H

E
[
XvT (y)

] ≈ max
y

1

N

N∑
k=1

∑
v∈H

Xk
vT (y) (2)

The SAA scheme provides good convergence guarantees—
as N goes to infinity, the SAA objective converges to
the original expected objective (Kleywegt, Shapiro, and
Homem-de-Mello 2002).

3 Regret Based Network Design

Most previous approaches assume that point estimates of
colonization probabilities puv and other parameters such
as suitability scores of habitat patches, are know a pri-
ori (Sheldon et al. 2010; Kumar, Wu, and Zilberstein 2012;
Wu, Sheldon, and Zilberstein 2014). As highlighted previ-
ously, this is an unrealistic assumption. Therefore, our goal
in this section is to develop the theory and a practical ap-
proach to compute robust solutions when network parame-
ters are only partially known.

Similar to previous works (He and Kempe 2014; Boutilier
et al. 2003), we assume only the knowledge of upper and
lower bounds on different parameters. That is, for edge prob-
abilities, we have ptrue

uv ∈ [p
uv
, puv], where ptrue is the true
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(but unknown) parameter. In the presence of such uncer-
tainty, a natural approach is to compute a solution y that ob-
tains minimum max-regret, where max-regret is the largest
quantity by which the decision maker could regret taking
the decision y while allowing different parameters to vary
within the bounds (Boutilier et al. 2003). That is, nature acts
as an adversary and chooses parameters (within the allowed
bounds) that maximize the regret of decision y. We next for-
malize these notions for conservation planning.

3.1 The MMR Formulation

We now describe the minimax regret (MMR) formulation
for our network design problem. Let p = {puv ∀(u, v)} de-
note the edge probabilities for the entire time-indexed graph
G (as shown in figure 1). For ease of exposition, we drop
dependence on time; edge (u, v) always implies if node u
is in time slice t, then node v belongs to slice t + 1. Let
P = ×(u,v)Puv denote the entire possible space of edge
probabilities that are allowed as per the known upper and
lower bounds. Each set Puv is defined as: Puv={puv |puv≤
puv ≤ puv}. The pairwise regret of a decision y w.r.t. y′
over P is:

R(y,y′;P)=max
p∈P

[∑
v∈H

E
[
XvT (y

′);p
]−∑

v∈H
E
[
XvT (y);p

]]
(3)

Using the regret function defined above, we define the max-
imum regret of a decision y as follows:

MR(y,P) = max
y′ R(y,y′;P) (4)

Using the above formulation, the final MMR criterion is:

MMR(P) = min
y

MR(y,P) (5)

Our goal in this work is to solve the problem (5) for the
conservation planning problem.

3.2 Pairwise Regret Computation

The first step for computing the MMR solution is to be able
to compute the pairwise regret (3) between any two deci-
sions y and y′. We first establish some results about pairwise
regret that make the computation tractable. We start with the
following proposition for the time indexed graph G.

Proposition 1. Assume that all the network parameters p−e
are fixed except the edge probability pe for a particular edge
e. The expected objective

∑
v E

[
XvT (y);p

]
is linear in the

edge probability pe.

Proof. We consider the following objective function:

F (pe;p−e,y)=
∑
v∈H

E
[
XvT (y);p

]
=
∑
ξ

Pr(ξ)
∑
v∈H

ξvT (y) (6)

where ξ denotes a particular outcome in the probability
space of the underlying distribution p, also referred to as a
cascade. That is, ξ includes a binary random variable ξe′ for
each edge e′ in the time indexed graph. The random vari-
able ξe′ is set to the outcome of the biased coin toss (with
success probability pe′ ). Notice that coin toss is independent

for each edge. Based on the complete cascade ξ, we can de-
fine a subgraph Gξ = (V,Eξ) of the original time indexed
graph where an edge e ∈ Eξ iff ξe=1.

