
Semantic Community Identification in Large Attribute Networks

Xiao Wang1,5, Di Jin1, Xiaochun Cao2, Liang Yang2,3, Weixiong Zhang4,5

1School of Computer Science and Technology, Tianjin University, Tianjin 300072, China
2State Key Laboratory of Information Security, IIE, Chinese Academy of Sciences, Beijing 100093, China

3School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China
4College of Math and Computer Science, Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China

5Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
{wangxiao cv, jindi}@tju.edu.cn, {caoxiaochun, yangliang}@iie.ac.cn, weixiong.zhang@wustl.edu

Abstract

Identification of modular or community structures of a net-
work is a key to understanding the semantics and functions
of the network. While many network community detection
methods have been developed, which primarily explore net-
work topologies, they provide little semantic information of
the communities discovered. Although structures and seman-
tics are closely related, little effort has been made to discover
and analyze these two essential network properties together.
By integrating network topology and semantic information
on nodes, e.g., node attributes, we study the problems of de-
tection of communities and inference of their semantics si-
multaneously. We propose a novel nonnegative matrix factor-
ization (NMF) model with two sets of parameters, the com-
munity membership matrix and community attribute matrix,
and present efficient updating rules to evaluate the parameters
with a convergence guarantee. The use of node attributes im-
proves upon community detection and provides a semantic in-
terpretation to the resultant network communities. Extensive
experimental results on synthetic and real-world networks not
only show the superior performance of the new method over
the state-of-the-art approaches, but also demonstrate its abil-
ity to semantically annotate the communities.

Introduction
Complex systems can be represented in networks or graphs.
One of the most prominent features of such networks is the
community structure, where the nodes within a community
are densely connected whereas nodes in different commu-
nities are sparsely connected (Girvan and Newman 2002).
Community structures help reveal organizational structures
and functional components of a complex system. Therefore,
community detection is an essential step toward characteri-
zation of a complex system.

Network topology, an important network description, has
been broadly exploited by the most existing methods for
community detection. However, network topology reflects
merely one aspect of a network and is often noisy. As a re-
sult, using network topology alone may not necessarily give
rise to a satisfactory partition of a network. For instance, it
is not uncommon that two nodes that belong to the same
community are not directly connected, and a node connect-
ing to multiple communities for distinct reasons is difficult
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to be assigned correctly to the right communities by only re-
lying on network topology. Therefore, it is insufficient to ac-
curately determine the community structure using network
topology alone. In addition to network topology, semantic
information, e.g., that of node attributes, is often available.
For example, a node (i.e., a person) in a social network is
often annotated by a personal profile with information such
as education background, circle of friends and profession;
a node (i.e., a paper) in a citation network is typically an-
notated with title, abstract and key words. Different from
network topology, node semantics capture characteristics of
individual nodes and provide a piece of valuable informa-
tion orthogonal to information of network topology. Integra-
tion of network topological and semantic information holds
a great potential for community identification.

Nevertheless, it is technically challenging to effectively
combine these two pieces of valuable albeit orthogonal in-
formation. Particularly, two obstacles need to be addressed
in order to properly integrate these two types of informa-
tion. First, how to adequately characterize a community. The
most existing methods for community detection mainly rely
on network topologies. However, missing, meaningless or
even erroneous edges are ubiquitous in real networks, which
casts doubts on the accuracy and/or correctness of the net-
work communities discovered based on network topology
alone. While the nodes in a community are highly con-
nected, they should also have similar characteristics, re-
flected by attributes. Thus, nodes attributes may carry es-
sential information of communities that is complementary to
the information of network topology. Therefore, even though
two nodes are not directly connected, they may belong to the
same community if they share the same characteristics, and
the use of node attributes may enhance community discov-
ery. Second, how to adequately interpret or semantically an-
notate communities. Functional analysis of network commu-
nities is typically and independent, post-processing task fol-
lowing community detection. The result from a community
discovery often provides little information beyond network
topology regarding why a group of nodes from a commu-
nity, their semantic meaning, or potential functions. In order
to semantically annotate a community, supplemental infor-
mation, e.g., background information and/or domain knowl-
edge, is usually required. Even though such domain infor-
mation is available, how to fully utilize such information re-

