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Abstract

In this paper, we explore the potential of geo-social
media to construct location-based interest profiles to
uncover the hidden relationships among disparate lo-
cations. Through an investigation of millions of geo-
tagged Tweets, we construct a per-city interest model
based on fourteen high-level categories (e.g., technol-
ogy, art, sports). These interest models support the dis-
covery of related locations that are connected based on
these categorical perspectives (e.g., college towns or va-
cation spots) but perhaps not on the individual tweet
level. We then connect these city-based interest mod-
els to underlying demographic data. By building mul-
tivariate multiple linear regression (MMLR) and neural
network (NN) models we show how a location’s inter-
est profile may be estimated based purely on its demo-
graphics features.

Introduction

Urbanization in the past century has transformed the world.
Today, around 54% of the world’s population lives in ur-
ban areas, and projections estimate that by 2050 around two-
thirds of all people will live in cities (U.N. 2014). With this
growth, a key task for urban planners, economists, social sci-
entists, and political entities is to understand the people who
live in these cities – for planning future development, build-
ing engaged communities, and so on.

Traditional approaches for collecting population data
have often relied on labor-intensive, expensive, and slow
collection methods. For example, the US census costs 13
billion dollars and provides in-depth data only every ten
years (Economist 2011). More frequent surveys have been
adopted in the past decade including the American Commu-
nity Survey (in the US) and the National Household Survey
(in Canada); these surveys aim to collect data every year,
but only sample a few million households per year (Bu-
reau 2014). In a separate direction, private corporations (and
some research institutions) have sought to collect and an-
alyze proprietary datasets including cellphone call records
(Greenwald, MacAskill, and Ackerman 2013), search en-
gine query logs (Boytsov, Dean, and Sercinoglu 2012), in
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addition to marketing records that are created by companies
like Wal-Mart, Amazon, and Target.

In contrast, geo-social media offers a potentially low-cost,
scalable, and fine-grained window into the spatio-temporal
activities of millions of people. Enabled by the widespread
adoption of GPS-enabled tagging of social media content
via smartphones and social media services (e.g., Facebook,
Twitter, Foursquare), these “footprints” open new possibili-
ties for understanding the dynamics of human behavior and
the pulsation of social life from local to global levels. How-
ever, gleaning knowledge about human behaviors from geo-
social media data is challenging as the data is usually un-
structured and thematically diverse (Croitoru et al. 2013).
While we have recently witnessed many compelling new
studies to leverage large geo-spatial footprints to explore
dynamics of individuals or communities (Li et al. 2008;
Scellato et al. 2011; Yin et al. 2011), few studies focus on
exploring the dynamics of human behavior from the per-
spective of cities, which is a prototypical scenario of urban
computing (Zheng et al. 2014).

In this paper, our goal is to explore the viability of geo-
social media to model, compare, and forecast the interest-
based profiles of cities. Concretely, we explore the follow-
ing questions: (1) how do we build interest-based profiles
of cities?; (2) are there coherent characteristics between
cities?; (3) which factors could be related to these interest-
based profiles?; and (4) how can we predict the interest-
based profiles of cities? To answer these questions, we pro-
pose a geo-located tweet-driven framework to model cities
by constructing city-based interest models over 14 high-
level interest categories (e.g., Sports, Technology, Politics).
Compared to prior work like ESRI’s Tapestry Segmentation
(ESRI 2014) (which breaks down US neighborhoods by so-
cioeconomics and demographics) or efforts to segment re-
gions of a city by human mobility (Yuan, Zheng, and Xie
2012), we focus on constructing interest models of cities
based solely on widespread GPS-tagged social media. These
interest models are important for multiple applications in-
cluding: (i) profiling the revealed preferences of people in
a particular location for targeted social analytics; (ii) early
detection of shifting population interests, which can impact
urban planning; and (iii) new data-driven resources for so-
cial scientists to study evolving social structure and social
composition, among many others.
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We evaluate the quality of these city-based interest mod-
els to identify coherent groupings of cities (e.g., college
towns, tech hubs) via a clustering-based approach and then
to estimate the type of city based purely on these interest
models. We further link these city-based interest models to
underlying demographic features of each city – to uncover
the correlation between the composition of a city and the
tweet-based interests of people in the city, which is impor-
tant for location-based recommendation systems, targeted
advertising, social analytics, and so forth. Our interest here
is to investigate if there is a relationship between geo-social
media based interest profiles and underlying factors (like de-
mographics). In this study, we explore this question at the
city level though we leave open to future investigations at
more fine-grained levels.

