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Abstract

Empirical evaluations of DCOP algorithms are typically done
in simulation and under the assumption that the communica-
tion times between all pairs of agents are identical, which is
unrealistic in many real-world applications. In this abstract,
we incorporate non-uniform communication times in the de-
fault DCOP model and propose heuristics that exploit these
communication times to speed up DCOP algorithms that op-
erate on pseudo-trees.

Introduction
Distributed Constraint Optimization Problems (DCOPs) are
well-suited for modeling multi-agent coordination problems
where the primary interactions are between local subsets of
agents (Modi et al. 2005; Yeoh and Yokoo 2012).

Unfortunately, empirical evaluations of DCOP algorithms
are typically done in simulation and under the assumption
that the communication time between any pair of agents
is identical for all pairs. In many coordination problems,
this assumption is unrealistic. For example, in a distributed
sensor network problem, communication between pairs of
sensors may rely on factors such as the distance between
the sensors and the topology of the environment. There-
fore, in this abstract, we extend the DCOP model to in-
clude communication-related information, specifically, the
communication times for each constraint as well as pro-
pose heuristics that make use of this information to speed
up DCOP algorithms that operate on pseudo-trees.

We evaluate our heuristics in random graphs with com-
munication times that depend on physical distances sampled
from two distributions (uniform and Gaussian). Our exper-
imental results show that our heuristics find pseudo-trees
with smaller depths than the existing max-degree heuristic
by up to 20%.

DCOPs with Variable Communication Times
We extend the DCOP model to include communication-
related information, specifically, the communication times
for each constraint. Therefore, this new DCOP is defined
by a tuple 〈A,X,D,F,C, α〉, where A = {ai}pi=1 is a
set of agents; X = {xi}ni=1 is a set of decision variables;
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Root Variable
hmws hmwa hmus

Non-Root hmws h1 h2 h3

Variables hmwa h4 h5 h6

hmus h7 h8 h9

Table 1: Pseudo-tree Generation Heuristics

D = {Dx}x∈X is a set of finite domains, each variable
x ∈ X takes values from the set Dx ∈ D; F = {fi}mi=1
is a set of utility functions, each defined over a mixed set
of decision variables: fi : �x∈xfi Dx → R

+ ∪ {⊥}, where
xfi ⊆ X is the scope of fi and ⊥ is a special element used to
denote that a given combination of values for the variables
in xfi is not allowed; α : X → A is a function that asso-
ciates each decision variable to one agent; and C = {ci}mi=1
is the set of communication times, where ci ∈ C specifies
the communication time for agents in the scope xfi of util-
ity function fi ∈ F to communicate with one another. The
objective is to find an optimal complete solution that maxi-
mizes the sum over all utility functions.

Pseudo-tree Generation Heuristics
A DFS pseudo-tree arrangement for G is a spanning tree
T = 〈X, ET 〉 of G such that if fi∈F and {x, y}⊆xfi , then
x and y appear in the same branch of T . Edges of G that
are in ET are called tree edges and edges that are not are
called backedges. Tree edges connect a node with its parent
and its children, while backedges connect a node with its
pseudo-parents and its pseudo-children. We use N(ai) =
{aj ∈ A | {xi, xj} ∈ E} to denote the neighbors of agent
ai; and P (ai), C(ai), PP (ai), and PC(ai) to denote the
parent, the set of children, the set of pseudo-parent, and the
set of pseudo-children of agent ai in the pseudo-tree.

Since constructing optimal pseudo-trees is NP-hard, one
typically uses greedy approaches like the Distributed DFS
algorithm (Hamadi, Bessière, and Quinqueton 1998) to con-
struct pseudo-trees. Additionally, since the edges of pseudo-
trees are now weighted by the communication times for each
edge, we define the generalized depth of pseudo-trees to take
these communication times into account.
Definition 1 (Generalized Depth) The generalized depth
of a pseudo-tree is the largest sum of communication times
ci ∈ C across all constraints over all branches of the
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pseudo-tree. More specifically, the generalized depth d̂∗ =

d̂root and is defined recursively by:

d̂xi
= max

fk∈F:{xi,xj}∈xfk∧xj∈C(xi)∪PC(xi)
ck + d̂xj

(1)

where fk is the constraint between xi and its child or
pseudo-child xj , ck is the communication time associated
with that function, and d̂xj

is the generalized depth of the
sub-tree rooted at xj .

