
Unfolding Temporal Dynamics: Predicting Social Media
Popularity Using Multi-Scale Temporal Decomposition

Bo Wu1,2, Tao Mei3, Wen-Huang Cheng4, Yongdong Zhang1

1Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences, China

2University of Chinese Academy of Sciences, China
3Microsoft Research, China

4Research Center for Information Technology Innovation, Academia Sinica, Taiwan
{wubo, zhyd}@ict.ac.cn tmei@microsoft.com whcheng@citi.sinica.edu.tw

Abstract

Time information plays a crucial role on social media
popularity. Existing research on popularity prediction,
effective though, ignores temporal information which is
highly related to user-item associations and thus often
results in limited success. An essential way is to con-
sider all these factors (user, item, and time), which cap-
ture the dynamic nature of photo popularity. In this pa-
per, we present a novel approach to factorize the pop-
ularity into user-item context and time-sensitive con-
text for exploring the mechanism of dynamic popularity.
The user-item context provides a holistic view of popu-
larity, while the time-sensitive context captures the tem-
poral dynamics nature of popularity. Accordingly, we
develop two kinds of time-sensitive features, including
user activeness variability and photo prevalence vari-
ability. To predict photo popularity, we propose a novel
framework named Multi-scale Temporal Decomposi-
tion (MTD), which decomposes the popularity matrix in
latent spaces based on contextual associations. Specifi-
cally, the proposed MTD models time-sensitive context
on different time scales, which is beneficial to automati-
cally learn temporal patterns. Based on the experiments
conducted on a real-world dataset with 1.29M photos
from Flickr, our proposed MTD can achieve the predic-
tion accuracy of 79.8% and outperform the best three
state-of-the-art methods with a relative improvement of
9.6% on average.

Introduction

In recent years, popularity prediction on social media has
attracted extensive attention because of its widespread ap-
plications, such as online marketing, trend detection and re-
source allocation (Tatar et al. 2014). Generally, given his-
torical user-item pairs, popularity prediction is defined as
the problem of estimating the rating scores, view counts
or click-through of a newly post in social media (Pinto,
Almeida, and Goncalves 2013; McParlane, Moshfeghi,
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Figure 1: Popularity is observed to exhibit varying trends of
changes at different time scales.

and Jose 2014). Existing research on popularity predic-
tion predominantly focuses on exploring the correlation be-
tween popularity and user-item factors, such as item con-
tent (Hong, Dan, and Davison 2011; Cappallo, Mensink, and
Snoek 2015), user cues (Khosla, Sarma, and Hamid 2014),
social relation (Nwana, Avestimehr, and Chen 2013), and
user-item interaction (Niu et al. 2012). In fact, time also ex-
erts crucial impact on the popularity but is often overlooked.
According to the 2015 survey (Patel 2015), it makes a big
difference on when content should be shared in order to re-
ceive the most social traffic. For example, best times to pin
on Pinterest are Saturday, 2am-4am and 8pm-11pm; Face-
book has 86% of its posts published during the workdays
with engagement peaking on Thursday and Friday. These
phenomena show the importance using such time-sensitive
context for popularity prediction. In other words, consider-
ing user-item factors only is insufficient for capturing popu-
larity dynamics over time. As a result, our problem can thus
be redefined as follows: how to predict the popularity s of a
post v from a user u with sharing time t.

In this paper, we propose to investigate the popularity pre-
diction by factoring popularity into two contextual associa-
tions, i.e., user-item context and time-sensitive context. The
user-item context is linked to popularity with user-specific
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and item-specific contextual information, which can be de-
rived from user-item sharing behaviors on social media (Niu
et al. 2012; He et al. 2014). The time-sensitive context is af-
fected by ‘change over time’ information (associated with
sharing time of photos) including user activeness variability
and photo prevalence variability. However, modeling the im-
pact of temporal information for popularity is a non-trivial
task. To conclude this, popularity naturally changes over
time and the trends of changes at different time granulari-
ties are often observed to be distinct, e.g., Figure 1.

In responding to the above challenges, we propose a
novel framework based on matrix factorization called Multi-
scale Temporal Decomposition (MTD), whereby the time-
sensitive popularity can be estimated through a joint la-
tent space by the user-item sub-matrix and a series of time-
sensitive sub-matrices at multiple time scales. Accordingly,
to obtain time-sensitive features at multiple time scales, we
define four temporal granularities from period, week, month,
to season. Finally, we evaluated our method on a dataset con-
taining 1.29 million photos with 55,000 users collected from
Flickr and demonstrate the outperformance of our approach
over the state-of-the-art methods.

