
Abstracting Complex Domains Using Modular
Object-Oriented Markov Decision Processes

Shawn Squire and Marie desJardins
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250

ssquire1, mariedj@umbc.edu

Abstract

We present an initial proposal for modular object-
oriented MDPs, an extension of OO-MDPs that ab-
stracts complex domains that are partially observable
and stochastic with multiple goals. Modes reduce the
curse of dimensionality by reducing the number of at-
tributes, objects, and actions into only the features rele-
vant for each goal. These modes may also be used as an
abstracted domain to be transferred to other modes or to
another domain.

Introduction
Complex domains that approach the scale of the real world
have many hurdles for an intelligent agent to overcome.
First, a state may be partially observable, leading to uncer-
tainty with hundreds of state features which may be either
observable or latent. The agent may also have dozens of ac-
tions available at any given opportunity, leading to a large
branching factor and myriad potential paths to a solution. Fi-
nally, the agent may possess multiple goals that must be sat-
isfied, some of which may be directly contradictory (Natara-
jan and Tadepalli 2005). Many, if not most, of these vari-
ables and actions can be irrelevant in the accomplishment of
one particular goal. For example, an automated car equipped
with multiple sensors should ignore variables such as current
temperature and also ignore actions for lane changing if its
goal is to navigate cars in a parking lot.

In this paper, we propose a method to automatically di-
vide and filter an Object-Oriented Markov Decision Process
into distinct modes, allowing the agent to handle smaller
sub-problems that are directly related to finding the optimal
solution for a specific goal. Each mode contains the most
relevant features, actions, and objects for reaching a goal,
ignoring irrelevant details that would increase learning time.
Additionally, these modes may be easily isolated for training
an agent on a specific task, or abstracted to facilitate learn-
ing transfer between modes in the same or different domains
(Topin et al. 2015). One of the key benefits of using modular
OO-MDPs is in domains where the designer can not fully
define a set of predicates or structures for hierarchical learn-
ing.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Background
A Markov decision process (MDP) is a stochastic model
that describes the states of a domain and the transition
model between the states. An MDP is represented as a 4-
tuple, {S,A,P (·, ·) ,R (·, ·)}, respectively consisting of a
set of states, a set of actions, the transition probability func-
tion, and a reward function. The agent selects an action
from state s by following a policy function, π(s), which at-
tempts to maximize the reward over multiple steps. Since
the transition probability function and reward function may
be stochastic, an MDP allows for reliability in probabilistic
domains.

An Object-Oriented MDP (OO-MDP) (Diuk, Cohen, and
Littman 2008) is designed to facilitate learning in domains
with large state spaces. It extends the traditional MDP model
by representing the domain as a set of object classes, C, each
with a set of pre-defined attributes, Att(C). An object, o,
belongs to a single object class and has values assigned for
each attribute associated with the class. The state, s, of a
domain is defined as the union of the attribute values for
all objects in the domain, s =

⋃O
i=1state (oi) where O =

{o1, o2, . . . , on} for n objects in the domain.
This representation gives several benefits over an MDP

that represents state as a single vector of features. First, it
provides a capability of attribute the relevance of objects or
object classes to specific goals and actions. Second, objects
that are instantiated differently but with equal values (i.e.,
given objects o1 and o2 of object class c, o1 = o2 ⇐⇒
∀a ∈ Att(c) : o1.a = o2.a) are considered equivalent, so
they may be handled interchangeably.

Modular Object-Oriented MDP
A mode in an OO-MDP is an abstracted representation of
the domain for a specific goal g where a subset of rele-
vant attributes, objects, and actions for that goal are con-
sidered. The relevance of an attribute, object, or action is
defined as the perceived necessity of the respective value
for reaching g from any state. Therefore, a mode for goal g
is defined as the function Mode(g) = {Att(C)′,O′,A′}.
Att(C)′ ⊆ Att(C) is the set of relevant attributes for g
across all object classes. O′ is an abstracted set of k relevant
objects such that O′ = {o′1, o′2, . . . , o′k}, and o′i is the union
of abstracted attributes Att(oi.class)

′. Finally, A′ ⊆ A is
the set of relevant actions for g.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

4264



Since the state of an OO-MDP is defined as the union of
attributes for all objects, abstract state s′ can be derived from
Att(C)′ and O′. Since multiple states may be abstracted into
the same s′, similar states that differ only in irrelevant vari-
ables are treated as the same state. Similarly, states that con-
tain no relevant objects are empty states that are ignored in
the mode. Therefore, the complexity of planning or learning
in an abstracted domain is guaranteed to be less than or equal
to the complexity of planning or learning in the grounded do-
main. (Note that since objects and attributes may be relevant
for multiple goals and some objects and attributes may be ir-
relevant for all goals, modes are neither mutually exclusive
nor exhaustive.)