It is straightforward to see that this generalized depth defini-
tion subsumes the previous depth definition for pseudo-trees
with uniform communication times of 1.

Complete DCOP algorithms typically require that the
variables in the problem be ordered according to some com-
plete ordering in which case the variables are ordered into
a pseudo-tree; a large number of complete algorithms, in-
cluding ADOPT (Modi et al. 2005) and DPOP (Petcu and
Faltings 2005), operate on pseudo-trees. The Distributed
DFS algorithm assigns a score to each variable according
to some heuristic and initiates a DFS-traversal of the con-
straint graph, greedily adding the neighboring variable with
the largest score as the child of the current variable. The vari-
ables’ scores can be chosen arbitrarily. A commonly used
heuristic is the max-degree heuristic h(xi) = |N(xi)|. We
thus introduce heuristics that can be used by Distributed
DFS to create pseudo-trees with small generalized depths:
• The max-weighted-sum (mws) heuristic hmws:

hmws(xi) =
∑

fk∈F:{xi,xj}∈xfk∧xj∈N(xi)\[{P (xi)}∪PP (xi)]

ck (2)

It sums the communication times between variable xi and
all its neighbors xj that are not yet part of the pseudo-
tree. We thus ignore neighbors that are already part of the
pseudo-tree in this heuristic and both heuristics below.

• The max-weighted-average (mwa) heuristic hmwa:

hmwa(xi) =
hmws(xi)

|N(xi) \ [{P (xi)} ∪ PP (xi)] | (3)

It is identical to the previous hmws heuristic except that it
averages the values over the number of neighboring vari-
ables that are not yet part of the pseudo-tree.

• The max-unweighted-sum (mus) heuristic hmus:

hmus(xi) = |N(xi) \ [{P (xi)} ∪ PP (xi)] | (4)

It is identical to the default max-degree heuristic except
that it considers only neighboring variables that are not
yet part of the pseudo-tree.

Table 1 tabulates nine combination of heuristics because the
heuristic used to select the root of the pseudo-tree can differ
from the heuristic used to select non-root variables.

Experimental Results
We empirically evaluate our 9 heuristics, tabulated in Ta-
ble 1, against the default max-degree heuristic on ran-
dom graphs. We vary the number of variables |X| =
{10, 20, 30, 40, 50, 60} and set the constraint density p1 =
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Figure 1: Random Graphs

0.3. For each configuration, we sample the physical dis-
tances di of the constraints from two possible truncated dis-
tributions – uniform and Gaussian N (50, 25) – from the
range [1,100] and define the communication time ci = C ·di
with these distances, where we set C = 1 millisecond per
meter. We measure the generalized depths of pseudo-trees
constructed by the heuristics and use them as proxies for
runtimes of DCOP algorithms that operate on pseudo-trees.

Figure 1 shows the results, where we plot the four best
heuristics. Generally, the savings increase as the number of
variables increases. The reason is because the number of
possible pseudo-tree configurations increases as the number
of variables increases. Thus, there is more room for improve-
ment. The h1 and h2 heuristics converge to larger savings
(≈18% with the uniform distribution and ≈15% with the
Gaussian distribution) than the other two h7 and h9 heuris-
tics (≈6% in both distributions), indicating that heuristics
that take the communication times into account perform bet-
ter than those that do not.

Conclusions
In this abstract, we incorporate non-uniform communication
times in the default DCOP model in order to better reflect
real-world applications and propose pseudo-tree construc-
tion heuristics that exploit these communication times to
find pseudo-trees that are up to 20% shorter than pseudo-
trees constructed by the max-degree heuristic. These heuris-
tics can thus be used to speed up a large class of DCOP
algorithms that operate on pseudo-trees.
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