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Abstract

We propose a decision making framework to optimize the re-
silience of road networks to natural disasters such as floods.
Our model generalizes an existing one for this problem by al-
lowing roads with a broad class of stochastic delay models.
We then present a fast algorithm based on the sample average
approximation (SAA) method and network design techniques
to solve this problem approximately. On a small existing
benchmark, our algorithm produces near-optimal solutions
and the SAA method converges quickly with a small number
of samples. We then apply our algorithm to a large real-world
problem to optimize the resilience of a road network to fail-
ures of stream crossing structures to minimize travel times of
emergency medical service vehicles. On medium-sized net-
works, our algorithm obtains solutions of comparable quality
to a greedy baseline method but is 30–60 times faster. Our
algorithm is the only existing algorithm that can scale to the
full network, which has many thousands of edges.

Introduction

We study the problem of optimizing the resilience of net-
works to various types of failures. Our approach applies to
both digital networks (e.g., communication networks) and
physical networks (e.g., road networks). In this paper, we
focus on the latter, and describe a method to help decision
makers use a limited budget to reinforce roads and make
them more resistant to damage from floods. According to
a recent report (Hallegatte et al. 2013), flood damages for
the 136 largest coastal cities around the globe could cost $1
trillion per year by 2050 without taking protective measures.
Developing computational tools to help combat this problem
is therefore an important task.

This challenge has been tackled in the past, most no-
tably as the Pre-disaster Transportation Network Prepara-
tion (PTNP) problem (Peeta et al. 2010; Schichl and Sell-
mann 2015). In this problem, an undirected graph is given
where edges represent road segments and vertices represent
intersections of multiple roads. Each edge has a fixed travel
time (or length) and can survive the disaster with a certain
probability. If a road segment fails, it becomes impassable.
Pre-disaster investment can increase the survival probability
of a road segment. Given a budget limit, the goal is to select
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a subset of edges to invest in so that the total expected travel
time between a set of origin/destination (o/d) pairs is mini-
mized. Optimization algorithms for PTNP have been devel-
oped and applied to practical problems.

Previous works, however, suffer from two significant lim-
itations. First, the assumption that an edge has only two
states—passable or impassable—is limiting. For example,
a malfunctioning culvert may not disconnect the road com-
pletely, but can cause traffic to experience a certain amount
of delay. Hence, edge lengths can take on multiple differ-
ent values. Second, although existing algorithms can pro-
duce optimal solutions, they can only scale up to networks of
1000 edges and 5 o/d pairs (Schichl and Sellmann 2015). In
our application, the network contains 55687 edges and 5504
pairs. Existing algorithms do not scale to networks of this
size and cannot handle edges with multiple possible lengths.

To address the above limitations, we first formu-
late a more general problem called Generalized Pre-
disaster Transportation Network Preparation (GPTNP). Un-
like PTNP, the problem is defined on directed graphs, which
are a better model for road networks. The length of an edge
is a random variable with domain [0,∞] where ∞ means
that the edge is impassable. The investment on an edge
makes its length stochastically shorter. This general defini-
tion allows us to model richer and more practical situations.

We then create a very fast algorithm, based on the sam-
ple average approximation (SAA) (Sheldon et al. 2010;
Wu, Sheldon, and Zilberstein 2015) and network design al-
gorithms, to compute a high quality solution for the GPTNP
problem in large-scale networks. In our algorithm, we recast
the GPTNP problem as a deterministic optimization prob-
lem using the SAA method and a novel sampling procedure.
With enough samples, the optimal solution to the determin-
istic problem approaches the optimal solution of the GPTNP
problem (Kleywegt, Shapiro, and Homem-de Mello 2002).
Then, the deterministic problem is formulated as a novel net-
work design problem called Budget Set Weighted Shortest
Path Steiner Graph (BSW-SPSG), composed of a directed
graph and a budget limit. The goal is to purchase sets of
edges to minimize the total shortest path length between a
number of o/d pairs, subject to a budget constraint.

