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Abstract

In impromptu or ad hoc settings, participating players are
precluded from precoordination. Subsequently, each player’s
own model is private and includes some uncertainty about
the others’ types or behaviors. Harsanyi’s formulation of a
Bayesian game lays emphasis on this uncertainty while the
players each play exactly one turn. We propose a new game-
theoretic framework where Bayesian players engage in a
Markov game and each has private but imperfect informa-
tion regarding other players’ types. Consequently, we con-
struct player types whose structure is explicit and includes a
finite level belief hierarchy instead of utilizing Harsanyi’s ab-
stract types and a common prior distribution. We formalize
this new framework and demonstrate its effectiveness on two
standard ad hoc teamwork domains involving two or more ad
hoc players.

Empirical findings in strategic games (Goodie, Doshi, and
Young 2012) strongly suggest that humans reason about oth-
ers’ beliefs to finite and often low depths. In part, this ex-
plains why a significant proportion of human participants
find it difficult to play Nash equilibrium profiles of games
because it involves them reasoning about others’ who in
turn reason about the others and so on ad infinitum and
such reasoning is typically beyond their conscious cognitive
capacity. Consequently, Kets (2014) characterized a finite-
level equilibrium between players having finite-level beliefs
in a framework generalized from the standard Harsanyi’s
Bayesian games.

We further generalize Kets’ single-stage framework to al-
low Bayesian players to play a Markov game with incom-
plete information where players with explicit types are sit-
uated in a dynamic environment whose states transitions
stochastically to another state sequentially as all participants
simultaneously perform their actions at each stage of game.
Contextual to these types that induce finite belief hierar-
chies, we characterize and define the equilibria within this
new framework for Bayesian Markov games (BMGs) with
explicit types as Markov-perfect finite-level equilibria and
formalize the computation of finding such equilibria as a
constraint satisfaction problem solved using an adaptation
of Soni et al. (2007)’s constraint satisfaction algorithm. Ad-
ditionally, we exploit equivalences between these dynamic
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types, as motivated by behavioral equivalence (Zeng and
Doshi 2012), in order to speed up computation of the equi-
librium. Consequently, we model the multi-access broadcast
channel and foraging problems – well-known evaluation do-
mains for ad hoc teamwork – as a BMG and solve it.

BMG with Finite-Level Types

We explicitly define a type space for player i as, ΘK
i =

〈Θi,Si,Σi, βi〉, where Θi is the non-empty set of types of
player i; Si is the collection of all sigma algebras on Θi;
Σi : Θi → Sj maps each type in Θi to a sigma algebra
in Sj ; and βi gives the belief associated with each type of i,
βi(θi) ∈ �(X×Θj ,FX×Σi(θi)), X is the states of nature
(set of payoff functions), FX is a sigma algebra on X .

We define a Bayesian Markov game (BMG) below which
uses Kets’ (2014) formalization of finite-level beliefs:
Definition 1 (BMG). A Bayesian Markov game with finite-
level type spaces (BMG) is a collection:

G∗ = 〈S,X, (Ai, Ri,Θ
k
i )i∈N , T, OC〉

• S is the set of physical states of the game;
• Ai is the set of player i’s actions;
• Ri : S ×X × ∏

i∈N

Ai → R is i’s reward function;

• Θk
i is the finite-level Kets type space of depth k;

• T : S × ∏

i∈N

A → Δ(S) is a stochastic physical state

transition function of the Markov game; and
• OC is the optimality criterion in order to optimize over

finite or infinite steps with discount factor, γ ∈ (0, 1).

A BMG between two agents, i and j of some type θi
and θj respectively, proceeds as follows: both agents ini-
tially start at st and perform actions ati and atj according
to their markov strategies, respectively. The state then tran-
sitions to st+1 according to the stochastic transition function
of the game, T . Both agents now receive observations, ot+1

i

= 〈st+1, atj〉 and ot+1
j = 〈st+1, ati〉, respectively, that per-

fectly inform them about current state and other’s previous
action. Based on these observations, the agents update their
respective types and their next actions, at+1

i and at+1
j , are

selected based on their strategies. Since the mixed-strategy
space is continuous, we discretize it using a τ -grid as defined
in Soni et al. (2007). We define the equilibrium next.
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Definition 2 (Markov-perfect finite level equilibrium). A
profile of strategies, πh

k = 〈πh
i,k〉i∈N is in Markov-perfect

finite-level equilibrium (MPFLE) of level k if the following
holds:

1. Each player has a Kets type space of level k;
2. Strategy πh

j,k, j ∈ N , j �= i and at every horizon is com-
prehensible for every type of player i.

3. Each player’s strategy for every type is a best response to
all other players’ strategies in the profile and the equilib-
rium is subgame perfect.

Notice that if, instead of condition 1 above, players pos-
sess the standard Harsanyi type space, then Def. 2 gives the
Markov-perfect Bayes-Nash equilibrium. However, a profile
of strategies in equilibrium may not lie on the τ -grid. There-
fore, the discretization may introduce error and motivates re-
laxing the exact equilibrium to ε-MPFLE which relaxes the
strict requirement of the exact equilibrium allowing a player
in approximate equilibrium to deviate if her loss due to devi-
ating to some other strategy is not more than ε. Interestingly,
an upper bound on ε may be obtained for a given value of τ .
Finally, a MPFLE may not always exist for a BMG of level k
because the given Kets type space of a player may not admit
any comprehensible and best response strategy as required
by conditions 2 and 3 of Def. 2.

Experimental Results

We implemented the MAC3 constraint satisfaction algo-
rithm for obtaining MPFLE and show the applicability of
BMGs toward two benchmark domains used in the ad hoc
team work literature: n-agent multiple access broadcast
channel (nMABC) and level-based foraging (m × m For-
aging) .

We begin by noting that the pareto-optimal MPFLE gen-
erated by our CSP coincides with the optimal joint policy
obtained from a decentralized POMDP using DP-JESP (Nair
et al. 2003) for the 2MABC problem. This empirically veri-
fies the correctness of our approach. Multiple equilibria with
pure and mixed comprehensible strategies were found for
level 1 Kets type spaces. Next, in Fig. ?? we explore the run-
time performance of BMG and investigate how varying the
different parameters impacts the performance and scalabil-
ity in the two domains. Next, we systematically and exactly
compress large type spaces using exact behavioral equiva-
lence. This type equivalence (TE) preserves the quality of the
solutions obtained, which we verified empirically as well.
Table 1 illustrates the reduction in type space due to TE in
2MABC for H = 5 and the computational savings in gener-
ating one pure-strategy profile in equilibrium.

Conclusion

To the best of our knowledge, BMG is the first formaliza-
tion of incomplete-information Markov games played by
Bayesian players, which integrates types that induce finite-
level beliefs into an operational framework. In particular,
BMGs are better suited for modeling ad hoc coordination
in comparison to previous game-theoretic frameworks. The
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5

16 1.56 4 1.26
36 31.24 16 26.7
64 >1 day 25 3161.7

Table 1: Computational savings due to TE while computing a
pure-strategy MPFLE in 2MABC for Kets level 1 type spaces.

framework also offers a promising departure point for mod-
eling empirical data on strategic interactions betwen hu-
mans. This further motivates its study and forms an impor-
tant avenue of future work.
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