
Supervised Hashing via Uncorrelated Component Analysis

SungRyull Sohn
CG Research Team

Electronics and Telecommunications Research Institute
School of Electrical Engineering

Korea Advanced Institute of Science and Technology
sungluol@etri.re.kr

Hyunwoo Kim
Kakao Corp.

eugene.kim@kakaocorp.com

Junmo Kim
School of Electrical Engineering

Korea Advanced Institute of Science and Technology
junmo@ee.kaist.ac.kr

Abstract

The Approximate Nearest Neighbor (ANN) search
problem is important in applications such as informa-
tion retrieval. Several hashing-based search methods
that provide effective solutions to the ANN search prob-
lem have been proposed. However, most of these focus
on similarity preservation and coding error minimiza-
tion, and pay little attention to optimizing the precision-
recall curve or receiver operating characteristic curve.
In this paper, we propose a novel projection-based hash-
ing method that attempts to maximize the precision and
recall. We first introduce an uncorrelated component
analysis (UCA) by examining the precision and recall,
and then propose a UCA-based hashing method. The
proposed method is evaluated with a variety of datasets.
The results show that UCA-based hashing outperforms
state-of-the-art methods, and has computationally effi-
cient training and encoding processes.

Introduction
The nearest neighbor search problem is a central challenge
in large-scale data processing and analysis. Its applications
include information retrieval, data mining, and classifica-
tion problems. The inherent challenges of the nearest neigh-
bor search are now receiving more attention because of
the growing availability of large databases. The inevitable
difficulty of finding an exact nearest neighbor in large-
scale datasets has led to the Approximate Nearest Neigh-
bor (ANN) search problem, which aims to find the near-
est neighbor point approximately but rapidly. Recent studies
have shown that hashing is a promising approach to solving
this problem. This is because the resulting binary hash code
is highly compressed, allowing the main memory to be used
to compute the distance, and because the distance between
two binary hash codes can be calculated using the XOR
operation, which is computationally efficient. The hashing
method uses a hash function to encode the hash code, and
the nearest neighbor is determined by thresholding the Ham-
ming distance between hash codes. Hash functions can be

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

designed in various ways, but a trade-off is generally re-
quired between the encoding complexity (Tencode) and per-
formance in terms of quantization (or coding) error. There
are two main types of hash functions: projection-based and
codebook-based.

Projection-based hashing functions: Applications of the
ANN search problem require a constant encoding complex-
ity (Tencode) for scalability. One promising way to guaran-
tee Tencode=O(k) complexity with a certain level of per-
formance is known as projection-based hashing. This is
characterized by the transform matrix W and quantiza-
tion function Q(·) that produce a k-bit hash code. For
an input vector (hash key) x, the resulting output vector
(hash code) z can be written as z = Q(WTx). Vari-
ous researchers have developed projection-based methods,
e.g., spectral hashing (SH) (Weiss, Torralba, and Fergus
2008), locality sensitive hashing (LSH) (Indyk and Mot-
wani 1998), iterative-quantization (ITQ) (Gong and Lazeb-
nik 2011), LDA-hash (Strecha et al. 2012), minimal loss
hashing (MLH) (Norouzi and Fleet 2011), and locality pre-
serving hashing (LPH) (Zhao, Lu, and Mei 2014).

Codebook-based hashing functions: Other researchers
have developed codebook-based hashing functions, which
assign a data point to one of the Ncentroid nearest code-
book centroids in terms of the Euclidean distance. How-
ever, the complexity of this method becomes intractable
when directly applied to a large-scale dataset (i.e., Tencode

= O[Ncentroid] = O[2k]). To overcome this problem, prod-
uct quantization (PQ)-based methods (Ge et al. 2013; He,
Wen, and Sun 2013; Jegou, Douze, and Schmid 2011;
Heo, Lin, and Yoon 2014) decompose the space of the data
into low-dimensional subspaces, which are quantized sepa-
rately.

