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Abstract 
In this paper, we describe ROOT13, a supervised system for 
the classification of hypernyms, co-hyponyms and random 
words. The system relies on a Random Forest algorithm and 
13 unsupervised corpus-based features. We evaluate it with 
a 10-fold cross validation on 9,600 pairs, equally distributed 
among the three classes and involving several Parts-Of-
Speech (i.e. adjectives, nouns and verbs). When all the clas-
ses are present, ROOT13 achieves an F1 score of 88.3%, 
against a baseline of 57.6% (vector cosine). When the clas-
sification is binary, ROOT13 achieves the following results: 
hypernyms-co-hyponyms (93.4% vs. 60.2%), hypernyms-
random (92.3% vs. 65.5%) and co-hyponyms-random 
(97.3% vs. 81.5%). Our results are competitive with state-
of-the-art models. 

Introduction and Related Work   
Distinguishing hypernyms (e.g. dog-animal) from co-
hyponyms (e.g. dog-cat) and, in turn, discriminating them 
from random words (e.g. dog-fruit) is a fundamental task 
in Natural Language Processing (NLP). Hypernymy in fact 
represents a key organization principle of semantic 
memory (Murphy, 2002), the backbone of taxonomies and 
ontologies, and one of the crucial inferences supporting 
lexical entailment (Geffet and Dagan, 2005). Co-
hyponymy (or coordination), on the other hand, is the rela-
tion held by words sharing a close hypernym, which are 
therefore attributionally similar (Weeds et al., 2014). 
 The ability of discriminating hypernymy, co-hyponymy 
and random words has potentially infinite applications, in-
cluding automatic thesauri creation, paraphrasing, textual 
entailment, sentiment analysis and so on (Weeds et al., 
2014). For this reason, in the last decades, numerous meth-
ods, datasets and shared tasks have been proposed to im-
prove computers’ ability in such discrimination, generally 
achieving promising results (Weeds et al., 2014; Rimmel, 
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2014; Geffet and Dagan, 2005). Both supervised and unsu-
pervised approaches have been investigated. The former 
have been shown to outperform the latter in Weeds et al. 
(2014), even though Levy et al. (2015) have recently 
claimed that these methods may learn whether a term y is a 
prototypical hypernym, regardless of its actual relation 
with a term x. 
 In this paper, we propose a supervised method, based on 
a Random Forest algorithm and 13 corpus-based features. 
In our evaluation, carried out using the 10-fold cross vali-
dation on 9,600 pairs, we achieved an accuracy of 88.3% 
when the three classes are present, and of 92.3% and 
97.3% when only two classes are present. Such results are 
competitive with the state-of-the-art (Weeds et al., 2014). 

Method and Evaluation 
ROOT13 uses the Random Forest algorithm implemented 
in Weka (Breiman, 2001), with the default settings. It relies 
on 13 features that are described below. Each of them is 
automatically extracted from a window-based Vector 
Space Model (VSM), built on a combination of ukWaC 
and WaCkypedia corpora (around 2.7 billion words) and 
recording word co-occurrences within the 5 nearest content 
words to the left and right of each target. 
FEATURES. The feature set was designed to identify sev-
eral distributional properties characterizing the terms in the 
pairs. On top of the standard features (e.g. vector cosine, 
co-occurrence and frequencies), we have added several 
features capturing the generality of the terms and of their 
contexts1, plus two unsupervised measures for capturing 
similarity (Santus et al., 2014b-c). All the features are 
normalized in the range 0-1: 
• Cos: vector cosine (Turney and Pantel, 2010); 
• Cooc: co-occurrence frequency; 
• Freq 1, 2: two features storing the frequency the terms; 
• Entr 1, 2: two features storing the entropy of the terms; 
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• Shared: extent of the intersection between the top 1k 
most mutually related contexts of the two terms2; 

• APSyn: for every context in the intersection between 
the top 1k most mutually related contexts of the two 
terms, this measure adds 1, divided by its average rank 
(Santus et al. 2014b-c); 

• Diff Freqs: difference between the terms frequencies; 
• Diff Entrs: difference between the terms entropies3; 
• C-Freq 1, 2: two features storing the average frequency 

among the top 1k most mutually related contexts for 
each term; 

• C-Entr 1, 2: two features, storing the average entropy 
among the top 1k most mutually related contexts for 
each term. 

DATASET. We have used 9,600 pairs, randomly extracted 
from three datasets: Lenci/Benotto (Santus et al., 2014b), 
BLESS (Baroni and Lenci, 2011) and EVALution (Santus 
et al., 2015). The pairs are equally distributed among the 
three classes (i.e. hypernyms, co-hyponyms and random 
words) and involve several Parts-Of-Speech. 
TASKS. Four classification tasks have been carried out. 
One involving all classes and three tasks involving only 
two of them. F1 score on a 10-fold cross validation was 
chosen as accuracy measure. 
BASELINE. Vector cosine is used as baseline. It achieves 
a reasonable accuracy, which is anyway far below the re-
sults obtained by our model. As it will be shown below, 
our model does not benefit from its use. 
RESULTS. Table 1 describes the features’ contributions in 
the four classification tasks. As can be seen, when all the 
classes are involved, every feature contributes for an in-
crement between 0.4% and 4.8%, except for the feature 
Shared, whose contribution is +12.5%. The relevance of 
this feature is confirmed also in the other three tasks. Inter-
estingly, instead, the vector cosine does not contribute to 
our score. It instead penalizes it in three tasks out of four. 
The only task in which it actually contributes for 0.1% is 
the discrimination between co-hyponyms and randoms, 
which is its main function. 

Conclusions 
In this paper, we have described ROOT13, a classifier for 
hypernyms, co-hyponyms and random words. The classifi-
er, based on the Random Forest algorithm, uses only 13 
unsupervised corpus-based features, which have been de-
scribed and their contribution reported. Our classifier is 
competitive with the state-of-the-art (Weeds et al., 2014). 
In a second run of tests, we have noticed the Levy et al. 
(2015)’s effect, that is the classification of switched hyper-
nyms as hypernyms (e.g. dog-vehicle, car-animal). How-
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ever, we were able to remove it – without any sensible loss 
in accuracy – by training the model also on switched hy-
pernyms labeled as randoms.4 
 

 Hyper 
Coord 

Random 

Hyper  
Coord 

Hyper 
Random 

Coord 
Random 

Cos (Baseline) 57.6 60.2 65.5 81.5 
+ Cooc 62.4 71.9 71.7 81.4 
+ Shared 74.9 83.2 80.2 96.6 
+ Diff Freqs 76.6 83.6 82.6 96.2 
+ Diff Entrs 78.4 84.4 83.8 96.2 
+ APSyn 79.0 84.9 84.5 96.5 
+ Freq 1, 2 83.1 88.2 88.7 96.6 
+ Entr 1, 2 85.4 90.6 90.1 97.1 
+ C-Entr 1, 2 87.6 92.6 92.1 97.3 
+ C-Freq 1, 2 88.0 93.1 92.2 97.4 
- Cos 88.3 93.4 92.3 97.3 

Table 1. Features’ contributions on a 10-fold cross validation. 
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