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Abstract 
Detection of overlapping communities has drawn much at-
tention lately as they are essential properties of real complex 
networks. Despite its influence and popularity, the well 
studied and widely adopted stochastic model has not been 
made effective for finding overlapping communities. Here 
we extend the stochastic model method to detection of over-
lapping communities with the virtue of autonomous deter-
mination of the number of communities. Our approach 
hinges upon the idea of ranking node popularities within 
communities and using a Bayesian method to shrink com-
munities to optimize an objective function based on the sto-
chastic generative model. We evaluated the novel approach, 
showing its superior performance over five state-of-the-art 
methods, on large real networks and synthetic networks 
with ground-truths of overlapping communities. 

1. Introduction   
One of the challenging problems in study of complex net-
works, e.g., social networks, biological networks, and the 
world wide web, is the detection of community structures 
(Girvan and Newman 2002), a subject that has attracted a 
great deal of interest. A community within a network can 
be loosely defined as a set of nodes that are densely con-
nected with respect to the rest of the network. So far, many 
different approaches have been proposed to uncover com-
munity structures in networks, as reviewed in (Fortunato 
2010). Among the existing methods, the most popular are 
the ones that focus on partition of nodes, resulting in com-
munities of disjoint sets of nodes and a node being belong 
to only one community (Girvan and Newman 2002). How-
ever, overlaps of communities, i.e., a node can be members 
of more than one community, are ubiquitous in reality 
(Palla et al. 2005). For example, an individual has a family 
and belongs to a group of co-workers, each of which has its 
own functions and forms its own circle of influence. Forc-
ing a node into one community fail to accommodate multi-
ple relationships and functions that a node may possess, 
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resulting in erroneous representation of the network struc-
ture. Thus, it is imperative to develop methods that allow 
nodes to be members of multiple communities. 

A few approaches have been proposed for overlapping 
community detection. One of them is based on the idea of 
clique percolation where a cluster is interpreted as the un-
ion of small, fully connected subgraphs that share common 
nodes (Palla et al. 2005; Shen et al. 2009). Another ap-
proach utilizes local expansion and optimization which is 
based on growing a natural community (Lancichinetti, 
Fortunato and Kertész 2009; Jin et al. 2011; Lancichinetti 
et al. 2011). Most of these methods rely on a local benefit 
function that characterizes the quality of a densely con-
nected group of nodes. The third approach considers link 
community detection by partitioning links instead of nodes, 
where a node associated with different types of links may 
belong to different communities (Ahn, Bagrow and Leh-
mann 2010; Gopalan and Blei 2013; He et al. 2015). The 
fourth approach is based on dynamic label propagation 
(Raghavan, Albert and Kumara 2007), which has been ex-
tended to overlapping community detection (Gregory 2010; 
Xie, Szymanski and Liu 2011). In the process of label 
propagation, each node updates its community belonging 
coefficients by repeatedly averaging the coefficients pass-
ing from all its neighbors.  

Thanks to a sound theoretical basis and good perfor-
mance, the stochastic model constitutes a promising tech-
nique for identifying modular structures of networks and 
has been well studied recently. Furthermore, the model-
based methods that maintain probabilistic community 
memberships have also been adopted to find overlapping 
community structures (Airoldi et al. 2008; Shen, Cheng 
and Guo 2011; Psorakis et al. 2011; Zhang and Yeung 
2012; Yang and Leskovec 2013; Jin et al. 2015). 

Despite their popularity, the model-based methods suffer 
from some common drawbacks. First, highly connected 
nodes in real networks are likely to play important roles 
and thus tend to appear in multiple communities (Yang and 
Leskovec 2014). The existing model-based methods do not 
model this phenomenon well since they assume that the 
sum of probabilities for a node belonging to different 
communities (or community membership of the node) is 1 
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(Yang and Leskovec 2014). This assumption is often not 
satisfied in reality. For example, a node may belong to the 
community ‘Politics’ with probability 0.9 and the commu-
nity ‘Economics’ with probability 0.8, as the two commu-
nities are highly correlated. While it has been proposed to 
remove this assumption to better model overlapping com-
munities (Zhang and Yeung 2012; Yang and Leskovec 
2013), without the constraint the community memberships 
of two nodes may have different scales and the actual 
meaning of node community membership will be unclear. 