More recently, a number of non-linear hash functions that
exhibit much improved performance have been proposed.
These include kernelized locality sensitive hashing (KLSH),
supervised hashing with kernel (KSH), self-taught hash-
ing (STH), two-step hashing (TSH), fast hashing (FastH),
and supervised discrete hashing (SDH) (Kulis and Grauman
2012; Liu et al. 2012; Zhang et al. 2010; Lin et al. 2013;

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

236

2014; Shen et al. 2015).
Although many methods have enhanced the performance

of the ANN search using hashing methods, the retrieval per-
formance has not been directly tackled. In this paper, based
on a theoretical analysis of the relation between hash func-
tions and the precision-recall performance, we present a
novel projection-based hash function. First, we formulate
a family of candidate projection-based hash functions that
produce efficient code (Step 1). We obtain these hash func-
tions by an Uncorrelated Component Analysis (UCA) trans-
formation. From the resulting hash functions, we then de-
termine which one maximizes the precision and recall per-
formance (Step 2). Specifically, based on an analysis of re-
trieval performance, we set a novel objective function to op-
timize the precision and recall. We then consider a special
case of normally distributed data, and propose a refined sub-
set of UCA-based transforms that maximize the sum of the
true positive rates, which is equivalent to minimizing the ex-
pected Hamming distance between hash codes for similar
data pairs.

Formulation

Problem Formulation

Let p(x) denote the probability density function of the data
x ∈ R

d. Without loss of generality, we assume the mean of
x to be the zero vector. Then, we are given a set of N i.i.d.
training data {xi}Ni=1 ∈ R

d drawn from p(x). The pairwise
similarity of two data points (xi,xj) denoted by si,j is 1
when (xi,xj) are similar, and si,j = 0 when dissimilar. We
define M = {(xi,xj)|si,j = 1} and C = {(xi,xj)|si,j =
0}, and seek a hash function that preserves this similarity
information. Let z = Φ(x) be the k-bit hash code, which
is the output of the hash function Φ(·) for data x. Then, the
canonical projection-based hash functions, characterized by
the transformation matrix W ∈ R

d×k and bias b ∈ R
k, can

be written as:

Φ(x) = u(WTx+ b) = u(y + b), (1)

where the quantization function Q(·) is replaced by the unit
step function u(·) with a bias b, and y = WTx ∈ R

k is
the transformed data point for x. The nth bit of the vector
u(y + b) is 1 iff the nth element of y + b is positive, and is
0 otherwise. The performance of the hash function is evalu-
ated in terms of its precision and recall values by retrieving
data for given queries from the database.

Similar to (Gong and Lazebnik 2011; Weiss, Torralba, and
Fergus 2008; Wang, Kumar, and Chang 2012), we first re-
quire the hash code to be efficient. Among all the hash func-
tions that generate hash codes with this property, we seek the
one that maximizes the precision and recall performance. A
hash code is considered to be efficient if it satisfies the fol-
lowing conditions:

• Condition 1: Each bit of the hash code has a 50% chance
of being 1 or 0.

• Condition 2: Different bits of the hash code are indepen-
dent of one another.

Note that Condition 1 is satisfied for any W if b is
set as the negative of the median vector of y. Thus, we
have {W |∃b, s.t. Condition 1, Condition 2 satisfied} =

{W |Condition 2 satisfied} � W . Then, we can drop Con-
dition 1, and our problem can be formulated as

max
W∈W

L(W), (2)

where L(W) is the objective function that measures the pre-
cision and recall performance. In the following sections, we
first formulate the precision and recall, and determine the
form of L(W). We then tackle problem (2) in two steps.

Formulation of Precision and Recall

In a traditional information retrieval scenario with a binary
hash code, a data point xi from a database is matched with
an input data query q and retrieved when the Hamming dis-
tance between Φ(xi) and Φ(q) is not greater than some
threshold γ (i.e., dH(Φ(q),Φ(xi)) ≤ γ). In the training
stage, we consider all of the points in the database as po-
tential queries, and the precision and recall for the training
data pair (xi,xj) and threshold γ can be written as

precision(W, γ) =
TPR(W, γ)

RR(W, γ)
(3)

=
P [dH(zi, zj) ≤ γ, (xi,xj) ∈ M]

P [dH(zi, zj) ≤ γ]
(4)

recall(W, γ) =
TPR(W, γ)