Our contributions in this paper include:

• To our best knowledge, our study is the first work to ex-
plore social media popularity by two complementary per-
spectives: user-item context and time-sensitive context.

• We designated the temporal context of popularity varia-
tions with two ‘change over time’ features in our method:
user activeness variability and photo prevalence variabil-
ity. Also, we demonstrate the effectiveness of the pro-
posed temporal features by statistical analysis.

• We developed a new framework named Multi-scale Tem-
poral Decomposition (MTD) for popularity prediction,
enabling popularity analysis in multiple time granulari-
ties.

The rest of this paper is organized as follows. We first
review related work in Section 2. Section 3 presents two
contextual perspectives for popularity: user-item context and
time-sensitive context. Then we propose MTD method in
Section 4. Section 5 provides evaluations, followed by con-
clusions and future work in Section 6.

Related Work

Popularity prediction problem has received a wide range of
attentions on varied web contents. Most of these works ex-
ploited popularity by investigating into user, item or user-
item behaviors. Hong et al. and Cappallo et al. predicted the
popularity by utilizing properties of large-scale user gen-
erated content (Hong, Dan, and Davison 2011; Cappallo,
Mensink, and Snoek 2015). Khosla et al. and Nwana et al.
provided evidences that user cues or social contexts have
contributions to popularity in social media (Khosla, Sarma,
and Hamid 2014; Nwana, Avestimehr, and Chen 2013).
Shamma et al. and Niu et al. presented that modeling with
user-item interactions can explore implicit patterns of pop-
ularity (Shamma et al. 2011; Niu et al. 2012). Existing re-
searches of popularity prediction pay attention on user and

item aspects and lack time-sensitive factors for capturing the
dynamic evolution of popularity.

Few existing works on dynamic popularity can be
grouped into two main paradigms, each with known
strengths and limitations. One paradigm studies the dynamic
popularity based on statistical quantities (Ratkiewicz et al.
2010; Yang and Leskovec 2011; Figueiredo, Benevenuto,
and Almeida 2011). These works found that a popularity
change is related to time series features so as to measure dy-
namic trends of general popularity. However, as they do not
provide a way to extract item-specific parameters (Shen et al.
2014), these models are lacking of predictive power for the
popularity dynamics of specific user-item pairs. The other
paradigm extracts dynamical features or function terms by
using temporal information to estimate popularity on so-
cial media (Lerman and Hogg 2010; Ahmed et al. 2013;
Shen et al. 2014; McParlane, Moshfeghi, and Jose 2014).
Although these models succeed in using temporal features
or variables, these approaches treated temporal information
as time-series data or individual variables without scale link-
ing. Therefore, how to utilize time-sensitive factors for pre-
dicting photo popularity is still an open research issue.

Popularity with Contextual Information

In this section, we first define photo popularity and demon-
strate its contextual environment (including user-item con-
text and time-sensitive context) on popularity with different
contextual factors. Then we investigate the temporal dynam-
ics of popularity with the time-sensitive context based on
two ‘change over time’ features: user activeness variability
and photo prevalence variability. Finally, we reveal the im-
pacts of these features on photo popularity.

Photo Popularity

Popularity on social media is resulted from various selection
behaviors, such as “view”, “click” and “comment”. As for
Flickr, the largest photo-sharing site, users are allowed to
view details of a photos content and its related information
by clicking the thumbnails from public newsfeeds or image
search engines. Thus the popularity of a photo is relied by a
sharing behavior p (can be defined by a triple array〈u, v, t〉
that denotes a user u shares a new photo v at time t).

To validate our proposed approach on real-world data,
we collected 1.29 million photos from 55,000 users (Please
see the experiments). To alleviate the large variation (i.e.
the number of views of different photos varies largely
from zero to millions), we apply the log-normalization ap-
proach (Khosla, Sarma, and Hamid 2014) on the popularity
formulation. As a result, the log-normalized popularity of a
photo can be defined as

s = log2
r

d
+ 1 (1)

where r is the original view count of each photo, and d is the
number of days since the photo was shared.