Second, the model-based methods typically require a 
threshold on probabilistic memberships, which is difficult 
to determine in practice, in order to derive overlapping 
structures (Xie, Kelley and Szymanski 2013). It has been 
proposed to use some community metrics, e.g., modularity 
Q and AUC score (Zhang and Yeung 2012; Jin et al. 2015), 
or some empirical methods (Airoldi et al. 2008; Yang and 
Leskovec 2013) to determine the threshold. All these 
methods introduce additional factors that may not be nec-
essarily consistent with the models to be built.  

Third, the model-based methods require the number of 
communities c, which is often unknown in practice, to be 
specified. This problem has been addressed by multiple 
runs of the same method with different c’s and choosing 
the result with the highest fitness based on some suitable 
quality metric, such as cross validation (Airoldi et al. 2008; 
Yang and Leskovec 2013), minimum description length 
(Shen, Cheng and Guo 2011) or consensus clustering (Jin 
et al. 2015). Unfortunately, this multi-run scheme makes 
the model-based methods inefficient on and unscalable to 
large networks. This problem has also been considered 
using a Bayesian approach in a single run (Psorakis et al. 
2011). The method starts with a large initial value of c, and 
uses a prior to penalize the model for including many non-
zero parameter values to balance the number of communi-
ties and the fitness of the model to the given data. However, 
the prior contains two hyperparameters that are nontrivial 
to determine. As a result, the problem remains unsolved.  

Here we propose and develop a novel approach to ex-
tend the stochastic model method to find overlapping 
communities and autonomously determine the number of 
communities at the same time. The paper is organized as 
follows. In Section 2, we start with a description of the 
stochastic model to be learned from a given network. We 
then consider deriving overlapped communities using the 
model. We subsequently adopt a hierarchical Bayesian 
approach to determine the number of communities. We 
shift our attention to experimental evaluation of the new 
approach in Section 3. We extensively compare our meth-
od with five existing methods on large real networks and 
synthetic networks. We conclude with some discussions. 

2. The Model and Method 

Here, we first describe a stochastic model to be learned 
from a given network. Reciprocally given the model, the 
given network can be viewed as most likely to be generat-
ed from the model; in other words, the model is a genera-

tive model of the network. We then consider overlapping 
communities by inferring the importance of a node in all 
fixed number of communities. To remove the restriction of 
the number of communities c being provided, we introduce 
a hierarchical Bayesian approach to determine c in a single 
run. We complete this section with a complexity analysis. 

2.1  The Stochastic Generative Model 
A network G with n nodes can be represented by an adja-
cency matrix A = (aij) with aij = 1 if an edge exists between 
nodes i to j, or 0 otherwise. We model G by an ensemble of 
c probabilistic communities {G1, G2, …, Gc}. This can be 
viewed as a generative model, from which the observed 
network G might have been generated. 

The model is specified by two sets of parameters D = 
(dik) and  = ( kj), where dik denotes the expected degree of 
node i in the kth community Gk, and kj the probability that 
Gk selects node j when generating an edge, which is also 
taken as the importance of node j in community Gk based 
on the rationale that the more important a node to a com-
munity, the more likely the node is included in the com-
munity. As kj captures the propensity of node j belonging 
to community k, we have 1 1n

kjj .  
Since Gk describes an unseparable community, it is a 

random graph with little structure. Thus the expected num-
ber of links between nodes i to j in Gk is dik kj, meaning 
that Gk randomly selects node j by dik times with probabil-
ity kj when it generates links from i to j. In total, the ex-
pected number of links from node i to node j is: 

1
ˆ c
ij ik kjka d .                           (1) 

Using a Poisson distribution that corresponds to the KL-
divergence, the log probability of generating a graph G 
with adjacency matrix A = (aij)n n by the model in (1) is: 

log ( | , ) logij ik kj ik kjij k ijkL P A D a d d , (2) 

where the additive constants are ignored. This log likeli-
hood describes the best fit between the expected network 
from the model and the observed network. The parameters 
can be learned by maximizing this log likelihood function.  

