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Abstract

Identifying a small number of features that can represent the
data is believed to be NP-hard. Previous approaches exploit
algebraic structure and use randomization. We propose an al-
gorithm based on ideas similar to the Weighted A* algorithm
in heuristic search. Our experiments show this new algorithm
to be more accurate than the current state of the art.

1 The problem

Feature selection is a standard dimensionality reduction
technique. Given data items described in terms of n fea-
tures, the goal is to select k<n features such that the re-
duced k dimensional vectors are useful for the task at hand.
A standard criterion is to select k features that can be
used to approximate all n features by a linear combination
of the selected features (e.g., (Golub and Van-Loan 1996;
Dasgupta et al. 2007)).

Let X be an m×n data matrix of m items (rows), each de-
fined in terms of n features (columns). We wish to estimate
X by a linear combination of k of its columns: X ≈ SkA.
The matrix Sk = (xs1 , . . . , xsk) is formed by the selected
columns of X , and A is the coefficients matrix. In Frobenius
norm the approximation error is:

E = min
A,Sk

‖X − SkA‖2F (1)

Finding Sk that minimizes (1) is also known as the “Col-
umn Subset Selection Problem” (CSSP) in numerical linear
algebra (e.g., (Golub and Van-Loan 1996; Boutsidis, et. al.
2009)). It is believed to be NP-hard (Çivril 2014).

2 Heuristic search for the optimal solution

Let S∗
k denote a (best) selection of k columns that mini-

mizes the error in (1), and let E(S∗
k) be the corresponding

(minimal) error. The eigenvalues of the matrix XXT can be
used to obtain bounds on E(S∗

k). Let E∗
k denote the error

of the best approximation of X in terms of a rank-k matrix.
Then the following inequalities (Golub and Van-Loan 1996;
Deshpande and Rademacher 2010) hold:

E∗
k ≤ E(S∗

k) ≤ (k + 1)E∗
k (2)
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0. Put the root node into the fringe F .
1. While F is nonempty and no solution found:

1.1 Pick ni with the smallest f ′
i from F .

1.2 If ni has k columns return it as the solution.
1.3 Otherwise:

1.3.1 Add ni to the closed list C.
1.3.2 Examine all children nj of ni.
1.3.2.1 If nj is in C or F do nothing.
1.3.2.2 Otherwise put nj in F .

Figure 1: Example of the subsets graph and the details of the
generic heuristic search algorithm.

Calculating E∗
k is easy, since the columns of the best rank-k

matrix are the k dominant eigenvectors of XXT , scaled by
the eigenvalues. From this it follows that: E∗

k =
∑m

t=k+1 λt,
where λt is the t-largest eigenvalue.

A recent study (Arai et al. 2015) has shown how to model
the CSSP as a graph search, and then apply the classic A∗.
Their algorithm, that we call CSSP-A∗, uses (2) to compute
heuristic estimates. It is guaranteed to find the optimal so-
lution, runs much faster than exhaustive search, but much
slower than other algorithms. It operates on a graph, where
nodes correspond to column subsets. There is an edge from
subset s1 to subset s2 if adding one column to s1 creates s2.
An example is shown in Figure 1.

3 Weighted A∗ algorithms for the CSSP

Let ni be a node in the graph with the corresponding subset
Si. Set j = |Si| and define:
gi � Error of estimating X using the j columns in Si.
fi � Error of estimating X using the j columns in Si and

additional “best possible” k − j vectors.
hi � gi − fi.
Let g∗ be the smallest possible error in Equation (1). It was
shown by (Arai et al. 2015) that running the algorithm in
Fig.1 with f ′

i = gi−hi is guaranteed to find an optimal solu-
tion with error g∗. Since this is similar to the classic A∗, one
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Name f ′
i Suboptimality Bound

CSSP-WA*-g gi − hi + εgi g′∗ ≤ g∗ + εg0
CSSP-WA*-h gi − hi + εhi g′∗ ≤ g∗ + εh0

CSSP-WA*-b gi − hi + εbi g′∗ ≤ (1 + ε(k + 1))g∗

Figure 2: Three CSSP-WA* algorithms

may expect an improved run time by the classic Weighted
A∗ algorithm , which replaces hi with (1+ε)hi (Pearl 1984).
Unfortunately we have found experimentally that the result-
ing algorithm runs even slower than the CSSP-A∗. How-
ever, we discovered that assigning weights differently pro-
duces the desired improved runtime, with precise bounds on
suboptimality. Specifically, we propose to use the following
heuristic for a Weighted A∗ algorithm for the CSSP:

f ′
i = gi − hi + εvi

with ε ≥ 0, vi ≥ 0. We call such an algorithm a CSSP-WA∗.