The BSW-SPSG problem is NP-hard and, more impor-
tantly, the size of the constructed problem is usually very
large. Consequently, even a greedy heuristic is too slow
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to tackle our target application. Hence, we propose a fast
primal-dual algorithm to solve the BSW-SPSG problem ap-
proximately. The key idea is to first use Lagrangian relax-
ation (Jain and Vazirani 2001; Kumar, Wu, and Zilberstein
2012) to fold the budget constraint into the objective, param-
eterized by a Lagrange multiplier β. The resulting problem
is called Prize-Collecting Set Weighted Shortest Path Steiner
Graph (PCSW-SPSG). A bisection procedure (Wu, Sheldon,
and Zilberstein 2015) is then used to find a value of β for
which the near optimal solution of PCSW-SPSG is also a
near optimal solution of the BSW-SPSG problem. Finally,
we derive a primal-dual algorithm (Williamson and Shmoys
2011) to solve the PCSW-SPSG problem approximately.

We demonstrate experimentally on a small existing
benchmark that our our algorithm produces near optimal so-
lutions to the BSW-SPSG problem and the SAA method
converges quickly to the optimal solution of the original
stochastic optimization problem. On a network of medium
size, our algorithm performs as well as a greedy baseline,
but it is 30–60 times faster. When applied to a full real-world
road network, our algorithm is the only one that finds good
solutions within a reasonable amount of time. We also show
a BSW-SPSG problem where the greedy baseline performs
poorly, but our algorithm finds near-optimal solutions.

Another contribution of the paper is that our algorithm,
with minor modifications, can solve two additional vari-
ants of the BSW-SPSG problem: the Quota Set Weighted
Shortest Path Steiner Graph (QST-SPSG) problem and the
PCSW-SPSG problem. The prefixes quota, budget, and
prize-collecting describe standard variants of network de-
sign problems (Johnson, Minkoff, and Phillips 2000). The
problems share the same basic setup, but have different con-
straints and objectives. In the QST-SPSG problem, the goal
is to minimize cost while keeping the total shortest path
length below a certain level. In the PCSW-SPSG problem,
both total shortest path length and cost are in the objective,
weighted by a tradeoff parameter β.

We begin with a formal description of the GPTNP prob-
lem in Section 2. Section 3 introduces the SAA method and
our sampling procedure. Section 4 defines the BSW-SPSG
problem. Section 5 presents our solution method. Section 6
contains the experimental results and analysis.

Problem Statement
An instance of GPTNP includes a directed graph G=(V,E),
where each edge e is associated with a travel time or length
that is stochastically distributed within [0,∞] (∞ indicates
the edge is not passable). The length can be decreased
stochastically at some cost ce. We are also given a set of
pairs of vertices Θ = {(o1, d1), ..., (oT , dT )} (oi, di ∈ V )
and a budget limit B. The goal is to select a subset π ⊆ E
of edges, also called a policy, to invest subject to the budget
limit B, so that the total expected shortest path length from
o to d for all (o, d) ∈ Θ is minimized.

The length of edge e is a random variable Le(π) whose
distribution depends on π. We are given two cumulative
distribution functions (CDF): He : [0,∞] → [0, 1] and
Fe : [0,∞]→ [0, 1] for the cases (e /∈ π) and (e∈ π) respec-
tively. With investment, the length is stochastically shorter

than the length without. This is modeled by the constraints
Fe(l) ≥ He(l) for any l ∈ [0,∞]. Let L(π) denote the ran-
dom vector consisting of Le(π) for all e ∈ E. The GPTNP
problem can be written as a stochastic optimization problem:

min
π⊆E

∑

(o,d)∈Θ

EL(π) [SPL(o, d, L(π);G)] s.t.
∑

e∈π

ce≤B (1)

where SPL(o, d, L(π);G) represents the shortest path
length from o to d when edge lengths are L(π). We also
define a penalty Mo,d for a pair (o, d). If the shortest path
length is ∞, we set SPL(o, d, L(π);G) = Mo,d.

In the above definition, we assume that the length of each
edge is independently distributed, but our solution method
can be modiflied slightly to deal with more complex set-
tings in which lengths of multiple edges are correlated or
one investment can affect multiple edges simultaneously. To
extend our algorithm to these cases, only the sampling pro-
cedure needs to be modified; the bisection procedure and the
primal-dual algorithm remain the same.