Since direct maximizing (2) is nontrivial, we adopt an 
expectation-maximization algorithm. By applying Jensen’s 
inequality to (2), we construct an auxiliary function as: 

, ,
,

( , ; ) log ( , )ik kj
ik kj ij k ij ij k ik kj ik kj

ij kijk

d
L d q a q d L d

q ,(3) 

where the introduced probabilities qij,k can be freely chosen, 
provided that they satisfy , 1ij kk q . Thus L  is a lower 
bound of L and the equality holds when 

, /ij k ik kj ir rjrq d d
 
                       (4) 

To maximize L in the E-M algorithm, assume the current 
estimation of dik and kj to be îkd  and k̂j . We have 

,
ˆ ˆˆ ˆ ˆ( , ) ( , ; )ik kj ik kj ij kL d L d q , where ,îj kq  is derived from îkd  and 

k̂j  using (4). We then maximize L  with respect to dik and 
kj under 1kjj  

with ,îj kq  fixed. Introducing Lagrange 
multipliers k to incorporate these constraints, we have the 
Lagrange form of L   
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1k kjk jL L .                      (5) 

By taking partial derivative of L  in (5), we obtain 
, , ,ˆ ˆ ˆ; /ik ij ij k kj ij ij k is is kj i isd a q a q a q . 

      
(6) 

Therefore, we have , ,
ˆ ˆˆ ˆ( , ; ) ( , ; )ik kj ij k ik kj ij kL d q L d q . Next, we 

re-estimate the value of qij,k using dik and kj, which leads to 
( , )ik kjL d = ,( , ; )ik kj ij kL d q ,ˆ( , ; )ik kj ij kL d q ,

ˆ ˆ ˆ( , ; )ik kj ij kL d q =
ˆ ˆ( , )ik kjL d . By alternating between (4) and (6), the objective 

function L monotonically converges to a local maximum.  
The derivation above applies to directed networks. We 

can generalize this model to undirected networks by intro-
ducing /kj jk sksd d , similar to the undirected configu-
ration model (Jin et al. 2015). The derivation follows the 
case for directed and the results are the same as (4) and (6).  

2.2  Inference of Overlapping Communities 
We now consider inferring overlapping community struc-
tures for a given network by exploiting its model.  

To reiterate, the stochastic model is specified by two sets 
of parameters, D and . Consider first . The kth row of , 

k, represents the memberships and, in essence, captures 
the relative importance of all nodes in the kth community. 
We thus sort the nodes in a decreasing order of k and rec-
ord the corresponding node order as Ik, where the most and 
least important nodes in community k appear the first and 
last in Ik. For clarity, we denote the jth node in this order as 
Ikj. We now consider D. Note that ik ki d s  is the ex-
pected degree of all nodes in the kth community. We use sk 
as a threshold to determine which nodes should be includ-
ed to form a natural community. Specifically, we add to 
the community the nodes in Ik one by one starting from the 
first, until the sum of actual degrees of the chosen nodes 
exceeds sk. Then, the members of the kth community are 

1

1 1
|1 ,

pos pos

k kj i k i
i i

O I j pos K s K ,     (7) 

where Ki is the actual degree of node i.  
Note that a node may have large values of kj’s in multi-

ple communities simultaneously, thus rank highly in each 
of them, and consequently be included in more than one 
community, creating a potentially overlapping community 
structure O = {O1, O2,…, Oc}. Furthermore, when setting 

/kj jk sksd d  the nodes with large degrees are more 
likely to reside in multiple communities. This is consistent 
with what was observed on most real networks previously 
(Yang and Leskovec 2014). Importantly, which nodes are 
included in a community is autonomously determined 
based on the model learned. This eminent feature sets apart 
the new method from the existing ones that often require a 
predefined threshold on community memberships.  

To better deal with some bridge nodes, we may refine 
the resultant community structure O using a greedy optimi-
zation on a well-known local community function, con-
ductance (Yang and Leskovec 2014). To be specific, for 
each community Ok, we first find a node i from the neigh-
bors of Ok, which will bring the highest increase ( +i) of its 
community quality when adding i to Ok; We then find the 

node j in Ok which will bring the highest increase ( j) of 
its community quality when removing j from Ok; We set Ok 
= Ok  {i} if +i  j, or Ok = Ok  {j} otherwise. This 
stops when no node can increase the community quality of 
Ok when ether adding or removing it.  

2.3  Statistical Model Selection 
Our method for autonomous determination of the targeted 
number of communities c is essentially a hierarchical 
Bayesian approach to statistical model selection. We first 
initialize c to a large value cmax > c. We then place some 
proper prior over the model parameters, to evaluate each 
parameterized community, and to shrink the communities 
that contribute little to the generation of the network. Re-
moving irrelevant communities gives rise to the desired c. 