Binary variable ξvT denotes whether the node vT is active
or inactive as per the cascade ξ and decision y. We expand
the above expression further as:∑
ξ

Pr(ξ)
∑
v∈H

ξvT (y)=
∑
ξ

∏
f∈Eξ

pf
∏

f∈E\Eξ

(1− pf )
[ ∑
v∈H

ξvT (y)
]

Notice that in the above expression, the probability pe for
the edge e appears exactly once in each term of the sum
(
∑

ξ). Therefore, the above expression, and hence the ex-
pected objective is linear in the probability pe.

Based on prop. 1, we can write the expected objective as
a function of probability pe as below:

∑
v∈H

E
[
XvT (y);p

]
= F (pe;p−e,y)

= peF1(p−e;y) + F2(p−e;y) (7)

where functions F1 and F2 depend only on parameters p−e.
Based on this proposition, we show the following result.

Proposition 2. There exists an edge-probability vector p�

that provides the pairwise regret R(y,y′;P) by maximizing
the right-hand-side of (3) such that each probability p�e is at
one of the extremes of the allowed range:

p�e ∈ {
p
e
, pe

} ∀e
Proof. We prove by contradiction. Let us assume that the
probability p� has at least one edge pe that is not at the ex-
treme point of its range. The pairwise regret of Eq. (3) is:

R(y,y′;P) =

[ ∑
v∈H

E
[
XvT (y′);p�

]− ∑
v∈H

E
[
XvT (y);p�

]]

=

[
p�eF1(p

�
−e;y

′)+F2(p
�
−e;y

′)−p�eF1(p
�
−e;y)−F2(p

�
−e;y)

]

= p�e

[
F1(p

�
−e;y

′)− F1(p
�
−e;y)

]
+ F2(p

�
−e;y

′)− F2(p
�
−e;y)

Only the first term in the above expression depends on
p�e . If we have F1(p

�
−e;y

′) > F1(p
�
−e;y), then we set p�e

to the upper bound pe to increase the regret. If we have
F1(p

�
−e;y

′)<F1(p
�
−e;y), then we set p�e to the lower bound

p
e

to increase the regret. Both these situations are a con-
tradiction as we assumed that p� was the optimal probabil-
ity that maximized the right hand side of Eq. (3). In case
F1(p

�
−e;y

′) = F1(p
�
−e;y), we can always set p�e to any ex-

treme of its allowed range without affecting the regret.
Therefore, optimal probability must be the either extreme

end of the allowed range.

Prop. 2 makes pairwise regret computation R, which
is a stochastic optimization problem, significantly more
tractable as it allows us to integrate the SAA procedure for
pairwise regret. We utilize this fact for tractability in the next
sections.
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3.3 Maximum Regret (MR) Computation

In this section, we develop a scalable computation approach
to compute the max-regret MR (4). Notice that computing
the pairwise regret R (3) (a sub-step of MR) is a stochastic
optimization problem. Therefore, we plan to use the SAA
scheme as highlighted in section 2. However, applying SAA
to pairwise regret (3) is not straightforward as the underlying
distribution p itself is a variable. Therefore, how to generate
samples before solving the optimization problem itself is not
clear. We propose a novel solution to this problem. Our strat-
egy will be to simultaneously optimize over the distribution
p in (3) and generate samples from p required for the SAA
approximation on-the-fly by embedding the inverse trans-
form sampling (ITS) procedure for a Bernoulli distribution
(or a biased coin) within a single mathematical program. We
detail this process below.

Consider the sampling procedure for an edge e with prob-
ability pe. We first generate a uniform random number re. If
re ≤ pe, then edge activation xe=1, else xe=0. We cannot
apply directly this procedure to pairwise regret computation
as the probability pe is not known. However, according to
prop. 2, we know that pe must be the either extreme. We ex-
ploit this fact to write a set of linear constraints that encode
the sampling procedure. Let Ie denote the binary variable
for the edge e. If Ie=1, then pe= pe, else pe= p

e
. For any

value of Ie, the sampling procedure is encoded via following
linear constraints:

xe = Ie If p
e
< re ≤ pe (8)

xe = 0 If re > pe (9)
xe = 1 If re ≤ p

e
(10)

