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Abstract

The principle of counter-transitivity plays a vital role in argu-
mentation. It states that an argument is strong when its attack-
ers are weak, but weak when its attackers are strong. In this
work, we develop a formal theory about the argument rank-
ing semantics based on this principle. Three approaches, i.e.,
quantity-based, quality-based and the unity of them, are de-
fined to implement the principle. Then, we show an iterative
refinement algorithm for capturing the ranking on arguments
based on the recursive nature of the principle.

Introduction

Argumentation theory has gained significant interest in the
field of artificial intelligence as it provides the basis for com-
putational models inspired by the way humans reason. The
most widely used framework for exploring general issues
of argumentation is Dung’s abstract argumentation (Dung
1995). It is represented as a pair AF = 〈X ,R〉, where X is
a finite set of arguments and R ⊆ X × X is a binary at-
tack relation on X . (a, b) ∈ R means that a attacks b, or
a is an attacker of b. We denote by R−(x) the subset of X
containing those arguments that attack the argument x ∈ X .

Dung provides a series of extension-based semantics for
solving an AF by selecting acceptable subsets. Extensions
are evaluated on the basis of the principle that an argument
is accepted if all its attackers are rejected; an argument is
rejected if at least one of its attackers is accepted. To gen-
eralize Dung’s two extreme views on reasoning, a trend has
emerged toward considering and exploring rankings on ar-
guments induced by a larger number of categories or contin-
uous numerical scales (e.g., (Cayrol and Lagasquie-Schiex
2005; Grossi and Modgil 2015)). Even though numerous
works have been done, one basic principle behind them is:
the more acceptable the arguments that attacks argument
x are, the more unacceptable x is, and the more unaccept-
able these arguments are, the better x’s acceptability is. Of
course, if no argument attacks x, then it is indeed very ac-
ceptable. In short, an argument x is ranked higher than argu-
ment y, if the attackers of x are ranked lower than those of
y. Borrowing concepts from (Amgoud and Ben-Naim 2013),
we call this principle as counter-transitivity. In this work, we
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mainly concern on how to utilize this principle to compare
and rank arguments. A formal theory about the argument
ranking semantics is developed based on this principle.

The principle of counter-transitivity

Let T be some set. An ordering � on T is a binary relation
on T (i.e., �⊆ T ×T ) such that: (1) � is reflective; (2) � is
transitive. Here, x � y means that x is at least as acceptable
as y. We denote x � y iff x � y and y � x, which means x
and y are equally acceptable. Moreover, x 	 y, means x is
strictly more acceptable than y, iff x � y but not y � x. x is
incomparable with y if both x � y and y � x are not in �.

The ranking semantics defined for an AF = 〈X ,R〉 is a
function Γ which will transform AF into an ordering on X ,
denoted by �Γ. Now, we formally define the principle of
counter-transitivity as below:

Definition 1 (Counter-transitivity). Let AF = 〈X ,R〉, and
Γ a ranking semantics. Γ satisfies counter-transitivity iff for
every x, y ∈ X , if R−(y) �Γ R−(x), then x �Γ y.

Note that Definition 1 involves the concept of set com-
parison, i.e., the comparison between R−(x) and R−(y).
The definition of the order between two sets is similar with
that of the order between two elements in previous defini-
tions. In this work, we mainly consider three approaches
to instantiate the concept of set comparison. The first one
is the cardinality-based comparison: S1 precedes S2 if the
elements of S1 are more numerous than those of S2, i.e.,
S1 �C S2 iff |S1| ≥ |S2|. The cardinality-based compari-
son can be seen as a quantitative approach. The second ap-
proach, called quality-based comparison, states that S1 is
better than S2 iff there exists one element in S1 satisfying
that it is ranked higher than all elements in S2, formally,
S1 �Q S2 iff ∃x ∈ S1 such that x � y for all y ∈ S2. To
compare arguments by considering both quantity and qual-
ity in their unity, thus we introduce unity-based comparison:
S1 �U S2 iff S1 �C S2 and S1 �Q S2.

The above three approaches can induce three ranking se-
mantics, called cardinality-, quality- and unity-based rank-
ing semantics, respectively, and denoted by C, Q and U, re-
spectively. Let �C and �U be two orderings on X trans-
formed from the semantics C and U w.r.t. AF = 〈X ,R〉, re-
spectively. Obviously, �U ⊆�C. We can see that the unity-
based ranking semantics inherits the quantitative nature of
the cardinality-based ranking semantics. In the following
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section, we will show that it also inherits the recursive na-
ture of the quality-based ranking semantics (i.e., the rank of
an argument relies on the rank of its attackers, which in turn
depends on the rank of their attackers, and so on).