Without loss of generality, assume that the parameters D 
and  are independent. First we consider D and define an 
independent exponential distribution for each column of D 
with rate parameter k. Then, the log prior over D is: 

log ( | ) log k k ikk iP D d .            (8) 
Since exponential prior corresponds to a l1-regularization 
favoring a sparse representation, each k controls the de-
gree of suppressing the kth column of D to zero and hence 
can be regarded as the weight of group sparsity.  

Furthermore, the rate parameters  = { 1, 2, …, c} 
cannot be prespecified, but can be learned from the data. 
To find the best k’s, we impose a non-informative Jeffreys’ 
hyper prior on each k to control the degree of the column-
sparsity of D. Then, the log prior over  is:  

log ( ) log kkP .                          (9) 
We choose non-informative prior as it expresses the prop-
erty by itself and requires no additional parameter. 

Finally we consider . As the constraint 1kjj  cor-
responds to an improper (un-normalizable) prior, we have:  

log ( ) 1kjk jP ,                  (10) 

where (.) denotes the Dirac delta function.  
Using Bayes rule, log posteriori of D,  and  given A is: 

log ( , , | ) log ( | , )
log ( | ) log ( ) log ( ) log ( )

P D A P A D
P D P P P A

   (11) 

where the last term is a constant. The first term is the like-
lihood of observing the data A given the model (or model 
parameters D and ), and the remaining terms are the pri-
ors of D and . This Bayesian approach is shown graph-
ically in Fig. 1(a). Furthermore, in order to optimize (11) 
efficiently, we replace P( ) by /kj kj kss  and con-
vert the above MAP (maximum a posteriori) problem to an 
equivalent NMF (nonnegative matrix factorization) formu-
lization with KL-divergence (Tan and Févotte, 2013):  

, 0arg min ( , , )

log

( 1) log

D

ik kj ik kj
ijij k k

ks kss s

k ik kk i k

O D

d d
a

d n

.       (12) 
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The first term in (12) is the loss function for the distance 
between the reconstructed and the original networks. The 
second term is the l1-regularization over each column of D 
with weight k. Because each l1-norm iki d  denotes the 
expected degree of a community, this term corresponds to 
the suppression of each community with different degrees. 
The third term is used to adaptively adjust the weights of 

k’s. Through the adaptive l1-norm selection, the columns 
of D will be segregated into two groups under optimization 
of (12). One group includes columns whose l1-norms are 
significantly larger than 0, whereas the other contains col-
umns whose l1-norm is close to 0; the number of columns 
with large l1-norms is the anticipated number of communi-
ties. An illustrative example on the well-known “karate 
club” network (Zachary 1977) is shown in Fig. 1(b). 

  
                   (a)                                                (b) 

Figure 1: (a) A graphical representation of our hierarchical 
Bayesian approach. (b) An illustratition of the result from this 
approach on Zachary’s “karate club” network. Shown here is the 
learned matrix D. After the adaptive compression of the columns 
of D, only two columns (columns 4 and 8) remain nonzero, which 
is the targeted number of communities.  

Similar to the multiplicative update rules in the original 
NMF with KL-divergence (Lee and Seung 2000), we can 
construct an iterative procedure that reaches local minima 
and maintains nonnegativity of the parameters. First, we 
calculate gradients of O(D, , ) with respect to D,  and 

. Second, we update D and  by multiplying their current 
values with the ratio between the positive to the negative 
parts of the gradients. The update rules for D and  are: 

/

1

/

/

ij kj ir rjj r
ik ik

k

ij ik ir rji r
kj kj

is ik ks ir rsis r

a d
d d

a d d

a d d

           (13) 

where /kj kj kss . We then update  by setting its 
derivative equal to zero because it has analytic solution 
given D and . Then, the updating rule for  is: 

1
/ 1k

iki d n
.                        (14) 

Besides, if the kth column of D is suppressed to zero, k 
will approach infinity. To avoid this, we add a small posi-
tive value  (e.g.,  = 10-3) to the numerator of (14) to have:  

1
/ 1k

iki d n
.                    (15) 

We will perform some additional, detailed analysis of the 
parameter  in the experiments.  