Contextual Information of Popularity

Popularity is related to both of online interactions (who are
interested in what) and offline patterns which contain rich
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Figure 2: An overview of our proposed Multi-scale Tempo-
ral Decomposition (MTD).

meanings of activities in real-life, such as work, leisure and
travel. Therefore, recognizing impacts of these contextual
information is important for understanding popularity, and
it can be factorized into user-item context and time-sensitive
context, as shown in Figure 2. User-item context is the en-
vironment with users, photos, and links of user-item inter-
actions. Time-sensitive context is described as the temporal
environment which affects popularity patterns with sharing
time on different time scales.

User-Item Context User-item interaction is the funda-
mental momentum of popularity generation on social net-
works (Niu et al. 2012; Jiang et al. 2014).

Definition 1. (User-item Context) Given a user u and an
item v, Fu and Fv are two feature representations of similar
users and photos, respectively. User-item context is a distri-
bution embedding Fuv with factors of Fu and Fv which is
connected by user-item sharing behaviors.

Personal information reflects the user-specific reputation
on social media, and we select user features as follows:
mean views, photo counts, the number of contacts, aver-
age group members of each user, and having Pro Flickr
account or not. To quantity a photo, we extract both vi-
sual and perceptive features. Visual information refers to the
visual quantity of photos and we extract color patch fea-
tures (Khan et al. 2013), Local Binary Pattern (LBP) fea-
tures (Dalal and Triggs 2005) and locality-constrained gra-
dient features (Dalal and Triggs 2005; Khosla, Sarma, and
Hamid 2014). Perceptive features describe the user’s re-
sponse to a photo, containing the number of image tags,
length of image title and length of image descriptions.
Meanwhile, classification features by convolutional neural
networks (CNNs) with the DeCAF method (Donahue et al.
2013) are adopted. As a result, we concatenate the extracted
features above to a composite one, resulting in a 20,294 di-
mensional feature.

Time-sensitive Context To measure time-sensitive factors
of popularity, we developed two temporal features (user
activeness variability and photo prevalence variability) for
modeling its temporal dynamics.

Definition 2. (Time-sensitive Context) At time t, with-
out loss of generality, the temporal context is constituted
by the user activeness variability vector Au and the photo

Figure 3: Popularity versus the user activeness: The exam-
ple scatter graph derived from our dataset shows a negative
correlation.

prevalence variability vector Av , as detailed below. Time-
sensitive context is thus a distribution embedding of Auv

consisting of the temporal factors Au and Av .
User Activeness Variability. The user activeness can be

defined by the number of online behaviors (i.e. sharing
records, comment interactions, view behaviors), denoted as
ct, at a time interval tspan. We showed the correlation be-
tween popularity and the user activeness at the same time
scale of week in Figure 3. It demonstrates that user ac-
tiveness is a time-aware and correlative factor to reflect
the changing patterns of popularity dynamics. Therefore the
user activeness variability in social media is a signal to indi-
cate popularity variations related with the human activities
of users in the real world. For example, 5pm is the time of
working day for highest retweets and this is observed be-
cause people look for something to keep them occupied dur-
ing commuting time after work (Patel 2015). To conclude
that, user activeness variability should be considered in pop-
ularity prediction and can be defined as

fua=δ(
at − ā

ā
) (2)

where at is the active frequency of a user ct
tspan

in a time
interval, and ā is the mean of a user’s activeness based on
the Direct delta function δ(·).

Photo Prevalence Variability. Similar photos tend to
have popularity consistency on social media (Khosla,
Sarma, and Hamid 2014; Cappallo, Mensink, and Snoek
2015). Some of the recent works attempted to infer photo
popularity by this property. However the popularity con-
sistency of similar photos is a dynamic factor, because the
users’ preferences on varied categories are changing over
time. Then, predicting photo popularity based on the photos
with similar contents or visual information only will ignore
the temporal variations of popularity for prediction. To mea-
sure this influence, we describe the prevalence variability of
a photo to be defined as a ratio of its popularity with respect
to the mean value of the popularity of the other photos with
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Figure 4: Histograms of standard deviations of the mean
popularity (average views) for photo groups clustered by the
visual similarity (top sub-figure) and by the proposed time-
sensitive visual similarity (bottom sub-figure).

similar contents and in the corresponding time:

fva = S(sv
K

K∑
t=1

s̄t

) (3)

where sv is the popularity of a photo v and s̄t is the average
popularity of similar photos measured at a time scale t. S(·)
is Sigmoid function.