Pr(similar)
(5)

=
P [dH(zi, zj) ≤ γ, (xi,xj) ∈ M]

P [(xi,xj) ∈ M]
,

(6)

where zi = Φ(xi), zj = Φ(xj), and the true positive
rate (TPR) and retrieval rate (RR) change with γ, whereas
Pr(similar) remains constant. Considering that the denom-
inator of Eq. 6 does not change with respect to γ and Φ(·),
we have two variables to deal with:

RR = P [dH(zi, zj) ≤ γ] (7)
TPR = P [dH(zi, zj) ≤ γ, (xi,xj) ∈ M]. (8)

Setting Objective Function

In this section, we first prove an interesting relation between
RR and the efficient code condition in Theorem 1. Based on
this relation, we set the objective function L(W).

Theorem 1. For any given γ, RR(= P [dH(zi, zj) ≤ γ]) is
constant regardless of W if the hash code is efficient, that
is, each bit of the hash code has a 50% chance of being 1 or
0, and different bits of the hash code are independent of one
another.

Proof. See the supplementary material.

From Theorem 1, RR is constant for W ∈ W . Note that,
in Eqs. 4 and 6, the denominators of both the precision and
recall are constant if RR is constant, and the numerators are
the TPRs. This means that both precision and recall can be

237

maximized by maximizing TPR when Condition 2 is true.
Thus, our goal becomes simply to maximize TPR. Inspired
by this relation, we set our objective function as L(W) =∑k

γ=0 TPR(W, γ) to summarize the TPR for all values of
the threshold γ, and write problem (2) as

max
W∈W

k∑
γ=0

TPR(W, γ). (9)

Note that if there exists a single W that maximizes TPR for
all γ, it should be the solution to problem (9). Additionally,
it is very interesting that maximizing the objective function
can also be interpreted as minimizing the expected Ham-
ming distance between similar data pairs:

k∑
γ=0

TPR(W, γ) ∝
k∑

γ=0

recall(W, γ) (10)

=

k∑
γ=0

P [dH(zi, zj) ≤ γ|(xi,xj) ∈ M] (11)

=

k∑
γ=0

{(k + 1− γ)P [dH(zi, zj) = γ|(xi,xj) ∈ M]}

(12)
= (k + 1) · 1− E[dH(zi, zj)|(xi,xj) ∈ M]. (13)

Proposed Method

Step 1: Uncorrelated Component Analysis

As mentioned earlier, we aim to maximize L(W) subject
to Condition 1&2. However, we cannot tackle this problem
directly, because it is NP-hard.

Lemma 2. The problem of maximizing
∑k

γ=0 TPR(W, γ)
subject to the condition that the bits of the hash code are
independent and each bit has a 50% chance of being 1 or 0
is NP-hard.

Proof. See the supplementary material.

As in (Gong and Lazebnik 2011; Weiss, Torralba, and Fer-
gus 2008; Wang, Kumar, and Chang 2012), we first relax
the independence assumption of Condition 2, and require
the bits of the hash code to be uncorrelated. This relaxation
simplifies the problem, but Lemma 3 implies that it is still
NP-hard.

Lemma 3. The problem of maximizing
∑k

γ=0 TPR(W, γ)
subject to the condition that the bits of the hash code are
uncorrelated and each bit of hash code has a 50% chance of
being 1 or 0 is NP-hard.

Proof. See the supplementary material.

Since the NP hardness of our problem is mainly a result of
the combinatorial nature of the uncorrelatedness constraint

on z, we instead require the components of y to be uncor-
related. Our problem can now be formulated as maximizing
L(W) subject to the constraint:

E[yyT] = E[WTxxTW] = D, (14)

for some diagonal matrix D ∈ R
k×k.

This relaxed problem turns out to be tractable. Theorem 4
describes a UCA method to find W such that Eq. 14 holds.
Theorem 4. For y = WTx, E[yyT] = D if and

only if W = WPCAK
− 1

2

PCAQD
1
2 , where WPCA is the

principal component analysis (PCA) transformation ma-
trix, KPCA = E[WT

PCAxx
TWPCA] ∈ R

d×d, Q ∈{
Q̃|Q̃T Q̃ = I, Q̃ ∈ R

d×k
}

, and D is a diagonal matrix.