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

265



mains challenging, application specific and time consuming.
To address the above two problems, we propose and de-

velop in this paper a method, named as Semantic Commu-
nity Identification (SCI), to identify network communities
with semantic annotation. The SCI method integrates net-
work topological and node semantic information; it com-
bines topology based community memberships and node-
attribute based community attributes (or semantics) in the
framework of nonnegative matrix factorization (NMF, (Se-
ung and Lee 2001)). The key intuition behind SCI stems in
two observations: two nodes are likely to be connected if
their community memberships are similar, and two nodes
likely belong to the same community if their attributes are
consistent with the underlying community attributes to be
learned. To make the novel SCI method effective, we intro-
duce a sparsity penalty in order to select the most related at-
tributes for each community and devise a multiplicative up-
dating rule with a convergence guarantee. Extensive exper-
iments on synthetic and real networks, in comparison with
several state-of-the-art methods, are performed to assess the
performance of SCI.

Related work
Several community detection methods, as reviewed in (Xie,
Kelley, and Szymanski 2013), have been developed to ex-
plore network topologies, including the well-known ones
based on nonnegative matrix factorization (NMF) (Wang et
al. 2011; Yang and Leskovec 2013) and stochastic block-
model (SBM) (Karrer and Newman 2011). Among these
methods are ones that combines network topologies and
node attributes (content or features). In particular, a uni-
fied method was suggested to combine a conditional model
for topology analysis and a discriminative model for mak-
ing use of node attributes (Yang et al. 2009). However, this
method focuses on community detection without inferring
the most relevant attributes for each community. Edge con-
tent was also leveraged to improve community detection
processes (Qi, Aggarwal, and Huang 2012). However, this
method is specifically designed for detecting communities
of links, rather than communities of nodes. A heuristic lin-
ear combination between edges created by node attributes
and the topological information of edges was proposed to
create a new graph, which was used for the graph cluster-
ing (Ruan, Fuhry, and Parthasarathy 2013). However, this
strategy did not use the semantic information of attributes
when inferring topics of communities. A probabilistic model
that can capture the relationship between community and
attributes was developed (Yang, McAuley, and Leskovec
2013), which simply added a sparsity term to the whole net-
work rather than each community. Moreover, the updating
rules for learning the parameters of the model are not guar-
anteed to converge. A heuristic algorithm to optimize the
community score for recovering communities and minimize
description complexity for inferring diverse community de-
scriptions was proposed (Pool, Bonchi, and Leeuwen 2014);
this heuristic method reported too many relatively small
communities, some of which have two or three nodes. A
nonnegative matrix tri-factorization based clustering frame-
work with graph regularization was proposed to combine so-

cial relations and user generated content in a social network
(Pei, Chakraborty, and Sycara 2015). However, this method
focused on utilizing additional content information to detect
communities, and failed to study the relationship between
communities and these content.

SCI: The network model

Consider an undirected network G = (V,E) with n nodes
V and e edges E, represented by a binary-valued adjacency
matrix A ∈ R

n×n. Associated with each node i are its at-
tributes Si, which may be semantic characteristics of the
node. The attributes of a node are in the form of an m-
dimensional binary-valued vector, and the attributes of all
the nodes can be represented by a node attribute matrix
S ∈ R

n×m. The problem of community identification is to
partition the network G into k communities as well as to
infer the related attributes or semantics of each community.

Modeling network topologies. We define the propensity
of node i belonging to community j as Uij . The commu-
nity membership of all the nodes in the network is then
U = (Uij), where i = 1, 2, ..., n and j = 1, 2, ..., k. Con-
sequently UirUpr presents the expected number of edges
between nodes i and p in community r. Summing over all
communities, the expected number of edges between i and
p is

∑k
r=1 UirUpr. This process of generating edges implies

that if two nodes have similar community memberships, they
have a high propensity to be linked. The expected number of
edges between pairs of nodes should be as closely consistent
as possible with the network topology denoted by A, which
gives rise to the following function in matrix formulation:

min
U≥0

‖A−UUT ‖2F . (1)