To enable the computation of the photo prevalence vari-
ability at different time scales, we grouped photos based on
not only the visual content but also if two photos were shared
in the same time interval at a time scale. By experiment-
ing with the UsD dataset (see the experiments), Figure 4 il-
lustrates two histograms of standard deviations of the mean
popularity for photo groups clustered by the visual similar-
ity only and by the combination of visual similarity and the
condition of same time intervals, respectively. We can find
that the average of standard deviations over the group by
the time-sensitive visual similarity is relatively lower, imply-
ing a higher consistency in the popularity values of clustered
photos in each group.

Popularity Prediction by Context

Decomposition

Popularity Matrix

Given M users {ui}Mi=1 and N shared photos {vj}Nj=1, the
popularity matrix can be expressed as R, where each ele-
ment Rij is the log-normalized popularity score s of photo
vj shared by user ui. The prediction task is to use the ob-
served parts of the popularity matrix R and historical in-
formation to estimate real values of unknown popularities.
Before the prediction phase, we first factorize the popularity
matrix using two contextual information: user-item context
and time-sensitive context.

Decomposition Based on User-item Context Only

Inspired by the previous work (Salakhutdinov and Mnih
2007), we model the popularity matrix with the user-item
context by matrix factorization. Assuming that there exists
a latent space to describe the popularity distribution be-
tween users and items with latent factors of dimensional-
ity l (e.g., inner momentum of popularity to cause user-item
sharing behaviors and they may correspond to certain se-
mantic or interesting information), a popularity matrix can
be decomposed as the inner product of sub-matrices of users
and items with common latent factors. We construct a sub-
matrix U ∈ R

M×l as the user-latent matrix, and a sub-
matrix V ∈ R

l×N as the latent-item matrix. Having some
elements of the popularity matrix R with known popular-
ity scores, our goal is to estimate the unknown popularities
based on U and V by minimizing the following objective
function:

argmin
U,V

‖R−UV‖2F + λU ‖U‖2F + λV ‖V‖2F (4)

where λU and λV are control parameters, and F represents
Fobenius Norm. Furthermore, U and V can also be esti-
mated by the user similarity matrix S ∈ R

M×M and the
content similarity matrix C ∈ R

N×N , as follows:

argmin
U,V

‖R−UV‖2F + λU ‖U‖2F + λV ‖V‖2F
+λS

∥∥S−UTU
∥∥2
F
+ λC

∥∥C−VVT
∥∥2
F

(5)

where λS and λC are control parameters.

Multi-scale Temporal Decomposition

We further incorporate the temporal decomposition for time-
sensitive context into the above formulation, i.e. Equa-
tion (5). As aforementioned, time-sensitive context is af-
fected by time-sensitive factors, Au (user activeness vari-
ability) and Av (photo prevalence variability). Accord-
ingly, a set of pairs of time-sensitive matrices includ-
ing the user-time matrix {WTd

}Dd=1 and the time-item
matrix {HTd

}Dd=1 are the feature distribution matrices
(WTd

= rows concat{Au over all users}, HTd
=

cols concat{Av over all photos}) for modeling the time-
sensitive context in various time scales, which consist of Au

and Av over all users and photos, respectively. {1, · · · , D}
is the index set of our predefined time scales {period,
week, month, season}. With regard to periods of day, we
divide 24 hours of a day into six periods, i.e. “morn-
ing (8:00am-12:00am)”, “lunch time (12:00am-14:00pm)”,
“afternoon (14:00am-17:00pm)”, “dinner time (17:00am-
20:00pm)”, “evening (20:00am-24:00pm)” and “sleeping
(0:00am-8:00am)”. Thus, given the popularity matrix R, our
purpose is to estimate nonnegative matrices U and V by
minimizing the errors between the popularity matrix and
the joint sum of two groups of the sub-matrices (S, C,
{WTd

}Dd=1 and {HTd
}Dd=1) for popularity prediction. The

non-negative constraint is also applied in our model, and the
cost function of our model is expressed as follows:

arg min
U,V

∥
∥
∥
∥R− (UV +

D∑

d=1

λTd
WTd

HTd
)

∥
∥
∥
∥

2

F

+ λU ‖U‖2F
+λV ‖V‖2F + λS

∥
∥S−UTU

∥
∥2

F
+ λC

∥
∥C−VVT

∥
∥2

F

(6)
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where {λTd
}Dd=1 are control parameters for multi-scale tem-

poral information.