Proof. Considering that the PCA transformation matrix
(WPCA ∈ R

d×k) satisfies Eq. 14, we start from PCA trans-
formation matrix. As WPCA is invertible, an arbitrary trans-
form matrix W ∈ R

d×k can be represented as

W = WPCAA where A ∈ R
d×k. (15)

Let WUCA ∈ R
d×k denote any W that satisfies Eq. 14.

Then, WUCA can also be represented in the form of Eq. 15,
and WUCA should satisfy Eq. 14:

E[yUCAy
T
UCA] = E[AT

UCAW
T
PCAxx

TWPCAAUCA]
(16)

= AT
UCAKPCAAUCA = D, (17)

where KPCA = E[WT
PCAxx

TWPCA], yUCA =
WT

UCAx, WUCA = WPCAAUCA. Multiplying both
sides of Eq. 17 by D− 1

2 , we have

D− 1
2AT

UCAKPCAAUCAD
− 1

2 = D− 1
2DD− 1

2 = I, (18)

I = D− 1
2AT

UCAKPCAAUCAD
− 1

2

= (K
1
2

PCAAUCAD
− 1

2)TK
1
2

PCAAUCAD
− 1

2 (19)

where, K
1
2

PCA denote one F s.t. KPCA = FTF.

Eq. 19 holds if and only if K
1
2

PCAAUCAD
− 1

2 ∈{
Q̃|Q̃T Q̃ = I, Q̃ ∈ R

d×k
}

. Then, AUCA can be written as

AUCA = K
− 1

2

PCAQD
1
2 . (20)

where Q ∈
{
Q̃|Q̃T Q̃ = I, Q̃ ∈ R

d×k
}

. Finally, combin-
ing Eqs. 15 and 20,

WUCA = WPCAAUCA = WPCAK
− 1

2

PCAQD
1
2 . (21)

From Eq. 21, we can obtain infinitely many transforma-
tion matrices WUCA that satisfy Eq. 14, because there are
infinitely many Q and D. Among them, in Step 2, we seek
the best one W∗

UCA by choosing Q∗ and D∗ to maximize∑k
γ=0 TPR(W, γ).

238

Step 2: Determining D∗
In this section, we determine D∗ so as to maximize∑k

γ=0 TPR(W, γ). The first step is to prove the following
lemma.
Lemma 5. The TPR does not depend on D.

Proof. See the supplementary material.

From Lemma 5, we are now free to use any diagonal ma-
trix as D∗. For simplicity, we will set D∗ to be the identity
matrix (I):

W∗
UCA = WPCAK

− 1
2

PCAQ
∗. (22)

Step 2: Determining Q∗

From Eq. 13, maximizing
∑k

γ=0 TPR(W, γ) is equivalent
to minimizing E[dH(zi, zj)|(xi,xj) ∈ M]. The Hamming
distance property then leads to:
E[dH(zi, zj)|(xi,xj) ∈ M] (23)

= E[
k∑

n=1

dH(zi,n, zj,n)|(xi,xj) ∈ M] (24)

= E[

k∑
n=1

dn|(xi,xj) ∈ M] =

k∑
n=1

E[dn|(xi,xj) ∈ M]

(25)

=

k∑
n=1

Pr(dn = 1|(xi,xj) ∈ M) (26)

=

k∑
n=1

{1− Pr(dn = 0|(xi,xj) ∈ M)}, (27)

where dn = dH(zi,n, zj,n), zi,n is the nth bit of zi and zj,n
is the nthbit of zj . Pr(dn = 0|(xi,xj) ∈ M) can then
be interpreted as the probability of the nth bits of zi and zj
being the same. Let us consider the special case of the data
points being distributed as below:

xi
i.i.d.∼ Normal(0,Korg), (28)

xi|[xj , (xi,xj) ∈ M]
i.i.d.∼ Normal(xj ,Ks,org). (29)

where Korg denote the covariance matrix of data, and
Ks,org denote the covariance matrix of similar data pairs
and can be calculated as Ks,org = E[(xi − xj)(xi −
xj)

