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Abstract

People collaborate in carrying out such complex activities as
treating patients, co-authoring documents and developing soft-
ware. While technologies such as Dropbox and Github enable
groups to work in a distributed manner, coordinating team
members’ individual activities poses significant challenges. In
this paper, we formalize the problem of “information sharing
in loosely-coupled extended-duration teamwork”. We develop
a new representation, Mutual Influence Potential Networks
(MIP-Nets), to model collaboration patterns and dependencies
among activities, and an algorithm, MIP-DOI, that uses this
representation to reason about information sharing.

Introduction

Distributed teamwork is becoming increasingly prevalent as
technology enables groups of people distributed over vast dis-
tances, with few opportunities for synchronous interaction, to
work together on complex activities extended in time. Tech-
nologies such as Google Drive, Dropbox and Github enable
teams to share work artifacts remotely and asynchronously.
The coordination of their activities remains a challenge, how-
ever, because these technologies do not have capabilities for
focusing people’s attention on the actions taken by others
that matter most to their own activities.

Coordination is especially challenging in teamwork that is
extended over a long time period and that is loosely-coupled
in nature (Amir et al. 2015; Pinelle and Gutwin 2006). While
loosely-coupled teamwork allows collaborators to focus on
their individual tasks and reduces coordination needs, it also
makes it harder to identify the dependencies and conflicts
between collaborators’ activities (Hutchins 1995).

This paper defines the problem of Information Sharing in
Loosely-coupled Extended-duration Teamwork (ISLET) and
presents new methods for addressing it. Successful solutions
to the ISLET problem need to identify and share with team
members information that is relevant to their activities and
to do so within a limited communication budget so as to not
overwhelm them with too much information.

We extend prior research in multi-agent systems, which has
developed a variety of methods for reasoning about informa-
tion sharing (Kamar, Gal, and Grosz 2009; Wu, Zilberstein,
and Chen 2011). These approaches rely on a complete plan
knowledge assumption. They use a model and knowledge of
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the team’s plans or policies to compute the value of infor-
mation. Although some approaches assume only incomplete
knowledge of agents’ plans (Barrett and Stone 2015), these
approaches still assume a known planning domain. In real-
world distributed human teamwork settings, such plan models
are not available for modeling (Amir et al. 2013).

Our approach avoids the complete plan knowledge assump-
tion by utilizing the extended duration of the teamwork to
learn team members’ role allocation and dependencies be-
tween activities. This information is implicitly represented in
a new representation, MIP-Net. We define a MIP-DOI algo-
rithm, which uses the MIP-Net to reason about information
sharing decisions. We evaluate our approach in simulation,
showing that it is capable of learning collaboration patterns
and sharing relevant information with team members.

The ISLET Problem

An ISLET problem setting comprises the following: (1) P : a
set of collaborating partners. The set can change over time
with partners joining or leaving the team; (2) O: a set of
objects that partners interact with. The set can change over
time as a result of partners’ actions; (3) A: the set of act-types
{ADD,MOD,DEL} for adding, modifying or deleting
objects, and (4) S: A set of interaction sessions of partners. A
session s(p, t, (〈a1, o1〉, ..., 〈a|s|, o|s|〉)) is defined by a triple:
the partner acting , the time of the session, and a set of
pairs of act-types and the objects they operate on (〈ai, oi〉).
For brevity, we denote a session recorded at time t as st.
Figure 1(a) shows an example session.

The ISLET problem is to determine a set of l objects
Oshare ⊂ O to inform a partner p ∈ P about when p starts
session st, given sessions s1 to st−1 and the identity of p.
The communication budget l restricts the amount of informa-
tion that can be shared, reflecting the need not to overwhelm
partners with too much information. The set Oshare should
include objects that are relevant to the partner.