The validity of above constraints can be easily checked for
different values of Ie (= {0, 1}) and the random number re.
Therefore, to simulate N SAA samples, we generate apriori
N uniform random numbers rke , k ∈ {1, . . . , N} for each
edge e in the time indexed graph. The SAA approximation
for the MR (4) can then be written as the following program:

max
y′,I,{xk

y},{xk
y′}

1

N

[ N∑
k=1

∑
v∈H

xk
v,y′ −

N∑
k=1

∑
v∈H

xk
v,y

]
(11)

s.t. xk
y ∈ Ω(xk

y,y, I, r
k) ∀k ∈ {1, . . . , N} (12)

xk
y′ ∈ Ω(xk

y′ ,y′, I, rk) ∀k ∈ {1, . . . , N} (13)

where y′ is the decision (to be optimized) that provides the
max-regret for the given decision y; I = {Ie ∀e ∈ E} is
the set of binary variables for each edge denoting whether
the corresponding pe is p

e
or pe; xk

y ={xk
v,y∀v}∪{xk

e,y∀e}
is the set of binary variables for each node v and edge e
in the time-indexed graph. xk

v,y denotes whether the node v
becomes occupied for the SAA sample k and the decision y;
xk
e,y denotes whether the edge e becomes active for sample

k and the decision y; xk
y′ denotes the same for the decision

y′. The parameters rk = {rke ∀e ∈ E} are uniform random
numbers for the SAA sample k.

Table 1 shows different constraints that define the con-
straint set Ω. Constraint (??) enforces the budget constraint
that the cost of land parcels purchased should be within
the given budget. Constraints (??)–(??) encode the sampling

Constraint set Ω(xy,y, I, r)
Budget constraint:
L∑

l=1

clyl ≤ B (14)

Edge Sampling Constraint:
xe = Iuv If p

e
< re ≤ pe ∀e ∈ E (15)

xe = 0 If re > pe ∀e ∈ E (16)
xe = 1 If ruv ≤ p

e
∀e ∈ E (17)

Edge transmission constraints:
te ≥ xu + xuv − 1 ∀e=(u, v) ∈ E (18)
te ≤ xu ∀e=(u, v) ∈ E (19)
te ≤ xuv ∀e=(u, v) ∈ E (20)
Atleast One Neighbor Active Constraint:

nv ≤
∑

(u,v)∈E

tuv ∀v ∈ V (21)

nv ≥ tuv ∀(u, v) ∈ E , ∀v ∈ V (22)
Node Activation Constraint:
xv ≥ nv + yA(v) − 1 ∀v ∈ V (23)
xv ≤ nv ∀v ∈ V (24)
xv ≤ yA(v) ∀v ∈ V (25)
Initially occupied nodes:
xv = 1 ∀v ∈ S (26)
xv = 0 ∀v ∈ V0 \ S (27)
Continous/Binary variables:
xv, xe, nv, te ∈ [0, 1] (28)
Ie ∈ {0, 1}, yv ∈ {0, 1} (29)

Table 1: Constraint set Ω for max-regret mixed-integer pro-
gram

procedure for each edge e and the given random number re.
If xe = 1, then the edge is considered active, else inactive.
Edge transmission constraints use the variable te to encode
that an edge e= (u, v) is able to colonize the node v iff (1)
node u is occupied (encoded by xu) (2) edge (u, v) is active
(encoded by xuv). Constraints (??)–(??) encode whether
there is at least one incoming edge (u, v) for node v that can
successfully colonize node v. Constraints (??)–(??) encode
that a node v becomes occupied iff 1) there is at least one in-
coming edge that can colonize v (denoted by variable nv), 2)
the land parcel A(v) corresponding to node v is purchased
(denoted by variable yA(v)). Finally, constraints (??)–(??)
denote which nodes are initially occupied/unoccupied. No-
tice that only the variables I that denote whether the proba-
bility pe should be min or max and decision variables y are
binary, the rest are continuous.

