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Introduction

Real-world deployed applications of Stackelberg Security
Games (Shieh et al. 2012; Basilico, Gatti, and Amigoni
2009; Letchford and Vorobeychik 2011) have led to signifi-
cant research emphasis on modeling the attacker’s bounded
rationality (Yang et al. 2011; Nguyen et al. 2013). One key
assumption in behavioral modeling is the availability of a
significant amount of data to obtain an accurate prediction.
However, in real-world security domains such as the wildlife
protection, this assumption may be inapplicable due to the
limited access to real-world data (Lemieux 2014), leading
to uncertainty in the attacker’s behaviors — a key research
challenge of security problems.

Recent research has focused on addressing uncertainty in
behavioral modeling, following two different approaches: 1)
one approach assumes a known distribution of multiple at-
tacker types, each follows a certain behavioral model, and
attempts to solve the resulting Bayesian games (Yang et
al. 2014); and 2) another considers the existence of multi-
ple attacker types of which behavioral models are perfectly
known, but without a known distribution over the types. It
then only considers the worst attacker type for the defender
(Brown, Haskell, and Tambe 2014). These two approaches
have several limitations. First, both still require a sufficient
amount of data to precisely estimate either the distribution
over attacker types (the former approach) or the model pa-
rameters for each individual type (the latter approach). Sec-
ond, solving the resulting Bayesian games in the former case
is computationally expensive. Third, the latter approach
tends to be overly conservative as it only focuses on the
worst-case attacker type.

This paper remedies these shortcomings of state-of-the-
art approaches when addressing behavioral uncertainty in
SSG by providing three key contributions. First, we present
a new game model with uncertainty in which we consider a
single behavioral model to capture decision making of the
whole attacker population (instead of multiple behavioral
models); uncertainty intervals are integrated with the chosen
model to capture behavioral uncertainty. The idea of uncer-
tainty interval is commonly used in literature (Aghassi and
Bertsimas 2006) and has been shown to effectively repre-
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sent uncertainty in SSG (Kiekintveld, Islam, and Kreinovich
2013). Second, based on this game model, we propose a new
efficient robust algorithm that computes the defender’s opti-
mal strategy which is robust to the uncertainty.

Overall, the resulting robust optimization problem for
computing the defender’s optimal strategy against the worst
case of behavioral uncertainty is a non-linear non-convex
fractional maximin problem. Our algorithm efficiently
solves this problem based on the following key insights: 1)
it converts the problem into a single maximization problem
via a non-linear conversion for fractional terms and the dual
of the inner minimization in maximin; 2) a binary search is
then applied to remove the fractional terms; and 3) the algo-
rithm explores extreme points of the feasible solution region
and uses a piece-wise linear approximation to convert the
problem into a Mixed Integer Linear Program (MILP). Our
new algorithm provides an O(ε+ 1

K )-optimal solution where
ε is the convergence threshold for the binary search and K
is the number of segments in the piecewise approximation.

Background
Stackelberg security games (SSG). SSG refer to a class of
defender-attacker games in which the defender attempts to
optimally allocate her limited security resources to protect a
set of T targets from being attacked by the attacker. The key
assumption of SSG is that the defender has to commit to a
(mixed) strategy first and the attacker can observe that strat-
egy and then attack one of the targets (Korzhyk, Conitzer,
and Parr 2010; Tambe 2011). Suppose that the defender has
R resources (R � T ) and x = {xi} is a defender’s mixed
strategy where xi is the defender’s coverage probability at
target i, the defender’s feasible strategy set is defined as fol-
lows: X = {x : 0 ≤ xi ≤ 1,

∑
i xi = R}. Suppose that

the attacker attacks target i, he will obtain a reward Ra
i if the

defender is not protecting that target, otherwise he will get a
penalty P a

i . Conversely, the defender receives a penalty P d
i

and a reward Rd
i respectively. The expected utility for the

two players at target i can be computed as follows:

Ud
i (xi) = xiR

d
i + (1− xi)P

d
i (1)

Ua
i (xi) = xiP

a
i + (1− xi)R

a
i (2)

Adversarial behavioral models. Recent research in SSG
has focused on modeling the attacker’s bounded rational-
ity and computing the defender’s optimal strategy, assuming
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the attacker’s response follows the given behavioral model.
One leading class of behavioral models is Quantal Response
(QR) (McFadden 1972; McKelvey and Palfrey 1995). In
modeling the attacker’s decision making, we consider a gen-
eral discrete choice model of QR to capture behaviors of the
attacker (Train 2009) in which the probability that the at-
tacker chooses target i, qi(x), is predicted as follows:

qi(xi) =
Fi(xi)∑
j Fj(xj)

(3)

where Fi(xi) : [0, 1] → R
∗ is a positive and monotonically

decreasing function of xi at target i.

Uncertainty in Behavioral Modeling

Due to the behavioral uncertainty, we assume that the value
of Fi(xi) in (3) is not perfectly known given xi. In-
stead, Fi(xi) has known lower and upper bounds, Li(xi) ≤
Fi(xi) ≤ Ui(xi) where Li(xi), Ui(xi) : [0, 1] → R

∗ are
positive functions of the defender coverage at target i. De-
note by I(xi) = [Li(xi), Ui(xi)] the uncertainty interval,
the interval size indicates the uncertainty level when model-
ing, which could be specified based on the available data for
learning. We aim at computing the defender’s optimal strat-
egy by maximizing her utility under the worst case resulting
from the behavioral uncertainty. The corresponding robust
optimization problem is represented as follows:

max
x∈X

min
Fi(xi)∈I(xi),∀i

∑
i
qi(xi)U

d
i (xi) (4)

Overall, the problem (4) is non-convex which is difficult
to solve. We present our novel algorithm which efficiently
solves the maximin problem (4) with a bound guarantee on
its approximate solution. In short, there are three key ideas.
First, we convert (4) into a single maximization problem via
a non-linear conversion for fractional terms and dualty of the
inner minimization in (4). Given a defender strategy x, the
objective of (4) remains a non-linear fractional function of
Fi(xi), thus making the inner minimization problem in (4)
non-linear and fractional. We introduce the following new
variables: yi = qi(xi) = Fi(xi)∑

j Fj(xj)
which is the attacking

probability at target i and z = 1∑
j Fj(xj)

which is the nor-
malization term in the attacking probabilities. By replacing
Fi(xi) with the new variables and denote by y = {yi}, we
can represent the inner minimization of (4) as the following
linear minimization problem of the new variables y and z:

miny,z
∑

i
yiU

d
i (xi) (5)

s.t.
∑

i
yi = 1 (6)

Li(xi)z ≤ yi ≤ Ui(xi)z, ∀i. (7)

where constraint (6) ensures the condition on the attacking
probability distribution that

∑
i qi(xi) = 1 holds. In addi-

tion, constraint (7) is equivalent to the condition on the lower
and upper bound of Fi(xi) that Fi(xi) ∈ [Li(xi), Ui(xi)].
As (5 – 7) is a linear minimization problem of y and z, its
optimal solution is equivalent to the optimal solution of its

duality which is a linear maximization problem. Therefore,
we can merge this dual with the outer maximization of (4)
to obtain a single maximization problem.

Given the resulting new maximization problem, we then
apply a binary search to remove fractional terms. We ex-
plore extreme points of the feasible solution region and use
piece-wise linear approximation to convert the resulting fea-
sibility problem at each binary step into a MILP. Our new
algorithm provides an O

(
ε+ 1

K

)
-optimal solution of the

maximin problem (4).
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