Mutual Influence Potential Networks

MIP-Nets represent interactions between partners and ob-
jects and dependencies between different objects. Partners
and objects are represented by nodes. A particular partner
p and a particular object o are represented by nodes np and
no, respectively. The nodes np and no are connected by an
edge if p performed an action on o. The edge weight cor-
responds to the extent of the interaction. Similarly, no and
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Figure 1: (a) An interaction session s10; (b) The MIP-Net
after sessions s1 − s9. Partner nodes and edges connecting
partners and objects are shown in blue. Object nodes and
edges connecting them are shown in red. Numbers on edges
represent the edge weights; (c) The updated MIP-Net after
session s10.

no′ are connected by weighted edges based on the frequency
of the objects they represent being modified in the same ses-
sions. Figure 1(b) shows a sample MIP-Net. MIP-Nets are
constructed and revised over time based on partners’ sessions.
At the end of each session st, the MIP-Net update procedure
increments the weights of edges connecting np with nodes
representing objects that were modified in the session and
the weights of edges connecting object nodes representing
objects that the partner interacted with in the same session.

To reason about information sharing, the MIP-DOI algo-
rithm uses the MIP-Net to quantify the relevance to p of
modifications to object o. We use the concept of Degree-Of-
Interest (DOI) (Furnas 1986), which into consideration the a
priori importance of an item and its proximity to the users’
focus of attention. In our formulation of DOI, we consider
two different nodes as representing p’s focus of attention: the
node representing the partner (np), and the node represent-
ing the object that the partner acts on at the beginning of a
session, denoted of for “focus object”. DOI is computed by:

DOI(o | p, of ) = α ·API(no) + β1 ·D(no, np) + β2 ·D(no, nof )

The distance values D(no, np) and D(no, nof ) take into
account the weight on the edge connecting the two nodes and
their shared neighbors. The a priori importance (API(n))
is the degree of n. MIP-DOI computes DOI(o | p, of ) for
each o ∈ O and chooses the l objects with the highest DOI
to share with p.

Empirical Evaluation

We evaluated the MIP-DOI algorithm in a simulation environ-
ment which uses a collaborative graph coloring problem: the
partners (P ) need to color a graph such that no two neighbor-
ing vertices are assigned the same color. The graph vertices
are the set of objects (O). In each turn, a partner p colors a set
of k vertices, denoted Omodify, which includes a focus ob-
ject of . Before choosing their colors, p receives information
about the color of a set of l vertices (Oshare) from an infor-
mation sharing agent. p knows the graph structure (vertices
and edges), but only knows the colors of vertices that were
shared with it, and assume colors have not changed until be-
ing informed otherwise. The information sharing agent only
knows about the existence of vertices that partners interacted
with, but does not have information about edges (reflecting
the lack of knowledge about the task structure in ISLET set-
tings). Its aim is to share relevant information: an object o
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Figure 2: Average precision by round.

is relevant, if there is an edge connecting o to an object in
Omodify , as such information can directly affect p’s actions.

We evaluated agents using 3 configurations of MIP-DOI:
MIP-DOI-centrality, which only considers objects’ centrality
(α = 1); MIP-DOI-partner, which only considers objects’
proximity to np (β1 = 1), and MIP-DOI-focus, which only
considers objects’ proximity to of (β2 = 1). We compared
these MIP-DOI variations with 4 baselines: an Omniscient
agent which has access to the graph structure and chooses
objects in proportion to their distance from of , an agent
that shares the most frequently changed objects; an agent
that shares the most recently changed objects, and an agent
that chooses objects randomly. We note that the algorithms’
goal is not to solve the graph coloring problem, but rather
to share relevant information with partners. Thus, they are
incomparable to distributed CSP algorithms.

Figure 2 shows the precision obtained by each of the algo-
rithms with l = 3, averaged over 10 different graph instances
with 5 runs for each graph instance. As can be seen in the
figure, MIP-DOI-focus significantly outperforms all other un-
informed algorithms, i.e., the baseline algorithms except “om-
niscient” which has access to the true graph structure. Over
time, its performance becomes close to that of the omniscient
algorithm as more information about role allocation and task
structure is accumulated in the MIP-Net. The other MIP-DOI
configurations also outperform all uninformed baselines.
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