Learning a mode begins with finding Att(C)′ and O′.
First, an optimal policy, π, is assumed to exist in the
grounded domain for goal g. A mapping is produced be-
tween the grounded domain and all possible abstracted
Att(C)′ and O′ for Mode(g). That is, a set of possible
Att(C)′ and O′ for Mode(g) are generated by all possi-
ble combinations of attributes and objects. Next, a scoring
mechanism is used to find the best possible mapping for a
mode by finding the minimum number of attributes and ob-
jects that still lead to finding the best possible reward. Since
this exhaustive method may be intractable with large state
spaces, a Monte Carlo method for finding the best optimiza-
tion may be used.

An action a ∈ A′ exists in the mode if and only if
∃s′1, s′2[P (s′2|s′1, a) ∧ s′1 	= s′2]. That is, an action is rele-
vant if there exists a state in the mode in which the action
may be used to reach another unique state in the mode.

Related Work
(Topin et al. 2015) provides a framework, Portable Option
Discovery (POD), for creating portable mappings between
different OO-MDPs. POD leverages the benefit of options
in reinforcement learning (Sutton, Precup, and Singh 1999)
to autonomously abstract partial policies from one domain,
which can be subsequently grounded into a partial policy in
a different domain. However, current implementations are
limited to value iteration over tabular learning, and do not
account for relevance of individual attributes for objects.
Additionally, the framework provides no measure for do-
mains with multiple and / or competing goals.

(Abel et al. 2015) uses affordances to add knowledge to
an OO-MDP which prunes actions based on multiple goals.
An affordance is a mapping from a predicate “precondition”
and abstract goal description to a set of relevant possible ac-
tions. If the predicate is true for a given state, and the goal
description matches the agent’s current goal, then the affor-
dance is “activated” and only the relevant actions are used.
While this method of pruning irrelevant actions is similar
to modular learning, affordances require an additional set of
predicates to be defined for relations between objects in the
domain; those predicates require additional design or expert
knowledge. Additionally, the abstraction of states in Modu-
lar OO-MDPs allow many similar states to be handled equiv-
alently to one another, decreasing complexity and alleviating
the curse of dimensionality for learning methods such as re-
inforcement learning.

(Dietterich 1999) introduces the MAXQ method of hi-
erarchical reinforcement learning to decompose a policy’s
value function into a set of subtasks. This method proves
highly effective for dividing a complex state space for rein-
forcement learning into identifiable goals similar to modular
OO-MDP. However, the MAXQ algorithm requires identi-
fying the actions responsible for completing each subgoal,
which requires knowledge that may not be provided by the
designer. Modular OO-MDPs automatically selects the ac-
tions from the set of all actions given the relevance.

(Boutilier et al. 1995) explores a general algorithm for
MDPs using temporal Bayesian networks to ascertain rules
about independence for states without enumerating them.
The regularities and structure of the domain can be exploited
to group states that have same estimated value. However, the
domains in this paper are assumed to have hidden variables
and partial observability.

Conclusion
In this paper, we propose a means to simplify and abstract
highly complex, stochastic, partially observable domains de-
fined as an object-oriented MDP. This allows for reduced
complexity when learning or planning in a domain, as well
as facilitating existing transfer algorithms.

References
Abel, D.; Barth-Maron, G.; MacGlashan, J.; and Tellex, S.
2015. Affordance-Aware Planning.
Boutilier, C.; Dearden, R.; Goldszmidt, M.; and others.
1995. Exploiting structure in policy construction. In IJCAI,
volume 14, 1104–1113.
Dietterich, T. G. 1999. Hierarchical reinforcement learn-
ing with the MAXQ value function decomposition. arXiv
preprint cs/9905014.
Diuk, C.; Cohen, A.; and Littman, M. L. 2008. An object-
oriented representation for efficient reinforcement learning.
In Proceedings of the 25th international conference on Ma-
chine learning, 240–247. ACM.
Natarajan, S., and Tadepalli, P. 2005. Dynamic Preferences
in Multi-criteria Reinforcement Learning. In Proceedings of
the 22Nd International Conference on Machine Learning,
ICML ’05, 601–608. New York, NY, USA: ACM.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Be-
tween MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence
112(1):181–211.
Topin, N.; Haltmeyer, N.; Squire, S.; and Winder, J. 2015.
Portable option discovery for automated learning transfer in
object-oriented markov decision processes. 24th Interna-
tional Joint Conference on Artificial Intelligence.

4265