Modeling node attributes. We define the propensity of
community r to have attribute q as Cqr. So for all the com-
munities, we have a community attribute matrix C = (Cqr),
for q = 1, 2, ...,m and r = 1, 2, ..., k, where the r-th col-
umn, Cr, is the attribute membership of community r. If the
attributes of a node are highly similar to that of a community,
the node may have a high propensity to be in the community.
As a result, the nodes with similar attributes, described in
Si, may form a community, which can be characterized by
the common attributes of the nodes. Specifically, the propen-
sity of node i belonging to community r can be formulated
as Uir = SiCr. Notice that if the attributes of node i and
community r are completely inconsistent, node i must not
belong to community r, i.e., Uir = 0. As the community
memberships of all the nodes U offer a guidance for comb-
ing the attributes of nodes and communities, we have the
following optimization function:

min
C≥0

‖U− SC‖2F . (2)

In order to select the most relevant attributes for each com-
munity, we add an l1 norm sparsity to each column of ma-
trix C. In addition, to prevent the values of some columns
of C too large, which means that each community has
some meaningful attributes, we have the constraint on C
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∑k
j=1 ‖C(:, j)‖21, which gives rise to the following objec-

tive function together with (2):

min
C≥0

‖U− SC‖2F + α

k∑

j=1

‖C(:, j)‖21, (3)

where α is a nonnegative parameter to make a tradeoff be-
tween the first error term and the second sparsity term.

The unified model. By combining the objective functions
of modeling the network topology specified in (1) and of
modeling node attributes in (3), we have the following over-
all function:

min
U≥0,C≥0

L = ‖U− SC‖2F + α

k∑

j=1

‖C(:, j)‖21

+ β‖A−UUT ‖2F ,
(4)

where β is a positive parameter for adjusting the contribution
of network topologies.

Optimization

Since the objective function in (4) is not convex, it is im-
practical to obtain the optimal solution. Local minima of
(4) can be achieved using Majorization-Minimization frame-
work (Hunter and Lange 2004). Here we describe an algo-
rithm that iteratively updates U with C fixed and then C
with U fixed, which guarantees not to increase the objec-
tive function after each iteration. The specific formulas are
shown as the following two subproblems.
U -subproblem: when update U with C fixed, we need to

solve the following problem:

min
U≥0

L(U) = ‖U− SC‖2F + β‖A−UUT ‖2F . (5)

To this end, we introduce a Lagrange multiplier matrix
Θ = (Θij) for the nonnegative constraints on U, resulting
in the following equivalent objective function:

L(U) = tr(UUT −UCTST − SCUT + SCCTST )

+ βtr(AA−AUUT −UUTA+UUTUUT )

+ tr(ΘUT ).
(6)

Set derivative of L(U) with respect to U to 0, we have:

Θ = −2U+ 2SC+ 4βAU− 4βUUTU. (7)

Following the Karush-Kuhn-Tucker (KKT) condition for the
nonnegativity of U, we have the following equation:

(−2U+2SC+4βAU− 4βUUTU)ijUij = ΘijUij = 0.
(8)

This is the fixed point equation that the solution must satisfy
at convergence. Given an initial value of U, the successive
update of U is:

Uij ← Uij(
(SC+ 2βAU−U)ij

2β(UUTU)ij
)

1
4 . (9)

To guarantee the property that U is nonnegative, we set
the diagonal elements in A to be larger than 1

2β . The updat-
ing rule of U satisfies the following theorem, which guaran-
tees the correctness of the rule.

Theorem 1. If the update rule of U converges, then the
final solution satisfies the KKT optimality condition. (Proof
in Appendix A1).

We now prove the convergence of the updating rule. Fol-
lowing (Seung and Lee 2001), we use an auxiliary function
to achieve this goal.

Definition 1. (Seung and Lee 2001) A function Q(U,U′)
is an auxiliary function of function L(U) if Q(U,U′) ≥
L(U), Q(U,U) = L(U) for any U,U′.

The auxiliary function is useful because of the following
lemma:

Lemma 1. (Seung and Lee 2001) If Q is an auxiliary
function of L, then L is nonincreasing under the update rule
U(t+1) = argminU Q(U,U(t)).

Now we have the specific form of the auxiliary function
Q(U,U′) for the objective function L(U) in problem (5)
based on the following lemma.