The process of model selection is as follows. We set the 
initial number of communities to a large value (e.g., cmax = 
m/3), optimize the objective function (12) by choosing a 
set of nonnegative initial values, and subsequently alternate 
between (13) and (15). The targeted number of communi-
ties c is the number of nonzero columns of D, i.e., we re-
move the irrelevant communities k whose expected degree 

iki d  is zero or very close to zero. 
We can also extend this model selection to undirected 

networks by letting  = D in (12). 

2.4 Complexity Analysis 
The most time-consuming step of the new method is for 
updating D and  in (13). Since the adjacency matrix A is 
often sparse, the complexities to evaluate D and  once are 
(4mcmax+2ncmax+2m+cmax) and (4mcmax+4ncmax+2m), re-
spectively, where n is the number of nodes, m the number 
of links, and cmax the initial number of communities. The 
total time complexity of the method is O(Tmcmax), where T 
is the number of iterations to convergence. If an approxi-
mate initial value of cmax much smaller than O(m) is avail-
able, the method will be nearly linear in network size. 

3. Experimental Evaluation 
To assess the performance of the proposed method, we 
evaluated it on real-world networks and synthetic bench-
marks. We compared it with five state-of-the-art methods 
for overlapping community detection: i) CFinder (Palla et 
al. 2005), the most prominent algorithm using clique per-
colation theory; ii) Oslom (Lancichinetti et al. 2011), a 
local optimization method with an excellent performance 
especially on the LFR benchmarks; iii) SVI (Gopalan and 
Blei 2013), a new model-based method for detecting link 
communities; iv) BigClam (Yang and Leskovec 2013), a 
newly developed model-based method for finding overlap-
ping communities using probabilistic memberships; and v) 
SLPA (Xie, Szymanski and Liu 2011), a representative 
algorithm based on dynamic label propagation.  

Each of these methods has parameters to be adequately 
set. For CFinder, we set the clique size k = 4, which returns 
the best overall results (Palla et al. 2005). For Oslom, we 
used the default of 10 trial optimizations of the lowest hi-
erarchical level, and selected the lowest hierarchical level 
as the resulting partition as suggested earlier (Lancichinetti 
et al. 2011). For SVI, following the guidelines in (Gopalan 
and Blei 2013), we assigned a link to a community if the 
approximate posterior probability of a link assignment to a 
community exceeded a threshold t, and took the best re-
sults from t=0.5 and t=0.9. Especially, for experiments on 
synthetic networks, we required at least three links of a 
node to be assigned to a community before assigning the 
node to that community. For BigClam, we used its default 
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values as in (Yang and Leskovec 2013). For SLPA, as sug-
gested by (Xie, Szymanski and Liu 2011), we set the max-
imum number of iterations T = 100 and varied parameter r 
from 0.01 to 0.1 for synthetic networks and from 0.02 to 
0.45 for real networks to determine the optimal value. Our 
method has an additional parameter  which should be 
specified as a small positive value. We will introduce how 
to choose it in the following subsections. 

The accuracy of a community detection method was 
quantified by the level of correspondence between detected 
and ground-truth communities. The widely used normal-
ized mutual information (NMI) index, which has been ex-
tended to overlapping community structures (Lancichinetti, 
Fortunato and Kertész 2009), was adopted as the accuracy 
measure in our study. 

3.1  Real-World Networks 
A practical issue in network structure analysis is the lack of 
the ground-truth of the underlying structures of a network. 
This issue is exacerbated on networks of overlapping struc-
tures since nodes in multiple communities often render 
ambiguous explanations. Fortunately, six real networks and 
their overlapping communities have been published by the 
Stanford Network Analysis Project (Leskovec 2015). The-
se include four online social networks (LiveJournal, 
Friendster, Orkut and Youtube), one collaboration network 
(DBLP) and one information network (Amazon), where the 
communities, including overlapping ones, in each of these 
networks are explicitly labeled (see Table 1 for details).  