T |(xi,xj) ∈ M]. The projected data y = WTx then
have the following distribution:

yi
i.i.d.∼ Normal(0,K), (30)

yi|[yj , (xi,xj) ∈ M]
i.i.d.∼ Normal(yj ,Ks), (31)

where K = WTKorgW, Ks = WTKs,orgW. (32)

In addition, by marginalizing, the distribution of the nth

components of yi and yj can be represented as:

yi,n
i.i.d.∼ Normal(0, σ2

n), (33)

yi,n|[yj,n, (xi,xj) ∈ M]
i.i.d.∼ Normal(yj,n, σ

2
sn), (34)

where σsn is the (n, n)th element of Ks and σn

is the (n, n)th element of K. We can now express
Pr(dn|(xi,xj) ∈ M) in terms of scn (where scn = σn

σsn
):

Lemma 6. Pr(dn = 0|(xi,xj) ∈ M) = 1
π tan

−1(scn)+
1
2

Proof. See the supplementary material

Lemma 6 indicates that the probability of the nth bit of
a similar data pair being the same increases as σn increases
and σsn decreases. Using the result of Lemma 6, Theorem
7 concludes that the optimal Q∗ is V.

Theorem 7.
∑k

γ=0 TPR(W, γ) is maximized when Q = V,
where the columns of V are the eigen vectors of
K′

s with the smallest k eigen values, and K′
s =

K
−T

2

PCAW
T
PCAKs,orgWPCAK

− 1
2

PCA.

Proof. See the supplementary material.

Observing that the columns of V are the eigenvectors of
K′

s with the smallest k eigenvalues, we can obtain V by per-
forming an eigenvalue decomposition of K′

s. In conclusion,
the final version of the transformation matrix W∗

UCA for the
proposed hash function can be written as follows:

W∗
UCA = WPCAK

− 1
2

PCAV, (35)

where the columns of V are the eigenvectors with the small-
est k eigenvalues and WPCA is a PCA transformation ma-
trix of the data x.

Experiment

We performed image retrieval experiments on three image
benchmarks: Yahoo! (Thomee et al. 2013), Trevi and Half-
dome photo-tourism (Snavely, Seitz, and Szeliski 2006). The
Yahoo! duplicate image collection consists of 360K images,
each of which has been subjected to 60 transformations. The
photo-tourism project dataset consists of local image patches
taken from Flickr photos of various landmarks. For the Trevi
and Halfdome dataset, we only used data points from classes
containing at least seven data points. We also performed the
scalability test, by adding 1M distractor images from the
Flickr-1M (Huiskes and Lew 2008) dataset to the database
of Yahoo! as the false positive samples. The images of each
dataset were divided into query and database. 1000 images
were chosen at random for the query, and the rest formed the
database. 5K images in the database were randomly sampled
and used for training. Each channel of the color image was
represented as the 320-dimensional GIST descriptor (Lin et
al. 2013; 2014), and the gray image was represented as the
384-dimensional GIST descriptor.
We evaluated the proposed UCAH, and compared it against
six state-of-the-art supervised methods (MLH (Norouzi
and Fleet 2011), KSH (Liu et al. 2012), supervised STH
(STHs) (Zhang et al. 2010), LDAH (Strecha et al. 2012),
SDH (Shen et al. 2015), and FastH (Lin et al. 2014))
and three unsupervised methods, LSH (Indyk and Mot-
wani 1998), PCA-ITQ (Gong and Lazebnik 2011), and
SH (Weiss, Torralba, and Fergus 2008). We used the MAT-
LAB code and parameters provided by the authors of each

239

Table 1: Training and encoding time of each method on the Halfdome dataset.

UCAH SDH PCA-ITQ KSH LDAH FastH STHs MLH SH LSH
Ttrain(s) 1.1 485.3 1.9 843.2 50.1 440.0 14.2 554.2 0.3 -
Tencode(s) 0.06 0.27 0.06 0.27 0.06 21.78 93.97 0.06 3.78 0.06

(a) (b) (c)

Figure 1: MAP curve on (a) Yahoo! (b) Trevi (c) Halfdome

(a) (b) (c)

Figure 2: Top1% precision curve on (a) Yahoo!, (b) Trevi, (c) Halfdome

(a) (b) (c)

Figure 3: Precision-recall curve for k = 64 on (a) Yahoo!, (b) Trevi, (c) Halfdome

method. All the experiments were implemented in MAT-
LAB and performed on a desktop with an Intel Core i7 CPU
at 3.30 GHz with 32 GB RAM.