Lemma 2. The function

Q(U,U′) = tr(SCCTST + βAA) + βtr(RU′TU′U′T
)

− tr(U′TA′Z)− tr(ZTA′U′)− tr(U′TA′U′)

− 2tr(CTSTZ)− 2tr(CTSTU′)
(10)

is an auxiliary function for L(U) in problem (5), where

Rij =
U4

ij

U ′3
ij

, Zij = U ′
ij ln

Uij

U ′
ij

, A′ = 2βA − I, and I is
an identity matrix. (Proof in Appendix A2).

Based on Lemmas 1 and 2, we can show the convergence
of the updating rule.

Theorem 2. The problem (5) is nonincreasing under the
iterative updating rule (9). (Proof in Appendix A3).
C-subproblem: when update C with U fixed, we need to

solve the following problem:

min
C≥0

L(C) = ‖U− SC‖2F + α

k∑

j=1

‖C(:, j)‖21. (11)

This is equivalent to the following optimization problem
(Kim and Park 2008):

min
C≥0

L(C) = ‖( S√
αe1×m

)C− (
U

01×k
)‖2F , (12)

where e1×m is a row vector with all components equal to
one and 01×k is a zero vector. So the updating rule and its
convergence analysis can be found in (Seung and Lee 2001).

At convergence, as U expresses the soft membership dis-
tribution over communities, we can either use U directly or
U = SC to get the final disjoint or overlapping communi-
ties. Each column of C indicates the relationship between
a community and the attributes, where a larger value rep-
resents the more relevant the corresponding attribute to the
community.
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Figure 1: Performance comparison of SCI using U directly
(SCI NonAtt), SCI using U = SC (SCI Att) and SNMF.

Experimental evaluations

Synthetic network

We first evaluated SCI on a synthetic network constructed
using the widely adopted Newman’s model (Girvan and
Newman 2002). The network consists of 128 nodes di-
vided into 4 disjoint communities. Each node has on average
zin edges connecting it to members of the same commu-
nity and zout edges to members of other communities, with
zin + zout = 16. Here we set zin and zout to 8, which be-
comes a challenging problem for most methods as there was
no obvious community structure (Yang et al. 2014). Then
we generated a 4hin-dimensional binary attributes for each
node as follows. For each node within the i-th community,
we used a binomial distribution with mean ρin to generate a
hin-dimensional binary vector as its ((i − 1) × hin + 1)-th
to (i × hin)-th attributes, and generated the rest attributes
using a binomial distribution with mean ρout. In total, we
have (4hin)-dimensional attributes for each node. Note that
ρin > ρout, meaning that these generated hin-dimensional
attributes are associated with this community with high
probability, while the rest are irrelevant (or noisy) attributes.

As mentioned earlier, the new method infers two param-
eters U and C, so we may use the inferred U directly or
the attributes C to derive a new U as in U = SC to re-
cover community structures. For convenience, we named
these two schemes as SCI NonAtt and SCI Att, respectively.
Our experiments were first designed to study the difference
between these two schemes. We set hin = 50, ρin = 0.8
and varied ρout from 0 to 0.8 with an increment of 0.1. We
adopted SNMF (Wang et al. 2011) using network topologies
alone as the baseline method for comparison. We used accu-
racy (AC) (Liu et al. 2012) and normalized mutual informa-
tion (NMI) (Liu et al. 2012) as the quality metrics for per-
formance assessment. As shown in Figure 1, both SCI Att
and SCI NonAtt outperform SNMF, except when ρout al-
most reaches 0.8. The result shows that the quality of identi-
fied communities improves with the information of node at-
tributes. Furthermore, SCI Att usually significantly outper-
forms SCI NonAtt before ρout = 0.5. As ρout increases be-
yond 0.5, the performance of SCI Att deteriorates. This is
in part because when ρout is greater than 0.5, node attributes
provide less discriminative information on network commu-
nity, meaning that there are less specific attributes associated
with communities. This also implies that node attributes may
not always be valuable to community detection, but rather
may distort the results if they have low quality. However, in

Figure 2: Left: the node attributes matrix. Right: the in-
ferred community attributes matrix.

Figure 3: The effect of parameter α and β. Different color
means different accuracy and color close to red indicates
high accuracy.

general, the node attributes have the underlying discrimina-
tive power that can be beneficial for distinguishing commu-
nities. So instead of using U directly, we specified U = SC
as the final community membership for all the following ex-
periments.