Optimization

To solve the optimization objective, we minimize the loss
between prediction values of popularity and the ground
truth. For solving the Equation (6), we apply the Multiple
Update Rule (D.Lee and Sebastian.Seung 1999; Lee and Se-
ung 2001) to our model. The popularity matrix R is esti-
mated by the sum of UV and {WTd

HTd
}Dd=1. The solution

can be formulated as Algorithm 1. To solve the objective
function of our model, we denote gradient functions for U
and V by ∂J

∂U and ∂J
∂V . Once the convergence condition is

satisfied or the number of iterations is larger than a thresh-
old, the unknown popularity values will be harvested.

Algorithm 1 The Gradient Algorithm of Multi-scale Tem-
poral Decomposition

Require: constraint matrices: R, C, S, {WTd
}Dd=1 and

{HTd
}Dd=1; maximal interaction: n;

1: Initial U and V randomly;
2: repeat
3: Compute gradient directions:

∂J
∂U

= 2
(
−RVT + (UV)VT − 2λSSU + 2λSUUTU + λUU

)

∂J
∂V

= 2
(
−UTR + UT (UV)− 2λCVC + 2λCVVTV + λVV

)

4: Compute results of objective function:
arg min

U,V

∥∥∥∥R − (UV +
D∑

d=1

λTd
WTd

HTd
)

∥∥∥∥
2

F

+ λU ‖U‖2
F

+λV ‖V‖2
F + λS

∥∥∥S − UTU
∥∥∥2

F
+ λC

∥∥∥C − VVT
∥∥∥2

F

5: Update U and V followed by Multiple Update Rule
6: until procedure convergence or the number of interac-

tions is over n

Experiments

Experimental Settings

User-specific Dataset (UsD): We collected 750K photos
from the personal albums of 400 different users from Flickr,
and organized the collection into training data and testing
data by users. This setting is built for user-specific applica-
tions to predict the popularity of images in other users’ col-
lections. When users view a photo album of another person,
they may want to find several popular photos to share.

User-mix Dataset (UmD): We downloaded the Visual
Sentiment Ontology dataset (Borth et al. 2013) consisting
of approximately 540K images from about 75K users. Each
user has five published photos at least. This setting often oc-
curs on search engines or photostreams where people see
multiple images from other people. We put all the images
from various users together and performed popularity pre-
diction on the full data.

Performance Metric: Assuming that the label set of test-
ing data is P , we can obtain a predicted result set P ′ by
running each approach with 10 fold cross validation on the
training data. Additionally, we calculate the correlation be-
tween P and P ′ to measure performances of different meth-

ods by Spearman Correlation:

r =
1

n− 1

n∑
i=1

(
Pi − P̄

σP

)(
P ′
i − P̄ ′

σP ′

)
(7)

where P̄ and σP are the mean and the variance of P .

Performance Comparison with Different Methods

To compare performances with state-of-the-art models, we
implemented the following approaches. For showing results
on both of “big data” and “small data”, we also selected pho-
tos randomly from UsD and UmD to organize two smaller
subsets in size of 40K and 30K photos respectively.

Average Views: Since similar photo contents may obtain
similar influences, the popularity of testing photos were es-
timated by the average views of its top five similar photos
from training data. The popularity sj can be formulated by

sj = 1
k

k∑
n=0

sn,where k is the number of similar photos, sn

is the popularity of each similar photo with vj . If the number
of similar photos is over five, we rank them by the posting
time and select more recent photos.

Bipartite Graph (Niu et al. 2012): Bipartite Graph
model is widely used in popularity prediction and rank-
ing (Niu et al. 2012; He et al. 2014). Let G = (< U ∪ V >
,E) be a bipartite graph, where the set U and set V repre-
sent users and items respectively, and the edge E are posting
behaviors. We use a regularization term R(f) as

R(f) =
1

2

n∑
j=1

m∑
i=1

ωij

(
f(ui)√

dui
− f(vj)√

dvj

)
(8)

where wij is defined by the posting behaviors between users
and items. dui and dvj are the weighted degrees of photo vj
and user ui for normalization, respectively.

SVR (Khosla, Sarma, and Hamid 2014): Khosla et al.
used Support Vector Regression (SVR) in understanding the
importance of photo content. It can combine different factors
by feature vectors. As the same with them, we use SVR with
a linear kernel.