3.1 Suboptimality

Let n∗ be an optimal solution node, and let g∗ be the cor-
responding (optimal) error value. Suppose vi ≥ 0 can be
computed at each node, and f ′

i=gi−hi+εvi.
Theorem 1: If f ′

i is used by the algorithm in Figure 1, it will
terminate with a solution satisfying: g′∗ ≤ g∗+ εvmax, where
vmax = maxi vi. See (Arai et al. 2016) for the proof.

The theorem is useful for proving bounds on suboptimal-
ity, but by itself it does not provide guidance as to what con-
stitutes a useful vi. The following corollary suggests that vi
should be chosen monotonically decreasing along any path.
Under this condition the bound becomes tighter during the
run of the algorithm.
Corollary 1: Let g∗, g′∗, vi be as above. Suppose vi is mono-
tonically decreasing along any path. Let nr be a visited node
in the path to the solution, and let vr be the value computed
at nr. Then: g′∗ ≤ g∗ + εvr. (Proof: Apply Theorem-1 to the
subgraph rooted at nr.)

We note that the guarantee in the corollary may be much
stronger than the guarantee provided by the theorem since
vr may be much smaller than v0, the value of vi at the root.

Three choices for vi are shown in Figure 2: gi, hi, and bi.
The function bi is computed in a similar way to the upper
bound in (2) and gives multiplicative bounds on suboptimal-
ity (see (Arai et al. 2016) for details). It can be shown that
the functions gi, hi produce the same algorithm with differ-
ent range values of ε.

3.2 Computing the heuristics

In calculating fi, gi, hi we follow (Arai et al. 2015). Let
Si be the columns at node ni, and set j = |Si|. Com-
pute the matrix Qi, an orthogonal basis to Si. Compute:
Xi = X −QiQ

T
i X , and Bi = XiX

T
i . Let λ1 ≥ . . . ≥ λm

be the eigenvalues of Bi. Then: gi =
∑m

t=1 λt = ‖Xi‖2F ,
hi =

∑j
t=1 λt, fi =

∑m
t=j+1 λt.

4 Experimental results

We tested and compared our algorithms to the state of the
art and the CSSP-A∗ on several datasets. We describe here a

k GKS/(time) LEV GE/(time) WA*-b/(time)
20 7.1E+05/(0.02) 8.7E+05/(0.67) 6.9E+05/(0.80)
60 1.5E+05/(0.04) 1.7E+05/(1.93) 1.3E+05/(5.68)

100 2.8E+04/(0.06) 2.8E+04/(3.15) 2.1E+04/(14.47)

Figure 3: Error and time(min) comparison(WA* uses ε=0.5.)

k A* WA*-b
3 {6, 84, 121} {6, 84, 121}
4 {6, 84, 121, 329} {6, 84, 121, 329}
5 {6, 84, 121, 329, 5376} {6, 84, 121, 329, 5376}

Figure 4: Column indices selected by A∗ and WA∗-b(ε=0.5)

comparison on the TechTC01 dataset of size (163×29,261).
The results of the CSSP-WA* variants were compared to
the following two algorithms: 1. The GKS, considered one
of the best among the pure algebraic algorithms (Golub and
Van-Loan 1996). 2. The randomized two-stage-method that
we call LEV GE (Boutsidis, et. al. 2009). It is considered
one of the top randomized algorithms. The results are shown
in figures 3,4. Observe that the CSSP-WA*-b always come
as best in Figure 3. In Figure 4, observe that the CSSP-WA*
found the optimal solution in each case. (The CSSP-WA*-
g and the CSSP-WA*-h also find the optimal solution in
this case.) Observed that the CSSP-WA* variants were much
faster than the CSSP-A*.

5 Concluding remarks

The unsupervised feature selection problem that we con-
sider, the CSSP, is a practical problem that was heavily stud-
ied for over 50 years. Our solution, using ideas from heuris-
tic search, is more accurate than all currently available prac-
tical approaches. This comes at the expense of a longer run-
ning time. Still, our approach should be a preferred choice
when an increase in running time can be tolerated.
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