The networks that were analyzed in our study were very 
large and beyond all currently available community detec-
tion methods. We thus adopted a sampling scheme to ex-
tract a large portion of a network with a manageable size. 
Following what was suggested earlier (Yang and Leskovec 
2013), we randomly chose a node u in a given graph G 
belonging to at least two communities, and then took the 
subnetwork to be the induced subgraph of G consisting of 
all the nodes that share at least one known community 
membership with u. To obtain a credible subnetwork with 
well-defined overlapping community structures, we disre-
garded the subnetworks whose values of overlapping mod-
ularity (Shen et al. 2009) under the ground-truth were less 
than a threshold of t = 0.1, which can be considered as hav-
ing no well-defined community structure. The result for 
each of the 6 datasets we tested was averaged on 500 ran-
domly generated networks with overlapping communities. 

Our method has only one parameter  to be set, which 
should be a small positive value. For each network, we ran 
the method by varying  from 1.0e-3 to 20e-3 with an in-
crement of 1.0e-3, recorded the obtained number of com-
munities c and the corresponding accuracy in the NMI in-
dex, and used q = |c  cr| / cr + 1 to represent the quality of 
the obtained c, where cr is the actual number of communi-
ties. So, q = 1 corresponds to a perfect match between the 
actual number of communities and that obtained by the 
method. The experimental results showed that the NMI 
accuracy of the new method is not so sensitive to parame-
ter  on all six real networks (Fig. 2(a)) and the quality q of 

the obtained number of communities is also not too sensi-
tive to  on four real networks expect DBLP and Amazon 
(Fig. 2(b)). In sum,  = 1.0e-3 typically corresponds to 
good performance on all of the six real networks for both 
the clustering accuracy and the number of communities. In 
the subsequent experiments  was set to 1.0e-3. 

 
(a)                                         (b) 

Figure 2: Analysis of potential impact of parameter  on six real-
world networks. (a) The community accuracy represented by the 
NMI index and (b) the quality of the obtained number of 
communities calculated using q = |c  cr| / cr + 1 with the change 
of parameter . The larger the NMI index (NMI  1), the better 
the result. The smaller the q value (q  1), the better the result. 

Table 1: Comparison of NMIs of different methods on six large 
Stanford networks with ground-truth of overlapping communities. 
Here, n is the number of nodes, m the number of links and cr the 
number of communities. M denotes one million and k one 
thousand. The larger the NMI, the more closely the detected 
overlapping structure matches the ground truth. The best NMIs of 
these networks are in bold. We set  = 1.0e-3 for our method. 

Datasets/  
NMIs (%) n m cr 

Methods 
CFinder Oslom SVI BigClam SLPA Ours

LiveJournal 4.0M 34.9M 310k 14.73 22.05 12.22 18.45 21.07 30.75
Friendster 120M 2,600M 1.5M 25.26 29.07 17.12 23.30 28.96 44.19
Orkut 3.1M 120M 8.5M 14.93 22.92 16.03 18.76 25.71 29.75
Youtube 1.1M 3.0M 30k 9.34 13.83 12.98 12.34 18.31 31.21
DBLP 0.43M 1.3M 2.5k 13.73 12.16 10.29 14.96 12.02 18.78
Amazon 0.34M 0.93M 49k 15.54 17.32 13.65 18.49 19.83 26.47

We compared the new method with five state-of-the-art 
methods. Quantified in NMI, our method outperformed all 
the other methods on all six networks (see Table 1). To 
highlight, this method is 8.70%, 15.12%, 4.04%, 12.90%, 
3.82% and 6.64% more accurate than the second best on 
real networks of LiveJournal, Friendster, Orkut, Youtube, 
DBLP and Amazon, respectively. While the factors for 
such a superb performance remained to be further investi-
gated, it may be partialy attributed to the way the relative 
node importance within a community was measured, espe-
cially for those nodes with large degrees, to the way which 
nodes to be included in a community, and to a hierarchical 
Bayes approach to determine the number of communities.  

3.2  Synthetic Networks 
A class of well-known synthetic benchmarks with overlap-
ping community structures has been proposed by 
(Lancichinetti and Fortunato 2009), which is referred to as 
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LFR hereafter. The degree and the community size of a 
LFR graph follow power law distributions, a statistical 
property that most real-world networks seem to share.  

The parameters of the LFR benchmarks were set follow-
ing (Lancichinetti and Fortunato 2009). The network size n 
was set to 1000, the minimum community size cmin was 
either 10 or 20, the mixing parameter  (each vertex shares 
a fraction  of its edges with vertices in other communities) 
was set to either 0.1 or 0.3, the fraction of overlapping ver-
tices (on/n) varied from 0 to 1 with an increment of 0.1. 
The remaining parameters were kept fixed: the average 
degree d = 20, the maximum degree dmax = 2.5×d, the max-
imum community size cmax = 5×cmin, the number of com-
munities that each overlapping vertex belongs to om = 2, 
and the exponents of the power-law distributions of vertex 
degree 1 = -2 and community size 2 = -1.  