Connection to the PTNP Problem The major difference
between the PTNP (Peeta et al. 2010) and GPTNP problems
is that in PTNP, the length of each edge is defined by a bi-
nary random variable, that is, with probability pe, the edge
has length le and with probability 1 − pe, the edge is im-
passable or has length ∞. Another difference is that PTNP
is defined on an undirected graph while GPTNP is defined
on a directed graph. In fact, our model is more general be-
cause an undirected edge is equivalent to two directed edges
of equal length that share the same investment. As GPTNP is
a more general problem, two complexity results established
for the PTNP problem (Schichl and Sellmann 2015) imme-
diately apply to the GPTNP problem.
Theorem 1. The GPTNP problem is APX-hard and is nei-
ther sub- nor super-modular.

We note that the GPTNP problem is also related to
the continuous-time influence maximization problem (Ro-
driguez and Schölkopf 2012; Du et al. 2013). The time of
a vertex being infected can be considered as the shortest
path length from the source to this vertex in our problem.
Our problem suggests novel variants of influence maximiza-
tion where it is possible to accelerate propagation by ma-
nipulating certain edges in addition to selecting diffusion
sources (Khalil, Dilkina, and Song 2014).

Sample Average Approximation

We use the SAA method to recast the stochastic optimization
problem (1) as a deterministic analogue using N scenarios
that are generated by sampling from the underlying distribu-
tion. It has been shown (Kleywegt, Shapiro, and Homem-de
Mello 2002) that as N goes to infinity, the optimal solution
of the deterministic problem converges to the optimal so-
lution of the stochastic optimization problem. However, we
can’t directly sample L(π) as its distribution depends on π.

Here, we introduce a new sampling method. The basic
idea is that we define a new random graph G′ = (V,E′, ξ)
where ξ = {ξe|e ∈ E′} and ξe is a random variable rep-
resenting the length of edge e ∈ E′. The distribution of ξe
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Figure 1: An example of creating the BSW-SPSG prob-
lem. The tuple (ei2, 5) means the edge ei2 has sampled
length 5. The graph Gs contains all vertices and edges in
gray. We have edge sets Ee = {ei1, ei2}, Ef = {f i

2} and
E0 = {eo1, eo2} with c0 = 0 in the BSW-SPSG problem.
If the o/d pair in the GPTNP is {u,w}, in BSW-SPSG,
Θ = {(u1, w1), (u2, w2)}

does not depend on any policy, so the sample of G′ can be
drawn before applying policies. Then, we create the deter-
ministic optimization problem using N samples of G′.

More specifically, in G′, there are two parallel edges
eo (original edge) and ei (invested edge) in E′ for each
edge e ∈ E, with lengths ξeo and ξei respectively. We
further define a random graph G′(π) = {V,E′(π), ξ}
parameterized by policy π. This graph always includes the
original edge (length ξeo ) and will include the invested edge
(length ξei ) if and only if e = (u, v) ∈ π. If e /∈ π, the
distance from u to v is ξeo ; we want this to have CDF He.
If e ∈ π, the distance from u to v is min{ξeo , ξei}; we want
this to have CDF Fe. To achieve this, for each edge e ∈ E,
we define a uniform random variable Ue in the range [0, 1]
and use it to define:

ξeo = min
l:He(l)=Ue

l, ξei = min
l:Fe(l)=Ue

l (2)

With this definition, we can sample the values of ξeo and
ξei independently of any policy by inverse-transform sam-
pling (Devroye 1986). First, a value of Ue is sampled to
be the cumulative probability. Then, we pick the smallest
lengths that have cumulative probability Ue from He and Fe

respectively. If the function He or Fe is strictly increasing,
we have ξeo = H−1

e (Ue) or ξei = F−1
e (Ue). Also, if He or

Fe is a discrete CDF, the probability of any sampled value is
nonzero. Now, we claim the following result.
Theorem 2. For any fixed policy π ⊆ E and two vertices
o, d ∈ V , the expected shortest path length from o to d in
G′(π) equals to EL(π) [SPL(o, d, L(π);G)] in (1).