Further, we studied the community attributes C inferred
by SCI. We fixed ρin = 0.8, ρout = 0.2, and hin = 50.
The generated node attribute matrix is shown in the left fig-
ure of Figure 2. As shown, the nodes of each the communi-
ties have 50-dimensional relevant attributes, and the rest at-
tributes are irrelevant. We noticed that the attributes of each
community are very different, as shown in the right figure
of Figure 2, meaning that unique attributes have been recov-
ered for each community. Besides, the community attributes
are consistent with the relevant attributes of the nodes in
the community. In short, the new method is able to iden-
tify network modular structures as well as infer community
attributes which provide semantic information of the com-
munities.

Real networks

We considered three real networks with node attributes and
ground-truth community labels. The Citeseer network1 (6
communities) consists of 3312 scientific publications with
4732 edges, and the Cora1 network (7 communities) con-
sists of 2708 scientific publications with 5429 edges. The
publications in Citeseer and Cora are associated with 3703-
and 1433-dimensional binary-valued word attributes, re-
spectively, indicating whether a corresponding word is in
a publication. The WebKB network1 consists of 4 subnet-
works gathered from 4 universities (Cornell, Texas, Wash-
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Table 1: Performance comparison of disjoint communities (bold numbers represent the best results).

Metrics Methods Cornell Texas Washington Wisconsin Cora Citeseer

AC

PCL-DC 0.3487 0.3690 0.4087 0.3547 0.5543 0.6525
SNMF 0.3179 0.3583 0.2783 0.3283 0.4173 0.2539
SBM 0.3436 0.3743 0.2826 0.2981 0.3833 0.2844
CAN 0.4154 0.4706 0.5087 0.4717 0.3021 0.2129
SMR 0.3179 0.5401 0.4565 0.4226 0.3002 0.2111
SCI 0.4769 0.6096 0.5435 0.5245 0.4169 0.3442

NMI

PCL-DC 0.0813 0.0686 0.1031 0.0719 0.3830 0.3816
SNMF 0.0332 0.0476 0.0211 0.0803 0.1994 0.0403
SBM 0.0543 0.0839 0.0211 0.0428 0.2047 0.0512
CAN 0.0614 0.0908 0.1175 0.0702 0.0132 0.0079
SMR 0.0845 0.1150 0.0381 0.0777 0.0078 0.0032
SCI 0.1520 0.2197 0.2096 0.1852 0.1780 0.0922

ington and Wisconsin). Each subnetwork is divided into 5
communities. There are 877 webpages with 1608 edges.
Each webpage is annotated by 1703-dimensional binary-
valued word attributes.

We compared SCI against three topology based meth-
ods: SNMF (Wang et al. 2011), SBM (Karrer and Newman
2011), BIGCLAM (Yang, McAuley, and Leskovec 2013);
two node attributes based methods: CAN (Nie, Wang, and
Huang 2014) and SMR (Hu et al. 2014); three methods that
combine network topologies and node attributes: PCL DC
(Yang et al. 2009), CESNA (Yang, McAuley, and Leskovec
2013), DCM (Pool, Bonchi, and Leeuwen 2014). The meth-
ods compared may provide disjoint or overlapping commu-
nities, so we chose different evaluation metrics. For dis-
joint communities, we adopted accuracy (AC) (Liu et al.
2012) and normalized mutual information (NMI) (Liu et
al. 2012). For overlapping communities, generalized nor-
malized mutual information (GNMI) (Lancichinetti, Fortu-
nato, and Kertész 2009) was used. In addition, we compare a
set of detected communities M with the ground-truth com-
munities M∗ as in (Yang, McAuley, and Leskovec 2013):

1
2|M∗|

∑
M∗

i ∈M∗ maxMj∈M δ(M∗
j ,Mj) +

1
2|M |

∑
Mj∈M maxM∗

j ∈M∗ δ(M∗
j ,Mj), where δ(M∗

i ,Mj)

is a similarity measure (F-score and Jaccard similarity) be-
tween communities M∗

i and Mj .
We verified the effectiveness of SCI on both disjoint and

overlapping community results, shown in Tables 1 and 2,
respectively. As shown in Table 1, SCI outperforms the
other methods on four of the six network instances (Cor-
nell, Texas, Washington and Wisconsin). As shown in Ta-
ble 2, when measured with F-score and Jaccard metrics, SCI
achieves the best performances on all the tested networks; it
outperforms the other methods on four of the six networks
in terms of GNMI, further demonstrating the effectiveness
of SCI. Note that the accuracies to be vastly different across
different networks (even using the same set of methods), and
this may reflect diverse characteristics of networks analyzed.