For these four sets of benchmarks above, the parameter  
of the new method was set to 16e-3, 14e-3, 9e-3 and 9e-3, 
respectively. Again the results were not very sensitive to 
the variation of  in a large range, while here we used the 
best parameter for comparison against other methods.  

 
(a)                                             (b) 

 
(c)                                              (d) 

Figure 3: NMIs of six methods compared as a function of the 
fraction of overlapping nodes. Error bars show the standard 
deviations estimated on 20 graphs. Shown are results on networks 
of (a) small mixing parameter & small communities (  = 0.1, cmin 
= 10, cmax = 50), (b) big mixing parameter & small communities 
(  = 0.3, cmin = 10, cmax = 50), (c) small mixing parameter & big 
communities (  = 0.1, cmin = 20, cmax = 100) and (d) big mixing 
parameter & big communities (  = 0.3, cmin = 20, cmax = 100). 

Fig. 3 shows the results that compare our method with 
CFinder, Oslom, SVI, BigClam and SLPA on the four sets 
of LFR benchmarks. As shown, our method and Oslom 
outperformed the other four methods in all four cases with 
our method being even slightly better than Oslom overall. 
The third most consistently performing method is BigClam. 
The performance of all the other methods deteriorated with 
the fraction of overlapping nodes increased.  

In comparison with other methods, the performance of 
our method is relatively stable with the change of the aver-
age sizes of communities, the fraction of overlapping verti-
ces, and the ratio of the external degree of each node. This 
provided another piece of supporting evidence to the key 
intuition behind our method, i.e., a node (particularly that 
of a high degree) can be important in multi-communities.  

We further examined the performance of our model se-
lection method on the four sets of LFR benchmarks. With 
the same parameters of  as used before, we compared our 
method with the spectral method (Krzakala et al. 2013), 
which has been considered as one of the best methods for 
determining the number of communities. As shown in Fig. 
4, on the first three sets of benchmarks, when the fraction 
of overlapping communities (on/n) is small, the two meth-
ods are comparable, accurately finding the actual number 
of communities; but when on/n becomes larger, our method 
outperforms the spectral method. On the fourth set of 
benchmarks, however, our method dose not perform well 
when on/n is small (in the range of 0.1 to 0.5); but when 
on/n increases (in the range of 0.6 to 1.0), the new method 
outperforms again the spectral method. More importantly, 
for each of these four sets of benchmarks, our method can 
follow precisely the trend of the number of communities as 
the fraction of overlapping communities increases (using 
the same -value), whereas the spectral method does not.  

  
(a)                                         (b) 

  
(c)                                          (d) 

Figure 4: Comparison of the new method and the spectral 
method for finding the number of communities of four sets of 
benchmarks, which are specified in the legend of Figure 3. 

4. Conclusion and Discussion 
We proposed a novel method for overlapping community 
detection. It was built upon a stochastic generative model, 
learned from a given network, which was used to explore 
the relative importance of a node in a community to deter-
mine whether the node should be included in the communi-
ty. The method also adopted a hierarchical Bayesian 
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scheme to derive the number of communities using shrink-
age priors to adaptively shrink or remove irrelevant com-
munities. The new method was evaluated on both real and 
synthetic networks with ground-truths, and compared 
against five state-of-the-art overlapping community detec-
tion methods. The results showed the superior performance 
of the new method over the competing ones. 

The superb performance of the new method may be at-
tributed to 1) the stochastic model used to quantify the 
relative importance of nodes in every community, 2) the 
node importance was adequately contrasted with its expec-
tation to derive a natural community, and 3) a hierarchical 
Bayesian scheme for autonomously determining the num-
ber of communities. Nevertheless, our method can be im-
proved. An additional parameter  was introduced to the 
model selection process to avoid oversuppression of some 
of the candidate communities. While this parameter is easi-
ly determined in experiments, it may still affect finding the 
right number of communities. We plan to improve the 
Bayesian model selection scheme in the future. 
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