To summarize our SAA procedure: first, we generate N
samples of G′, {G′

1, ..., G
′
N}, by sampling the value of Ue’s

and applying (2). In G′
k, edges have fixed lengths. Then, we

form the following deterministic optimization problem:

min
π⊆E

1

N

∑

(o,d)∈Θ

N∑

k=1

SPL(o, d,G′
k(π)) s.t.

∑

e∈π

ce ≤ B (3)

min
∑

(o,d)∈Θs

(
∑
e∈Es

dex
od
e ) +Mo,dz

od (1)

s.t.
∑

e∈δ+(S)

xod
e + zod ≥ 1 ∀(o, d) ∈ Θs, S ∈ Sod

o (2)

∑
i:e∈Ei

yi ≥ xod
e ∀(o, d) ∈ Θs, ∀e ∈ Es (3)

∑
Ei∈E

ciyi ≤ B (4)

xod
e ∈ [0, 1] ∀(o, d) ∈ Θs ∀e ∈ Es (5)

yi ∈ {0, 1} ∀Ei ∈ E , zod ∈ {0, 1} ∀(o, d) ∈ Θs (6)

Figure 2: MIP of the budget BSW-SPSG problem

where SPL(o, d,G′
k(π)) is the shortest path length from o

to d in the sample G′
k(π). By theorem 2, for any policy, the

objective of (3) converges to the objective of (1) as N goes
to infinity. In the next two sections, we formally define the
problem (3) and give a fast algorithm for solving it.

Set Weighted Shortest Path Steiner Graph

Problem (3) can be formulated as a new network design
problem called Budget Set Weighted Shortest Path Steiner
Graph (BSW-SPSG). The input of a BSW-SPSG problem
consists of a directed graph Gs = {V s, Es} where each
edge has fixed length le and a set of o/d pairs Θs =
{(o1, d1), ..., (oT , dT )} (oi, di ∈ V s) where each pair is as-
sociated with a penalty Mo,d. We are also given a collection
of edge sets E = {E1, ..., ES} where Ei ⊆ Es and each Ei

is associated with a cost ci. A subset A ⊆ E corresponds to a
subgraph Gs(A) = {V s, Es(A)} with Es(A) = ∪Ei∈AEi.
The goal is to purchase edge sets A, subject to a budget limit
B, such that in Gs(A), the total shortest path length from o
to d for all (o, d) ∈ Θs is minimized. That is,

min
A⊆E

∑

(o,d)∈Θs

SPL(o, d,Gs(A)) s.t.
∑

Ei∈E
ci ≤ B (4)

where SPL(o, d,Gs(A)) is the shortest length path from o
to d in Gs(A), set to be Mo,d if there is no path from o to d.

To write problem (3) as a BSW-SPSG problem, we com-
bine N sampled graphs {G′

1, ..., G
′
N} of G′ into a single

graph Gs with appropriate edge sets E . The vertex set of Gs

is the union of those from the samples {G′
i}. The edges of

Gs include original edges {eok} and invested edges {eik} of
all samples. For each edge e in G, the invested edges of fi-
nite length (from all samples) are grouped into an edge set
Ee with cost ce. The unimproved edges of finite length for
all edges in G are grouped into an additional edge set E0 of
zero cost. Finally, let set Θs contain o/d pairs in all sampled
graphs. An example is shown in Fig. 1.

The BSW-SPSG problem can be formulated as a Mixed
Integer Program (MIP) shown in Fig. 2. A binary variable
xod
e is defined for each edge e ∈ E and o/d pair indicating

whether e is on (=1) the shortest path from o to d or not
(=0). A binary decision variable yi is defined for each edge
set Ei ∈ E indicating whether the set is purchased (=1)
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Prize-Collecting Problem / Primal Problem:

L(β) = min

⎛
⎝ ∑

(o,d)∈Θs

(
∑
e∈E

dex
od
e ) +Mo,dz

od

⎞
⎠+

β

⎛
⎝ ∑

Ei∈E
ciyi − B

⎞
⎠ (1)

s.t. x, y satisfy constraints (2), (3), (5), (6) in Fig. 2 (2)