We tested the effect of parameters α and β of SCI on the
real networks, i.e., α and β are the parameters for adjusting
the contributions of sparsity term and network topologies,

1http://linqs.cs.umd.edu/projects/projects/lbc/

respectively. We varied each parameter from 1 to 100 with
an increment of 10. Because the results of different networks
have similar tends, here we just showed two networks (Cor-
nell and Texas) in Figure 3. Notice that SCI is relatively sta-
ble with varying parameter β, whereas it is significantly af-
fected by α, suggesting the importance of the sparsity term.
Therefore we suggest to set β to either 1 or a value between
10 and 100 and fine tune α ∈ {1, 10, 20, ..., 100} so as to
achieve a high performance.

Since SCI converges to the local optimum, we tested
its robustness on the Cornell, Texas, Washington and
Wisconsin datasets. We repeated SCI with ten differ-
ent initializations. The mean values of the loss func-
tions are 81.9509± 0.2844, 87.8448± 0.1728, 102.4153±
0.2852, and 105.5379 ± 0.4075, respectively. The vari-
ances are all less than 0.4%, indicating stability of SCI.
The main computation of SCI is for updating U and
C. The complexity is O(T (mnk + n2k)) for T iter-
ations to converge. We also reported the running time
of SCI on the Cornell, Texas, Washington, Wiscon-
sin, Cora and Citeseer datasets here. On a PC with
“RAM: 8G; CPU: Intel I7; Platform: Matlab”, the running
times are 0.4509s, 0.1917s, 0.3234s, 0.4571s, 88.6821s and
69.8382s, respectively.

Analysis of detected communities

We closely examined some of the communities detected by
SCI. Here we used LASTFM dataset2 from an online mu-
sic system Last.fm, whose 1892 users are connected in a
social network generated from Last.fm “friend” relations.
Each user has 11946-dimensional attributes, including a list
of most listened music artists, and tag assignments. Because
the network does not have ground-truth labels, we did not
quantitatively evaluate it in the previous section. We used
Louvain method (Blondel et al. 2008) to set the number of
communities to 38. Four example community attributes are
shown as word clouds in Figure 4. The size of a word is pro-
portional to its community attribute value, i.e., more relevant
an attribute, larger it is in the figure.

For each community, we selected the top ten attributes.
We observed these four communities have their unique at-

2http://ir.ii.uam.es/hetrec2011/datasets.html
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Table 2: Performance comparison of overlapping communities (bold numbers represent the best results).

Metrics Methods Cornell Texas Washington Wisconsin Cora Citeseer

GNMI

BIGCLAM 0.0051 0.0034 0.0028 0 0.0244 5.551e-17
CESNA 0.0704 0.0008 0.1151 0.1573 0.0179 0
DCM 1.110e-16 0.0090 0.0062 1.110e-16 2.220e-16 0
SCI 0.0901 0.0955 0.0859 0.0879 0.1039 0.0506

F-score

BIGCLAM 0.2267 0.2097 0.2002 0.2399 0.2927 0.1386
CESNA 0.3368 0.2352 0.3527 0.4393 0.3160 0.1360
DCM 0.1438 0.0908 0.1127 0.1052 0.0345 0.0245
SCI 0.4766 0.4740 0.4718 0.5063 0.3835 0.3651