Results

Evaluation results Figure 1 and 2 show the Hamming
ranking performance evaluated by the mean average pre-
cision (MAP) and Top1%-precision (Top1) where Top1 is

240

(a) (b) (c)

Figure 4: Scaled ROC curve for k=64: (a) Yahoo!, (b) Trevi, (c) Halfdome

(a) (b) (c)

Figure 5: Scalability test result on Yahoo!+Flickr1M (a) MAP (b) Top1% precision (c) ROC curve for k=64

evaluated by the accuracy at the top 1% ranked data. We
can see that UCAH outperforms compared methods for most
cases in terms of Top1 and MAP. SDH achieves the highest
value of MAP with k ≤ 16 and Top1 with k = 8 on Trevi
dataset, but its performance diminishes rapidly with increas-
ing code lengths.

Figure 3 and 4 show that UCAH is also competitive in
terms of the precision-recall and ROC curves. Note that all
the ROC graphs are appropriately scaled for clarity; the full-
scale ROC curves are given in the supplementary material.
The precision-recall and ROC curves for other choices of k
are given in the supplementary material. Again, UCAH con-
sistently produced superior results to the comparative meth-
ods on all of the test benchmarks for other choices of k.

Figure 5 shows the result of scalability test on Yahoo! and
Flickr1M dataset. Compared to the results on Yahoo! dataset
in Figure 1, 2, and 4, UCAH outperforms all other methods
with a larger margin indicating that UCAH scales well to the
large number (>1M) of data samples.

Computation time We used the Halfdome dataset, and
recorded the time spent on training and encoding for k =
128 with 1K query, 39K database, and 3K training data. The
result in Table 1 shows that UCAH is the most efficient for
training among the supervised methods. UCAH is also one
of the most efficient methods for encoding hash code, be-
cause it adopts the simplest form of hash function. SH adopts

the same form of hash function, but requires more time for
complex thresholding step. KSH, SDH, STHs, and FastH re-
quire more time for the kernel computation and decision tree
evaluation steps.

Discussion

Comparison with Other PCA-based Methods

PCA is widely used in many hashing schemes. Like SH,
ITQ, QS-rank (Zhang, Zhang, and Shum 2012), and semi-
supervised hashing (SSH), UCAH uses PCA transforma-
tion. We will contrast these other PCA-based methods
with UCAH. SH uses d PCA-transformed components,
but further evaluates the k smallest eigenvalues for each
component. It then chooses the k smallest eigenvalues
out of dk eigenvalues. ITQ and Qs-rank use a truncated
PCA-transformation matrix for dimension reduction, while
UCAH uses a full-PCA transformation matrix to search
the solution WUCA among all R

d×k matrix W because
the full-PCA projection matrix has full rank and is invert-
ible. ITQ multiplies an orthogonal matrix after the PCA-
transformation to minimize the quantization error, restrict-
ing A to be an orthogonal matrix, while UCAH does not re-
strict the matrix A to be orthogonal. QS-rank uses PCA for
dimension reduction and adopts a new metric instead of the
Hamming distance. SSH relaxes the orthogonality condition
of PCA by revising the original objective function, and aims

241

to optimize the hash code in terms of empirical error.

Conclusion

In this paper, we have proposed a novel scalable hashing
method for the large-scale ANN problem. We first devised
a family of transformation matrices WUCA that produce ef-
ficient codes, and then selected the W∗

UCA that optimized
the retrieval performance. Experiments were conducted on
three publicly available datasets, and the resulting ROC
and precision-recall curves demonstrated that the proposed
method outperforms other state-of-the-art methods in most
cases.