3.4 Minimizing the Maximum Regret

In this section, we present an iterative constraint generation
approach to compute the MMR solution for the network de-
sign problem. We can simplify the MMR problem as below:

MMR(P)=min
y

MR(y,P) (14)

= min
y

max
y′,p

[
U(y′,p)− U(y,p)

]
(15)

where we defined U(y,p) =
∑

v∈H E
[
XvT (y);p

]
. Notice

that for a fixed y, the quantities y′∗ and p� that maxi-
mize

[
U(y′,p)−U(y,p)

]
should also satisfy the relation
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that y′∗ = argmaxy′ U(y′,p�). We can use this fact to re-
place the inner maximization in (15) as a (possibly large)
set of constraints below. Let Pext denote the space of al-
lowed probability vectors p such that each edge probabil-
ity pe is p

e
or pe. Let D(p) denote the best decision y′� =

argmaxy′ U(y′,p) . We can rewrite the MMR optimization
problem as below:

min
y

M (16)

M ≥ U
(D(p),p

)− U
(
y,p

) ∀p ∈ Pext (17)

As the function U is an expectation, we can use the SAA
scheme similar to the one used for the problem (11) to ap-
proximate this function. Wang and Ahmed [2008] show that
the solution of such an SAA approximation approaches the
true optimum of the stochastic program (having expected
value constraints) with probability approaching one expo-
nentially fast with the increasing number of samples N . The
SAA problem is:

min
y

M (18)

M ≥ 1

N

N∑
k=1

∑
v∈H

xk
v,D(p) − 1

N

N∑
k=1

∑
v∈H

xk
v,y ∀p ∈ Pext (19)

xk
D(p) ∈ Ω(xk

D(p),D(p), Ip, r
k) ∀k ∈ {1, . . . , N} (20)

xk
y ∈ Ω(xk

y,y, Ip, r
k) ∀k ∈ {1, . . . , N} (21)

where Ip denotes that different edge variables Ie are fixed
as per the given probability pe (if pe = pe, then Ie =1, zero
otherwise). Notice that even though the problem (18) is a
deterministic one, the number of constraints (19) are pro-
hibitively large. Therefore, it is not tractable to solve this
problem a single large program. Fortunately, there is a well
known technique in operations research known as constraint
generation to solve such problems (Boutilier et al. 2003).
In this technique, we iteratively solve the program (18) us-
ing a mixed-integer solver by using only a subset of con-
straints on the variable M . Initially, we start with the pair
〈D(pbase),pbase〉, where pbase is the initial estimate of the
true probability. We then get a decision y from solving (18).
However, this may not be the true MMR solution. Thus, we
look for the currently missing constraint on M that is maxi-
mally violated by the decision y. This violated constraint is
found by finding the decision y′ and the associated proba-
bility vector py′ that maximizes the regret w.r.t. the current
MMR decision y by solving the MR problem (11). Once
such a solution 〈y′,py′〉 is found, it is added to the MMR
program, and the whole process repeats. Such an iterative
constraint generation procedure is guaranteed to terminate
and converge to the true MMR solution (to the accuracy af-
forded by the SAA scheme) as shown in (Boutilier et al.
2003). In practice, we found that ≈30 iterations of constraint
generation were sufficient for convergence in most cases.
Accuracy of SAA Approximation The SAA approach con-
verges to the true optimum of the given stochastic opti-
mization problem as number of samples N → ∞. Fortu-
nately, we can get stochastic bounds on the quality of the
SAA solution compared with the true optimum when us-
ing a finite number of samples N (Sheldon et al. 2010;

Kleywegt, Shapiro, and Homem-de-Mello 2002). As the
MR problem (11) is repeatedly solved for the constraint gen-
eration, we apply SAA analysis to it. Let p� be the probabil-
ity vector corresponding to the variables I found by solving
the MR problem. For this vector p�, we have the following
SAA approximation:

max
y′

[∑
v∈H

E
[
XvT (y

′);p�]−∑
v∈H

E
[
XvT (y);p

�]] ≈

max
y′

1

N

[ N∑
k=1

∑
v∈H

[
Xk

vT (y
′);p�]−

N∑
k=1

∑
v∈H

[
Xk

vT (y);p
�]] (22)

Empirically, we compute the stochastic upper and lower
bounds for the above approximate max-regret for the deci-
sion y′ using the same settings as in (Sheldon et al. 2010),
which come out to be fairly close to each other.