Jaccard
BIGCLAM 0.1294 0.1190 0.1120 0.1380 0.1797 0.0829

CESNA 0.2120 0.1406 0.2551 0.3164 0.1940 0.0794
DCM 0.0795 0.0484 0.0607 0.0563 0.0177 0.0125
SCI 0.3225 0.3413 0.3303 0.3642 0.2519 0.2275

tributes. In particular, the community in Figure 4 (a) shows
that this is a group of fans of “heavy metal” bands or mu-
sic. For example, “metallica,” “queensryche,” “backyard ba-
bies,” “sound garden” and “skid row” are all heavy mental
bands. Besides, the music genre of “slash” and “nikki sixx”
also includes heavy mental. Particularly, the tags “heavy
mental” and “glam punk” appear here. The topic of the com-
munity in Figure 4 (b) should be related to singer “rihanna”
or popular music, because the word “rihanna” is the largest
and she is one of the best-selling artists of all time and fea-
tured on the worldwide hits. Her song “We Found Love”
was ranked by Billboard as the 24th biggest US Billboard
Hot 100 hit of all time. “raining men” is one of her songs,
and “rated r” is her fourth studio album. “xtina” is another
popular singer “Christina Aguilera”. For the community in
Figure 4 (c), it is mainly related to the rock band “duran du-
ran” and the rock music. Moreover, “new romantic,” synth-
rock” and “new wave” are all their genres. Also, according
to Wikipedia3, “supergroup” is usually used in the context of
rock and pop music and “duran duran” is one of them. For
the community in Figure 4 (d), its topic is mainly about so-
cial, livelihood, or political issues. In particular, “deutsche
welle” is a German international broadcaster which broad-
casts news and information towards audiences outside of
Germany. Different from the previous music communities,
it talks about “female empowerment” and other topics like
life, “sickness” and “the cure”. In summary, these four com-
munities carry their distinct attributes; by leveraging these
attributes, we are able to explain and understand these com-
munities.

Concluding remarks

We developed a novel semantic community identification
method, SCI, to detect network community structures and
infer their semantics simultaneously. A salient property of
SCI is its ability to semantically or functionally annotate
each of the communities identified. The key idea under-
lying SCI is to adequately integrate information of net-
work topologies and information of node attributes under
the framework of nonnegative matrix factorization (NMF).
We formulated SCI as an optimization problem in NMF and

3https://en.wikipedia.org/wiki/Supergroup (music)

(a) (b)

(c) (d)

Figure 4: Word clouds for different communities. Top ten
attributes of four communities are shown here. The size of a
word is proportional to its community attribute value.

designed efficient updating rules with a convergence guaran-
tee. The extensive experimental results demonstrated the su-
perior performance of SCI in accurately identifying network
community structures, while inferring community semantics
or attributes to understand community structures.

Appendix

A1. Proof of Theorem 1

At convergence, U(∞) = U(t+1) = U(t) = U, where t
denotes the t-th iteration, i.e.,

Uij = Uij(
(SC+ 2βAU−U)ij

2β(UUTU)ij
)

1
4 , (13)

which is equivalent to

(−2U+ 2SC+ 4βAU− 4βUUTU)ijU
4
ij = 0, (14)

which is equivalent to (8). �
A2. Proof of Lemma 2.

L(U) = tr(UUT −UCTST − SCUT + SCCTST )

+ βtr(AA− 2AUUT +UUTUUT ).
(15)
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By Lemmas 6 and 7 of (Wang et al. 2011), we have

tr(UUTUUT ) ≤ tr(PU′TU′) ≤ tr(RU′TU′U′T ),
(16)

where Pij =
(UTU)2ij
(U′TU′)ij

, Rij =
U4

ij

U ′3
ij

.
By Lemma 4 of (Wang et al. 2011), we have

− tr[(2βA− I)UUT ] = −tr(A′UU
T
)

≤ −tr(U′TA′Z)− tr(ZTA′U)− tr(U′TA′U′).
(17)

By Lemma 2 of (Wang et al. 2011), we have

−tr(UCTST ) ≤ −tr(CTSTZ)− tr(CTSTU′). (18)

For both (17) and (18), Zij = U ′
ij ln

Uij

U ′
ij

. By combining
(16), (17) and (18), we have the final auxiliary function in
Lemma 2. �

A3. Proof of Theorem 2.
Lemma 2 provides a specific form Q(U,U′) of the aux-

iliary function for L(U) in problem (5). We can have the
solution for minU Q(U,U′) by the following KKT condi-
tion

∂Q(U,U′)
∂Uij

= 4β(U′U′TU′)ij
U3
ij

U ′3
ij

− U ′
ij

Uij
(2(A′U′)ij + 2(SC)ij) = 0,

(19)

which gives rise to the updating rule in (9). Following
Lemma 1, under this updating rule the objective function
L(U) of (5) will be nonincreasing. �
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