BasicMF (Kong, Ding, and Huang 2011): By basic Ma-
trix Factorization (BasicMF), we consider the user-item in-
teraction and regular terms for U and V only. The optimiza-
tion objective is

argmin
U,V

‖R−UV‖2F + λU‖U‖2 + λV ‖V‖2 (9)

PreferenceMF (Cui et al. 2011): This approach is ap-
plied to social recommendation with users and items, which
predicts popularity by preference rating estimation with the
user context constraint and the item context constraint. The
objective function is

argmin
U,V

‖R−UV‖2F + λU ‖U‖2F + λV ‖V‖2F
+λC ‖C−VV‖2F + λS ‖S−UU‖2F

(10)

Multi-scale Temporal Decomposition (MTD): This is
our proposed approach, which combines the user-item con-
text constraint and temporal context constraint. The objec-
tive function for optimizing the estimation loss is defined in
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Table 1: Performances (Spearman Correlation) on user-
specific and user-mix datasets

Method 40K UsD 750K UsD 30K UmD 540K UmD

Average Views 0.0574 0.0854 0.1342 0.3202
Bipartite Graph 0.2286 0.2686 0.2345 0.6895
SVR 0.1958 0.2522 0.2316 0.7432
BasicMF 0.1043 0.2425 0.2783 0.4822
PreferenceMF 0.1835 0.2816 0.3172 0.7532
MTD 0.2462 0.3491 0.3425 0.7977

Table 2: Performances (Spearman Correlation) of MTD with
different time scales on user-specific and user-mix Datasets

Method 750K UsD 540K UmD

Season of Year 0.3025 0.7468
Month of Year 0.3281 0.7542
Week of Year 0.3417 0.7950
Period of Day 0.3341 0.7907

Equation (6). By our multi-scale model, we can decompose
contextual factors into different latent sub-spaces simulta-
neously. Note that, for BasicMF, PreferenceMF, and MTD,
we adjusted parameters by variances of the corresponding
matrices as like in the previous work (Jiang et al. 2014).

The results of our approach and the five comparing meth-
ods are listed in Table 1. We can observe that:

• The MTD achieves the best performance. This indicates
that the user-item context and time-sensitive context can
complement each other in the performance.

• The more entries are used for training, the higher correla-
tion coefficient the approaches can achieve. This is con-
sistent with the intuition that the prediction performance
depends heavily on the percentage of training data, espe-
cially in sparse dataset where the model can be insuffi-
ciently trained.

• The comparisons between the BasicMF, PreferenceMF
and MTD show that contextual information is effective
in popularity prediction.

• The baseline method, Average View, does not fit popular-
ity prediction well on new photos. Our observation is that
it ignores other modalities except for content factors.

Relative importance of the adopted time scales. We run
the MTD with each time scale individually, and the results
are given in Table 2. We can find that ‘week of year’ is the
best time scale to model temporal context, while the period
of day is also relatively effective on different data settings.

Parameter analysis. We found that l = 500, λU = 10−1,
λV = 10−1, λS = 10−2, λC = 10−1 and {λTd

}Dd=1 =
{10−4, 10−3, 10−2, 10−3} offered the best performance on
UmD in our experiments. Note that {λTd

}Dd=1 are tuning
parameters (0 < λTd

< 1) for controlling the relative
importance of the time scales for capturing popularity dy-
namics. To study hew these parameters affect the perfor-
mance of popularity prediction by MTD, we set λU = 10−1,
λV = 10−1, λS = 10−2, λC = 10−1, and vary the value
of each time-sensitive parameter λTd

separately. Figure 5

Figure 5: The performance curves of different time scales
change with the corresponding λTd

parameters.

shows the results. The larger a λTd
value is, the more weight

will be given to the corresponding time scale. We can see the
performance curves of the four time scales are intertwined
and it indicates that considering all scales is indeed an effec-
tive solution for popularity prediction.

Conclusions and Future Work

In this paper, we have presented a novel approach named
Multi-scale Temporal Decomposition (MTD) with context
factorization for photo popularity prediction in social media.
Specially, we modeled temporal patterns at multiple time
scales to capture dynamics of photo popularity. The exper-
imental results showed that our approach outperformed the
state-of-the-art methods, with a relative improvement of av-
eragely 9.6% over the best three methods, which demon-
strates the effectiveness of multi-scale decomposition for
popularity prediction. Besides, we found that the two time
scales (week of year and period of day) have the best predic-
tive power than other scales.

There are several research topics for future investigation.
One interesting topic is to optimize and suggest best post-
ing behaviors for receiving the highest popularity in social
media, such as tagging vivid keywords. Another open ques-
tion would be investigating the effect of image sentiment
on photo popularity and the correlation between user emo-
tion and viewing behaviors. Furthermore, the detection of
locality popularity changes or decays with different topics
or events is also essential for exploring user behaviors with
contextual information in social media.
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