Dual Problem:

max
∑

(o,d)∈Θs,S∈Sod
o

μod
S (3)

s.t.
∑

S:e∈δ+(S),S∈Sod
s

μod
S − λod

e ≤ de ∀(o, d) ∈ Θs, ∀e ∈ E (4)

∑
S:S∈Sod

s

μod
S ≤ Mo,d ∀(o, d) ∈ Θs (5)

∑
(o,d)∈Θs

∑
e∈Ei

λod
e ≤ βci ∀Ei ∈ E (6)

Figure 3: Primal and dual of the prize-collecting problem

or not (=0). All yis define a set A. A binary variable zod

is defined for each o/d pair indicating whether the pair is
penalized/disconnected (=1) or not/connected (=0). Let set
Sod
o consist of all subsets of V that contain o but not d, Sod

o =
{S|S ⊆ V ∧ o ∈ S ∧ d /∈ S}. Let set δ+(S) contain all
outgoing cut edges of S, that is, δ+(S) = {(u, v)|(u, v) ∈
E ∧u ∈ S ∧ v /∈S}. With constraint (2), if d is connected to
o (zod = 0), at least one cut edge e for any set in Sod

o should
have value xod

e = 1. With constraint (3), an edge is on the
shortest path from o to d only if it is purchased. Constraint
(4) is the budget constraint. It is easy to show that relaxing
binary variable x into continuous variable in [0, 1] will not
change the value of the optimal solutions.

Proposition 1. The BSW-SPSG problem is NP-hard and its
objective function is neither sub- nor super-modular.

Our Algorithm for the BSW-SPSG problem

In this section, we present the algorithms to solve both BSW-
SPSG and the prize-collecting problem (PCSW-SPSG).

To solve BSW-SPSG problem, we first create a PCSW-
SPSG problem by folding the budget constraint into the ob-
jective with a β based on Lagrangian relaxation method (Ku-
mar, Wu, and Zilberstein 2012; Jain and Vazirani 2001). The
MIP of PCSW-SPSG is shown in Fig. 3. Then, we use the bi-
section procedure to find a β such that by solving the prize-
collecting problem with β, we obtain a high-quality solution
of the budget problem. In the bisection procedure, we start
with a large interval of β and halve it iteratively until narrow
enough. At each iteration, a solution is found by solving the
prize-collecting problem with β. If the cost of the solution is
greater than B, the lower half of the interval is abandoned.
Otherwise, the higher half is abandoned. The details of this
method are in (Wu, Sheldon, and Zilberstein 2015).

Algorithm 1 Primal-Dual Algorithm
1: function PRIMALDUAL(Gs, E , β)
2: Set yi ← 0 ∀Ei ∈ E and zod ← 0 ∀(o, d) ∈ Θs

3: F ← φ
4: For each pair (o, d), the set Cod contains all vertices reach-

able from o in (V s, F )
5: Initially, Cod = {o} for each (o, d)
6: Mark all o/d pairs as active
7: while there exists some active pairs do
8: Increase μod

Cod of all active pairs simultaneously. If (4)
in Fig. 3 becomes tight for edge e, increase λod

e to maintain
feasibility until

9: if (5) in Fig. 3 becomes tight for (o, d) then,
10: Mark (o, d) abandoned and set zod = 1
11: else � (6) in Fig. 3 becomes tight for Ei

12: set yi = 1 and F ← F ∪ e
13: for each active (o, d) do

14: expand Cod by e
15: end for
16: if Cod contains d for some (o, d) then
17: Mark (o, d) connected
18: end if
19: end if
20: end while
21: For each connected (o, d), find the shortest path in (V s, F )
22: for each Ei with yi = 1 do
23: if there are no shortest paths using edges in Ei then
24: yi ← 0
25: end if
26: end for
27: return y
28: end function

Solving the Prize-Collecting Problem

To scale up to large networks, we derive a fast primal-dual
algorithm, shown in Algorithm 1, to solve the PCSW-SPSG
problem approximately. Fig. 3 gives the dual formulation of
the LP relaxation of the prize-collecting problem.