Acknowledgments

This work was supported by the IT R&D program of
MSIP/KEIT. [15501-15-1016, Instant 3D object based
Join&Joy content technology supporting simultaneous par-
ticipation of users in remote places and enabling realistic
experience]

References

Ge, T.; He, K.; Ke, Q.; and Sun, J. 2013. Optimized prod-
uct quantization for approximate nearest neighbor search. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).
Gong, Y., and Lazebnik, S. 2011. Iterative quantization: A
procrustean approach to learning binary codes. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, 817–824. IEEE.
He, K.; Wen, F.; and Sun, J. 2013. K-means hashing: an
affinity-preserving quantization method for learning binary
compact codes. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).
Heo, J.-P.; Lin, Z.; and Yoon, S.-E. 2014. Distance en-
coded product quantization. In Computer Vision and Pat-
tern Recognition (CVPR), 2014 IEEE Conference on, 2139–
2146. IEEE.
Huiskes, M. J., and Lew, M. S. 2008. The mir flickr retrieval
evaluation. In MIR ’08: Proceedings of the 2008 ACM Inter-
national Conference on Multimedia Information Retrieval.
New York, NY, USA: ACM.
Indyk, P., and Motwani, R. 1998. Approximate nearest
neighbors: towards removing the curse of dimensionality.
In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, 604–613. ACM.
Jegou, H.; Douze, M.; and Schmid, C. 2011. Product quan-
tization for nearest neighbor search. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 33(1):117–128.
Kulis, B., and Grauman, K. 2012. Kernelized locality-
sensitive hashing. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 34(6):1092–1104.
Lin, G.; Shen, C.; Suter, D.; and Hengel, A. v. d. 2013.
A general two-step approach to learning-based hashing. In
Computer Vision (ICCV), 2013 IEEE International Confer-
ence on, 2552–2559. IEEE.

Lin, G.; Shen, C.; Shi, Q.; van den Hengel, A.; and Suter, D.
2014. Fast supervised hashing with decision trees for high-
dimensional data. In Computer Vision and Pattern Recogni-
tion (CVPR), 2014 IEEE Conference on, 1971–1978. IEEE.
Liu, W.; Wang, J.; Ji, R.; Jiang, Y.-G.; and Chang, S.-F.
2012. Supervised hashing with kernels. In Computer Vi-
sion and Pattern Recognition (CVPR), 2012 IEEE Confer-
ence on, 2074–2081. IEEE.
Norouzi, M., and Fleet, D. J. 2011. Minimal loss hash-
ing for compact binary codes. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11),
353–360.
Shen, F.; Shen, C.; Liu, W.; and Tao Shen, H. 2015. Super-
vised discrete hashing. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 37–45.
Snavely, N.; Seitz, S. M.; and Szeliski, R. 2006. Photo
tourism: exploring photo collections in 3d. ACM transac-
tions on graphics (TOG) 25(3):835–846.
Strecha, C.; Bronstein, A. M.; Bronstein, M. M.; and Fua,
P. 2012. Ldahash: Improved matching with smaller de-
scriptors. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 34(1):66–78.
Thomee, B.; Huiskes, M.; Bakker, E.; and Lew, M. 2013. An
evaluation of content-based duplicate image detection meth-
ods for web search. In Multimedia and Expo (ICME), 2013
IEEE International Conference on, 1–6.
Wang, J.; Kumar, S.; and Chang, S.-F. 2012. Semi-
supervised hashing for large-scale search. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on
34(12):2393–2406.
Weiss, Y.; Torralba, A.; and Fergus, R. 2008. Spectral hash-
ing. In Advances in neural information processing systems,
1753–1760.
Zhang, D.; Wang, J.; Cai, D.; and Lu, J. 2010. Self-taught
hashing for fast similarity search. In Proceedings of the 33rd
international ACM SIGIR conference on Research and de-
velopment in information retrieval, 18–25. ACM.
Zhang, X.; Zhang, L.; and Shum, H.-Y. 2012. Qsrank:
Query-sensitive hash code ranking for efficient-neighbor
search. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, 2058–2065. IEEE.
Zhao, K.; Lu, H.; and Mei, J. 2014. Locality preserving
hashing. In Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence, July 27-31, 2014, Québec
City, Québec, Canada, 2874–2881.

242

