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Abstract

We present an algorithm (LsNet2Vec) that, given a large-scale
network (millions of nodes), embeds the structural features of
node into a lower and fixed dimensions of vector in the set
of real numbers. We experiment and evaluate our proposed
approach with twelve datasets collected from SNAP1. Results
show that our model performs comparably with state-of-the-
art methods, such as Katz method and Random Walk Restart
method, in various experiment settings.

Introduction

Link prediction is one of the most basic problem in complex
network analysis, which can be categorized into two classes,
namely, missing links prediction and future links prediction.
Missing links prediction is the prediction of unknown links
in sampling networks; and the other is the prediction of links
that may exist in the future of evolving complex networks.

Until now, numerous methods for link prediction are de-
signed based on the assumption of node similarity (Li et al.
2015), which is defined by employing essential features of
the nodes. Those essential features can also be structural or
contextual, which means that two nodes are considered to
be similar if they have many common features. Therefore,
the goal of link prediction is to estimate the likelihood that
a link exists between two nodes. So, the sparsity and huge
size of networks become two of the main challenges for link
prediction problems.

Although there are many similarity-based algorithms,
such as Common Neighbor algorithm, Katz algorithm, Lo-
cal Path algorithm, Random Walk Restart (RWR) algorithm
etc., which have been proposed to handle this essential prob-
lem in the small complex networks. The empirical observa-
tions show that the stability and usability in large-scale net-
works of existing algorithm is usually very low (Wang et al.
2015). Because for a large network with millions of nodes,
the number of nodes can easily double or triple, learning and
predicting of unknown links are very expensive for many
well designed methods, such as Katz, RWR et al.
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Figure 1: Illustration of LsNet2Vec model with node C and
it’s neighbors.

Main Structural of Our Model
There are three layers in our model, namely reconstruction
layer, projection layer and classification layer. Figure 1 gives
an example of one training progress in LsNet2Vec.

Reconstruction Layer:The function of this layer is to
generate the training pairs of target node as the output. For
example, given a random walk in original network we can
generate a list of node: (A,C,H,I,B,F,B,D,G). Then, for a
fixed training window N = 6, when we chose node C as the
target node, the training pair can be: (A,H,I,B,F) → C.

Projection Layer: The input of projection layer is the
training pair generated by reconstruction layer. For every
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node in original network, we embed the node into a vec-
tor vi ∈ R

m. With a given training pair: N(C)=(A,H,I,B,F)
→ C, the projection layer computes the vector representa-
tions of target node’s neighbors in original network by tak-
ing a linear combination of the neighbor’s vectors: v(C) =∑

i∈N(C) vi.
Classification Layer: The input of classification layer is

the result from projection layer: (C, v(C)). In classification
layer, we store all the nodes in the original network as a leaf
node in the Degree based Huffman tree (as shown in Fig-
ure 1, building based on the degree of nodes in original net-
work). We denote the non-leaf nodes in the Huffman tree
as a classifier with logistic regression. So, the classification
layer for predicting the target node is based on its neigh-
bors’ eigenvectors. Therefore, v(C) is using as an input of
root node in Huffman tree for classification, the object is to
make the probability of classification result becomes maxi-
mum according to the v(C) of leaf node C:

p
(
vC

∣∣v(C)

)
=

|PC|∏

j=1

p
(
HC

j

∣∣v(C), θ
C
j−1

)
(1)

where,
∣∣PC

∣∣ is the length of the path from root node to leaf
node C, HC

j is the Huffman code of non-leaf node in the
path. So, for each i− th target node in training set, the cost
function of whole model is:

O = argmax
∑

i∈V
log

|P i|∏

j=1

p
(
Hi

j

∣∣v(i), θij−1

)
(2)

Finally, we use the stochastic gradient ascent (SGA)
method to optimize parameters and the vector representa-
tions in projection layer. When the training progress is over,
we can obtain the distributed representation of every node
with a fixed dimensions vector, and the similarity of node
pairs can be easily computed with the cosine measure in
large-scale networks.

Experiment and Discussion
We conduct extensive experimental analyses on twelve fa-
mous datasets and present a controlled comparison of our
model against several strong baselines of link prediction
methods provided in Lu(2011). The baseline methods are
Common neighbor (CN), Resource Allocation (RA), Katz
(KA), Local Path (LP) and Random Walk Restart (RWR).

The node number of networks in table 1 range from
1.88× 104 to 2.39× 106, and the edge number of networks
range from 1.83×105 to 5.02×106. Experimental results are
reported as the area under the ROC curve (AUC). We divide
each network into training set and testing set randomly in ev-
ery test. The number of the edges in training set is 9:1 with
testing set. Due to the huge amount of some networks, we
can’t calculate the similarity between every node as a whole
for some complex baseline methods, i.e. Katz, RWR. For a
fair comparison, we sample the community from the whole
network with depth-first and breadth-first separately for 100
times/network, and test the AUC score in every sample for
10 times.

Table 1: Results in red(∗) denote the best score while the
blue(♦) stands for the second best. The number under the
best score is the difference between the best and second best.

D.set L2V CN RA KA
0.01

LP
0.0001

RWR

ACN 0.990
∗1.5%

0.933 0.935 0.974 0.972 0.975
♦

CCN 0.988
∗1.9%

0.921 0.922 0.969
♦

0.955 0.958

EEN 0.979
∗2.2%

0.897 0.904 0.957
♦

0.954 0.956

UEN 0.978
∗8.9%

0.576 0.578 0.889
♦

0.697 0.825

DCN 0.984
∗1.5%

0.816 0.817 0.969
♦

0.952 0.954

APN1 0.972
∗5.4%

0.834 0.835 0.918
♦

0.907 0.900

APN2 0.994
∗8.0%

0.723 0.745 0.844 0.856 0.914
♦

PRN 0.955
∗4.2%

0.562 0.561 0.913
♦

0.709 0.900

YSN 0.871
∗2.3%

0.625 0.702 0.750 0.800 0.848
♦

TRN 0.949
∗4.8%

0.565 0.565 0.901
♦

0.689 0.890

CRN 0.963
∗6.1%

0.573 0.573 0.902
♦

0.701 0.901

WTN 0.825
∗0.1%

0.516 0.538 0.798 0.801 0.824
♦

The results of AUC score show that our model per-
forms comparably with state-of-the-art methods in large-
scale datasets. We argue that LsNet2Vec provides a fast
and best result in large-scale networks for the following
two main reasons: 1) the structural features of the node can
be better represented by the lower and fixed dimensions
vector that learned from the whole network with node co-
occurrence. 2) the prediction method of LsNet2Vec can ben-
efit from n-rank neighbors with a linear complexity increase
with n, and cosine measure can reduce the complexity of
the similarity measure in large-scale network between two
arbitrary nodes.
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