The algorithm borrows ideas from the primal-dual algo-
rithms of the single pair shortest path problem and the gener-
alized Steiner tree problem (Williamson and Shmoys 2011).
The basic idea is to repeatedly increase the dual objective
by increasing the value of dual variables and simultaneously
construct a feasible primal solution based on the primal com-
plementary slackness condition (Vazirani 2003).
Definition 1. Primal Complementary Slackness Condition
xod
e = 1, zod = 1 and yi = 1 imply equality in constaints

(4), (5) and (6) in Fig. 3 respectively.

Lines 2-20 of Algorithm 1 are the major primal-dual pro-
cedure. We start with an infeasible primal solution where all
x, y, z variables are 0, an empty graph (V s, F ) where F = φ
and a feasible dual solution where all μ and λ are 0. The
graph (V s, F ) represents the primal solution: F contains e
if xod

e = 1 for any o/d pair. The loop (lines 7-20) proceeds
until each (o, d) is either abandoned (zod = 1) or connected
where we get a feasible primal solution by satisfying (2) in
Fig. 2. Note that (3) in Fig. 2 is always satisfied as we pro-
ceed. A pair is active meaning that constraint (2) of this pair
is violated for some S. To satisfy (2) for all S ∈ Sod

o , at
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each iteration, we only increase the dual variable of the set
S ∈ Sod

o with the smallest number of vertices for which the
constraint (2) is violated. This smallest set is Cod defined
at line 4. At each iteration, we increase the dual variable of
Cod for all (o, d) simultaneously (line 8). If the constraint
(4) in Fig. 3 becomes tight for some e, by the slackness con-
dition, we want to add e in to F (set xod

e = 1), but e may
not be purchased yet. So, we continue increasing both μod

Cod

and λst
e with the same speed until following cases happen. If

(5) in Fig. 3 becomes tight for some (o, d), by the slackness
condition, we set zod = 1 and never consider this pair again
because all constraints (2) in Fig. 2 that involve this pair are
satisfied (line 10). If constraint (6) in Fig. 3 becomes tight
for some Ei, we set yi = 1. Also, we know e is purchased
and can be added into F (line 12). At line 14, we update Cod

with the newly added edge. At line 16, d ∈ Cod means the
pair is connected. In lines 21-30, the unused edge sets are re-
moved. Only the edge sets that are used by the shortest path
of connected pairs are purchased.

Proposition 2. The running time of Algorithm 1 is bounded
by O

(
(|Es|+ |E|+ |Θs|)2 + |Θs| |Es| log |V s| ).

To analyze the running time of solving GPTNP by reduc-
ing it to BSW-SPSG, let N be number of samples, and K
be the number of iterations in the bisection procedure. Then,
in the constructed BSW-SPSG problem, there are at most
2N ·|E| edges (i.e., |Es| ≤ 2N ·|E|), |Θs| = N ·|Θ| o/d
pairs, and |E| ≤ |E|. As the primal-dual algorithm is in-
voked K times by the bisection procedure, by plugging the
above terms into the bound in Proposition 2, we have:

Proposition 3. The running time of solving a GPTNP prob-
lem is O

(
K N2 (|E|+ |Θ|)2 +K N |Θ| |E| log |V | ).

To analyze the complexity of the natural greedy algo-
rithm, let K ′ be the number of edges selected for investment
by the greedy algorithm. Then, we have

Proposition 4. The runtime of a greedy algorithm is
bounded by O

(
K ′ N |E| |Θ| |E| log |V | ).

In the experiments, we observed that a small num-
ber of samples (e.g., N ≤ 30) is sufficient for conver-
gence. If we assume that N is a constant, |E| ≥ |Θ|,
and |E| = Θ(|E|), the running time for our algorithm is
O(K |E|2 log |V |), and the running time for the greedy
algorithm is O

(
K ′ |Θ| |E|2 log |V |), implying that our

algorithm is asymptotically O(K
′ |Θ|
K ) times faster than the

greedy algorithm. On our largest network with |Θ| = 5504,
a small value of K (e.g., a number between 20 and 30) is
sufficient to make the range of β narrow enough in our algo-
rithm, and in the greedy algorithm, K ′ is a number between
200 and 300. We observed that our algorithm is about 400
times faster than the greedy algorithm.