4 Experiments

We used a publicly available conservation planning bench-
mark which represents a geographical region on the coast of
North Carolina (Ahmadizadeh et al. 2010). This benchmark
has about 80 different instances of the conservation plan-
ning problem. The endangered species is the Red-cockaded
Woodpecker (RCW). The network consists of 411 territo-
ries or habitat patches grouped into 146 parcels. Each parcel
can be purchased at a certain cost, establishing 146 decision
variables y. Each patch also has a habitat suitability score in
the range [0, 9].

In this work, we consider two types of parameter
uncertainty—uncertainty in edge activation probabilities pe
and in suitability scores sv for each node v. To evaluate the
impact of suitability score uncertainty, we used a modified
objective function

∑
v∈H E

[
svXvT (y)

]
. That is, the goal is

to maximize the number of high suitability score habitats.
For suitability score uncertainty, the same result holds—the
suitability that maximizes the pairwise regret occurs at the
either extreme points of the allowed range (proof is similar
to the one we presented earlier).
Parameter Setting We first compute pbase

e for each edge e
using the equations provided in (Sheldon et al. 2010). Then
we add uncertainty ε to each parameter to get the range
[pbase

e −ε ·pbase
e , pbase

e +ε ·pbase
e ]. The range for suitability scores

is also computed in a similar manner.
Edge Activation Regret Analysis For this analysis, we
used a time horizon of T = 5, 9, 10, number of SAA sam-
ples N = 20, and the budget B = 10%. We set uncertainty
level ε=30% as it provided pronounced effects of the MMR
solution while also being a realistic level of noise.

Fig 2(a) shows the percentage reduction in regret
(=(

MR(ybase)−MMR
)
/MR(ybase)) by the MMR decision ymmr

over the best decision ybase for the base probability for dif-
ferent instances for horizon 5. The decision ybase does not
take into account the uncertainty in edge activation param-
eters, thus, provides significantly higher regret than ymmr.
We can see that, on-an-average, the MMR solution provides
about 40% reduction in regret. Let Qbase denote the objective
value of the problem (2) for the decision ybase and probabil-
ities pbase. The max-regret for decision ybase was reasonably
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(c) Constraint generation
iterations
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(f) Constraint generation iterations (g) — (g1) Base decision; (g2) adversary’s decision; (g3)
isolated habitats

Figure 2: Regret analysis for edge activation probability and suitability score uncertainty. Figure (g) best viewed electronically

high (MR(ybase)/Qbase ≈5%) even for horizon 5. Thus, these
set of results show that our approach can provide significant
reduction in the max-regret over the base solution.

Fig 2(b) shows the same set of results for increased hori-
zon T = 9 and T = 10. We show results for 10 instances
where regret was quite pronounced. For each instance on the
x-axis, we show the MR for the base decision ybase and the
MMR for the decision upon convergence of the constraint
generation procedure. To highlight the fact that regret was
relatively high w.r.t.to the base objective Qbase, we normalize
the regret for each instance by dividing it by Qbase. We can
clearly see that the regret for the base decision can be quite
high (e.g., more than 35% for instance ‘9’). These results
also show that the MMR decision significantly reduces the
regret validating the usefulness of our approach. The error
bars for each column in 2(b) show the accuracy of the SAA
approximation by showing the upper and lower bounds for
respective decisions. We observe that these bounds are fairly
close confirming the accuracy of the SAA approximation.