The recursive nature of counter-transitivity

The recursive nature of Q and U provides a way of solv-
ing them by iteration. Here, we consider Algorithm ?? that
defines a ranking semantics for AF = 〈X ,R〉, which iter-
atively refines an ordering on X by applying the principle
of counter-transitivity. Let x �(k) y denote the fact that the
rank of x is higher than or equal to the rank of y in itera-
tion k of the algorithm. The algorithm begins with an ini-
tial ordering in which all arguments have equal ranks (see
line 3). The ordering in stage k + 1 is refined from the or-
dering in stage k by the function Refining(�(k)

Γ ) described
as: (a) Let �(k+1)

Γ = ∅; (b) For all pairs of x and y in X , if
R−(y) 	(k)

Γ R−(x), then add the order x 	(k+1)
Γ y to the

set �(k+1)
Γ . By iteratively applying the function Refining,

if there is no change between the current ordering and the
previous ordering, the algorithm terminates, and output the
current ordering as the chosen one (in line 7 and 8). The fi-
nal ordering will be consistent with the principle of counter-
transitivity since if there exist a pair of arguments whose rel-
ative order should be refined to realize counter-transitivity,
then the algorithm will not terminate and will continue to
make further refinements.

Theorem 1. Algorithm ?? necessarily converges with re-
spect to Γ ∈ {Q,U}.

Since �(0)
Γ ⊇�(1)

Γ ⊇�(2)
Γ ⊇ · · · is a decreasing sequence

of sets of orderings on arguments for Γ ∈ {Q,U}, and there
are only finitely many arguments, thus Algorithm ?? neces-
sarily converges. Algorithm ?? will terminate after at most
|X | iterative calls to function Refining since each iteration
is just a refinement that makes the ordering more strict. In
the following, an example is presented to show how Algo-
rithm ?? ranks arguments within the context of quality- and
unity-based semantics.

Algorithm 1: Solving ranking semantics by iteration
Input: 〈X ,R〉: argumentation framework;
Output: �(k)

Γ : the (partial or complete) ordering on X ;
1 begin
2 k := 0;
3 �(0)

Γ := {∀x, y ∈ X , x �(0) y};
4 repeat

5 �(k+1)
Γ := Refining(�(k)

Γ ) ;
6 k := k + 1;
7 until �(k)

Γ =�(k−1)
Γ ;

8 return �(k)
Γ ;

9 end

Proposition 1. Let �Q and �U be the orderings on X com-
puted by Algorithm ?? w.r.t. Q and U for AF = 〈X ,R〉,
respectively. It holds that �U⊆�Q.
Example 1. Consider the AF with X = {x, y1, y2, y3, z}
and R = {xRyi, yiRz}, i = 1, 2, 3. The cardinality-based
ranking semantics gives �C = {x 	 y1 � y2 � y3 	
z}. Now, we calculate the other semantics by using Algo-
rithm ??.

For the quality-based ranking semantics Q, the initial or-
dering is �(0)

Q = {x � y1 � y2 � y3 � z}. Applying

Refining, we obtain �(1)
Q = {x 	 y1 � y2 � y3 � z}. Here,

x is ranked above all other arguments as it has no attacker;
yi � z due to R−(yi) �(0)

Q R−(z). Applying Refining

again, we have �(2)
Q = {x 	 z 	 y1 � y2 � y3}, where z is

ranked higher than yi due to R−(yi) 	(1)
Q R−(z). Applying

Refining again, we also have �(3)
Q = {x 	 z 	 y1 � y2 �

y3}. Then, the iteration process terminates, and the ordering
for this AF w.r.t. Q is �Q = {x 	 z 	 y1 � y2 � y3}.

For the unity-based ranking semantics U, the initial or-
dering is also �(0)

U = {x � y1 � y2 � y3 � z}. After
applying the first Refining, we get �(1)

U = {x 	 y1 � y2 �
y3 	 z}, in which yi 	 z as |R−(yi)| < |R−(z)| and
R−(z) �(0)

U R−(yi). Actually, as it is assumed in the ini-
tial ordering that the quality of all arguments are the same,
thus, the first refinement ranks arguments merely based on
the quantity of their attackers, and we thus have �C =�(1)

U .
After the second refinement, we then obtain �(2)

U = {x 	
y1 � y2 � y3, x 	 z}, where z is incomparable with yi,
since R−(yi) �(1)

U R−(z) is inconsistent with |R−(yi)| <
|R−(z)|. The third refinement has the same result as the sec-
ond one. Thus, �U = {x 	 y1 � y2 � y3, x 	 z} for
this AF. We can see that �U ⊆�Q, which is compatible with
Proposition 1.

Conclusion

The work discusses the principle of counter-transitivity in
argumentation and addresses the issue of graded acceptabil-
ity of arguments from a new perspective. It formalises three
ranking semantics based on three comparison criteria and an
iterative algorithm to compute two of those proposed seman-
tics.
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