Experimental Results

Theoretically, the convergence of the SAA method is guar-
anteed as the number of samples N goes to infinity. In prac-
tice, a small number of samples may be enough for con-
vergence. In our experiments, we treat our optimization al-
gorithm as the training step and the samples used by SAA
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Figure 4: “Istanbul Prep” benchmark. Y-axis: path lengths.

as training samples. We use training samples to create a
BSW-SPSG problem and compare the performance of our
algorithm in optimizing this BSW-SPSG problem against
other existing algorithms. However, an optimal solution to
the training samples may perform poorly in minimizing the
expected travel time when N is not big enough. To evalu-
ate the actual performance of policies produced in the train-
ing step and also determine how many training samples are
enough for convergence, we conduct a testing step. In test-
ing, we draw another group of samples as testing samples
and calculate, for a policy, the average travel time as a testing
value. The testing value of a policy is an unbiased estimate
of its expected travel time. As N increases, the convergence
of the testing value is a good indicator that SAA converges.

We experimented on two different domains, using a
2.2GHz Intel Core i7 CPU with 16GB of RAM.

Istanbul Earthquake Preparation

We first used a small benchmark called Istanbul Earthquake
Preparation (Peeta et al. 2010). The goal is to minimize
the total shortest path length between 5 o/d pairs. The net-
work contains 30 undirected edges. Each edge has binary
length distribution. The survival probability can be raised to
1.0 with investment. We used the basic settings described
by Peeta et al. (2010), with Mo,d=120. On this small prob-
lem, we only report solution quality. In Fig. 4, we compare
our algorithm, the greedy algorithm and the mixed integer
program (MIP) with three budget sizes (10%, 20% and 30%)
where MIP is an optimal solver. In testing, we use 10000
samples to evaluate policies produced in the training step.
We also add the optimal expected values (green) as compar-
isons, which are reported by (Schichl and Sellmann 2015).

In training, “Our” and “Greedy” produce near optimal
solutions in most of the cases. In testing, except for sev-
eral cases for “Greedy”, all algorithms produce near-optimal
testing values. For the 10% budget case, the testing value
is better than the optimal expected value; this indicates a
slight discrepancy in problem setting from previous work.
The training value of each algorithm is always smaller than
the testing value due to overfitting. Also, varying the sample
size from 10 to 200 barely impacts the testing value, which
implies that 10 training samples are enough for convergence.
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Figure 5: The road network showing patient locations (blue
dots), hospital (red dot), and ambulance dispatch locations
(green dots). The road network showing patient locations
(blue), hospital (red), and ambulance dispatch locations
(green).

Flood Preparation for EMS

Roadway stream crossing structures, such as culverts, be-
come vulnerable to floods as climate changes. The failure of
crossing structures causes road segments to flood or wash
out, which causes traffic delay or even make roads impass-
able. Money can be invested to increase the resilience of
crossings. The goal is to decide which crossings to invest in,
subject to a budget limit, so that the total travel time of cer-
tain o/d pairs is minimized. In this problem, we focus only
on travel time of emergency medical services (EMS). We
obtained relevant data for the road network of the Deerfield
river watershed in Massachusetts. In our dataset, an o/d pair
represents a request of ambulance from o (ambulance cen-
ter/patient address) to d (patient address/hospital). We ob-
tain such pairs from actual EMS calls recorded over the past
5 years. The road network, shown in Fig. 5, contains 55687
edges, 1366 crossings (not shown) and 5504 o/d pairs.

To conduct the experiments, we used the following as-
sumptions. The length of an edge corresponds to travel time
and is calculated by le = road length

speed limit . Each crossing has a
survival probability pe in the range [0.2 − 0.4]. An edge, if
associated with a crossing, has length le with probability pe
and has length ∞ with probability 1− pe. pe is raised to 1.0
if the corresponding crossing is fixed. We used a constant
investment cost for all crossings. The penalty Mo,d of each
disconnected pair was set to be 15 times the shortest travel
time from o to d when no crossings fail.