Fig 2(c) shows the iterations of the constraint generation
procedure for two instances (‘3’ and ‘9’). The ‘MR’ curve
shows the max-regret (or upper bound on ‘MMR’). As the
constraint generation procedure proceeds, we can see that
‘MR’ decreases and ‘MMR’ increases until they meet at
the convergence point, which is our solution. On an average,
even for time horizon 10, the constraint generation proce-
dure converged in about 30 iterations.

We highlight that it was challenging to scale our MMR
approach for much more than horizon 10. The reason is that
as the horizon increases, so do the number of binary I vari-
ables (see constraints (8)–(10)). This increases the complex-
ity of solving the MIP for MR computation. In our future
work, we would explore the usage of combinatorial and dy-
namic programming based approaches (Wu, Sheldon, and

Zilberstein 2014; 2015), and approaches such as Lagrangian
relaxation that can make mixed-integer programming scal-
able (Kumar, Wu, and Zilberstein 2012).

Fig 2(d)–(f) show the same set of results for the uncer-
tainty in the suitability score of different nodes. For this
case too, the average reduction in regret was around 29%
as shown in fig. 2(d). Fig. 2(e) shows the normalized regret
for the base decision and the MMR decision. This figure
confirms that the MMR decision significantly reduces the
regret. The SAA bound analysis for this figure also confirms
the accuracy of SAA approximation.

Fig. 2(g1)–(g3) show the operational insights behind
regret-based decision making for a particular instance with
horizon T =10. These figures show the relevant parts of the
underlying network with each node being a habitat patch.
Fig 2(g1) shows the base decision ybase which is the best
decision for initial parameter estimate pbase. Nodes belong-
ing to the same land parcel are shown in same color; dif-
ferent colors show different parcels purchased. Fig. 2(g2)
shows the adversary’s decision y′ that maximizes the re-
gret MR(ybase). We can observe that both these decision’s
are quite different (in y′, parcels at the bottom right corner
are not purchased). The reason is that the adversary choses
probability vector p′ in such a way that the connectivity
of nodes shown in black colors in fig 2(g3) is significantly
reduced if the decision taken was ybase. We measure con-
nectivity by doing monte-carlo sampling and computing the
expected number of times a node is occupied for the pair
〈ybase,pbase〉 and the pair 〈ybase,p′〉. If the drop in connec-
tivity is more than 20%, then such a node is shown using
black color in 2(g3). Intuitivey, such nodes represent regions
of the network that are highly likely to be disconnected from
the initial seed nodes if the decision taken was ybase (which
assumed the point estimate pbase). The adversary exacerbates
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the losses for the decision ybase by not purchasing the parcels
corresponding to black-colored nodes in its chosen decision
y′. While such clean separation between the base decision
and the adversary’s decision was not seen in every tested
instance, the general pattern was that the adversary would
chose a distribution p′ such that some regions lose connec-
tivity to the initial seed nodes under the base decision ybase.
Such an analysis provides further operational insights into
the dynamics of regret-based decision making that can be
used by policy makers to fine-tune their decisions.

5 Conclusion

We addressed the key issue of robust decision making us-
ing regret minimization for a spatial conservation planning
problem. Our work addresses the realistic setting when the
knowledge of network parameters is uncertain. We provided
new theoretical results regarding the structure of the mini-
max regret which formed the basis for a scalable constraint
generation based solution approach. Empirically, we showed
that our minimax regret decision provided significantly more
robust solutions than the previous approach that assumes
point estimates of parameters. We also provided insights
suggesting that ignoring network parameter uncertainty can
lead to poor quality decisions risking isolation of habitats.

Acknowledgments

Support for this work was provided in part by the research
center at the School of Information Systems at the Singapore
Management University, and the National Science Founda-
tion under Grant No. 1125228.