Sub-Network We compare SAA and the greedy baseline
on a sub-network with 10037 edges and 248 crossings. MIP
failed to finish within a reasonable amount of time for this
dataset. The results are shown in Fig. 6. In training, we use
10 samples, two budget sizes and various numbers of o/d
pairs. For 10% budget, “Greedy” performs slightly better,
but the value of our algorithm is within 1.3 times the value
of “Greedy”. For 20% budget, both algorithms perform the
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Figure 6: Performance on the sub-network for flood prepa-
ration. Y-axis represents total travel time (×104 seconds).
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vival probabilities 0.

same in most cases. In terms of runtime, shown in Fig. 7, our
algorithm is significantly faster. In testing, we use 100 test-
ing samples and evaluate the policies produced by different
number of training samples. For example, “Our30” repre-
sents the policy trained on 30 samples by our algorithm. The
policy of “Greedy” is trained on 10 samples due to its limited
scalability. Again, for 10% budget, the policy produced by
“Greedy” gives slightly better testing value. For 20% bud-
get, all policies basically perform the same, implying that
10 samples are enough for convergence. Overall, the results
show that our algorithm performs similarly well or a little
worse in some cases compared to the greedy algorithm, but
it is significantly faster and can scale up to larger problems.

Complete Network We also tested on the complete road
network using 10 training samples and 100 testing samples.
In this case, it is not feasible to run the greedy algorithm;
one iteration takes more than 10 hours. Instead, we com-
pared with two other methods. The results are shown in Ta-
ble 1. The “Random” method selects a policy by randomly
picking crossings to fix until the budget is exhausted. We let
the algorithm repeatedly generate and test policies over 10
hours and report the best one. The “M-Greedy” method is
the same as the greedy algorithm except that, at each itera-
tion, it only re-evaluates the top 10 crossings that gave the
best travel time reduction in the previous iteration. We only
show the result of “M-Greedy” for 10% budget, which al-
ready takes 46 hours. By the table, our algorithm runs faster
and produces the best training and testing values. To the best
of our knowledge, our algorithm is the only known method
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Algorithm Budget Train (×106s) Time (h) Test (×106s)

Our 10% 9.8 6.1 9.8
Random 10% 24.5 13 24.4

M-Greedy 10% 11.2 46.2 11.4

Our 20% 3.6 7.3 3.6
Random 20% 19.7 16.3 19.8

Table 1: Experiments on the complete road network of the
Deerfield river watershed

that can solve this problem and produce good solutions.

Experiments in More Challenging Settings As shown
above, the greedy algorithm performs quite well in training
in terms of solution quality. We believe one reason for this is
that many o/d pairs are close to each other and the survival
probabilities of crossings are relatively high, so, with high
probability, at most one or two crossings fail on any o/d path.
This means that coordinated repairs of multiple crossings are
not necessary to realize improvements, and the greedy algo-
rithm can achieve good performance by repairing crossings
incrementally in a myopic way. Intuitively, the greedy strat-
egy will fail when o/d paths experience multiple failures, so
repairing any single crossing provides no benefit. To model
this, we designed a BSW-SPSG problem where all survival
probabilities start out equal to zero. We used a small problem
for which it is possible to find optimal solutions by solving
a MIP. The results in Fig. 8 show that the greedy algorithm
performs poorly in this case, while our algorithm produces
near optimal solutions.

Conclusion

We propose a general decision making framework and a
fast approximate algorithm for optimizing the resilience of
networks to various failures. Compared to previous work,
our framework allows for richer problems to be represented,
with arbitrary length distributions over edges. We construct
the approximation method by deriving a sampling method
and a primal-dual algorithm. Empirically, our algorithm pro-
duces near optimal solutions on a benchmark problem. It
perform as well as a greedy baseline on a mid-size network,
but is significantly faster. Most importantly, our algorithm
scales well and can solve a larger practical problem that no
other existing algorithm can solve. It is also robust to vary-
ing network conditions and produces a near optimal solu-
tion for a challenging problem on which the baseline greedy
algorithm performs poorly. Finally, our work offers a good
foundation for exploring several related problems, particu-
larly the continuous time influence maximization problem
that we plan to study in future work.
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