References

Adiga, A.; Kuhlman, C. J.; Mortveit, H. S.; and Vullikanti,
A. 2014. Sensitivity of diffusion dynamics to network uncer-
tainty. Journal of Artificial Intelligence Research 51:207–
226.
Ahmadizadeh, K.; Dilkina, B.; Gomes, C. P.; and Sabharwal,
A. 2010. An empirical study of optimization for maximizing
diffusion in networks. In International Conference on Prin-
ciples and Practice of Constraint Programming, 514–521.
Anderson, R. M., and May, R. M., eds. 2002. Infectious
diseases of humans: dynamics and control. Oxford press.
Boutilier, C.; Patrascu, R.; Poupart, P.; and Schuurmans, D.
2003. Constraint-based optimization with the minimax de-
cision criterion. In Principles and Practice of Constraint
Programming, 168–182.
Domingos, P., and Richardson, M. 2001. Mining the net-
work value of customers. In International Conference on
Knowledge Discovery and Data Mining, 57–66.
Golovin, D.; Krause, A.; Gardner, B.; Converse, S.; and
Morey, S. 2011. Dynamic resource allocation in conserva-
tion planning. In AAAI Conference on Artificial Intelligence,
1331–1336.
Goyal, A.; Bonchi, F.; and Lakshmanan, L. V. S. 2011.
A data-based approach to social influence maximization.
VLDB Endow. 5(1):73–84.

Hanski, I., and Ovaskainen, O. 2000. The metapopulation
capacity of a fragmented landscape. Nature 48(2):755–758.
Hanski, I. 1994. A practical model of metapopulation dy-
namics. Journal of Animal Ecology 151–162.
Hanski, I., ed. 1999. Metapopulation ecology. Oxford Uni-
versity Press.
He, X., and Kempe, D. 2014. Stability of influence max-
imization. In International Conference on Knowledge Dis-
covery and Data Mining, 1256–1265.
Kempe, D.; Kleinberg, J.; and Tardos, E. 2003. Maximizing
the spread of influence through a social network. In Interna-
tional conference on Knowledge discovery and data mining,
137–146.
Kleywegt, A. J.; Shapiro, A.; and Homem-de-Mello, T.
2002. The sample average approximation method for
stochastic discrete optimization. Journal on Optimization
12:479–502.
Kumar, A.; Wu, X.; and Zilberstein, S. 2012. Lagrangian
relaxation techniques for scalable spatial conservation plan-
ning. In AAAI Conference on Artificial Intelligence, 309–
315.
Leskovec, J.; Adamic, L. A.; and Huberman, B. A. 2007.
The dynamics of viral marketing. ACM Trans. Web 1(1).
Sheldon, D.; Dilkina, B.; Elmachtoub, A.; Finseth, R.; Sab-
harwal, A.; Conrad, J.; Gomes, C.; Shmoys, D.; Allen, W.;
Amundsen, O.; and Vaughan, W. 2010. Maximizing the
spread of cascades using network design. In International
Conference on Uncertainty in Artificial Intelligence, 517–
526.
Wang, W., and Ahmed, S. 2008. Sample average approx-
imation of expected value constrained stochastic programs.
Operations Research Letters 36(5):515 – 519.
Wu, X.; Kumar, A.; Sheldon, D.; and Zilberstein, S. 2013.
Parameter learning for latent network diffusion. In Inter-
national Joint Conference on Artificial Intelligence, 2923–
2930.
Wu, X.; Sheldon, D.; and Zilberstein, S. 2014. Rounded dy-
namic programming for tree-structured stochastic network
design. In AAAI Conference on Artificial Intelligence, 479–
485.
Wu, X.; Sheldon, D.; and Zilberstein, S. 2015. Fast com-
binatorial algorithm for optimizing the spread of cascades.
In International Joint Conference on Artificial Intelligence,
2655–2661.
Xue, S.; Fern, A.; and Sheldon, D. 2014. Dynamic resource
allocation for optimizing population diffusion. In Interna-
tional Conference on Artificial Intelligence and Statistics,
1033–1041.
Xue, S.; Fern, A.; and Sheldon, D. 2015. Scheduling conser-
vation designs for maximum flexibility via network cascade
optimization. Journal of Artificial Intelligence Research
52:331–360.

3863