As a step towards the vision of urban computing, this pa-
per (1) Investigates the city-based interest models over a col-
lection of 112 US cities, wherein we identify coherent clus-
ters of cities based only on these interest models, validate
the quality of these models against a ground truth gener-
ated from 100s of expert-curated lists, and test these mod-
els on an additional held-out 56 cities. (2) Links the city-
based interest models to demographic features, toward iden-
tifying key characteristics of each city that provide explana-
tory power over its expressed interests. (3) Predicts a city’s
interest model based purely on key demographic features.

Study Framework and Setup

Our study aims to build interest models for cities from geo-
social media, so that we can understand what a population
cares about, how cities are positioned relative to each other,
and what the key factors are impacting these models. While
geo-social media is an inherently biased source – due to fac-
tors like uneven adoption of mobile devices – the proposed
framework is designed to demonstrate the potential of lever-
aging this rich source of population data. Beginning with a
large set of geo-tagged social media posts during a period (in
our case, around a year), we first create city-based interest
models by applying a hybrid tweet classification approach.
Based on these interest models, we group cities into coherent
clusters (e.g., tech hubs, college towns), explore the salient
demographic features that impact these interest models, and
develop predictive models.

Geo-Social Media Data. Our work here focuses on an ini-
tial sample of over 1 billion geo-tagged tweets collected via
the Twitter Streaming API from September 2012 to May
2013. We filter the tweets to keep only those originating
from the continental US, in English, and containing at least
ten words (for providing enough context for simplifying hu-
man judgments needed in later parts of the evaluation set-
ting), resulting in a base collection of 60,531,279 tweets. We
reverse geo-code each tweet, keeping only those that origi-
nate from one of the top-112 US cities by population, result-
ing in a final dataset of 4,845,316 tweets.

Demographics Data. We collected demographic data for
these 112 cities from the 2010 Census Summary File and the
American Community Survey (ACS) 5 Year Data. The cen-
sus data contains population data including sex, age, house-
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Figure 1: Example City-Based Interest Models

hold relationship, household type, family type, as well as
housing items including occupancy status, vacancy status,
and so on. The ACS contains a variety of social and eco-
nomic characteristics. In total, we identify 827 demographic
features (e.g., median family income, mean hours worked in
past 12 months).

Building City-Based Interest Models.

In this section, we introduce the city-based interest model
for mapping from individual tweets to a high-level cate-
gorical representation. Given a set of tweets T originating
from a number of cities S, our goal is to construct an n-
dimensional city-based interest model �s = {d1, d2, ..., dn}
for a city s ∈ S, that represents the high-level interests of
the individuals. For the purpose of this study, we adopt 14
high-level categories based on the categories in the Open
Directory Project (DMOZ 2014) and further refine to reflect
interests expressed on Twitter: Arts, Entertainment, Science
and Education, Business, Food, Sports, Technology, Travel,
News, Politics, Religion, Weather, Health, and Holidays.

Multilevel Mixed Feature Classifier

To identify the city-based interest model based on these 14
categories, we propose and train a special multilevel mixed
feature (MMF) classifier, as one type of cross-domain data
fusion approach (Zheng 2015), for mapping from the con-
tent of each tweet to one of the 14 categories.1 This hybrid
classifier, combines: (i) a binary classifier for distinguishing
between topical and non-topical tweets to filter out nonsensi-
cal and chat-oriented tweets; and (ii) a multinomial classifier
for determining which of the 14 categories a topical tweet
belongs to. The output of the hybrid classifier is a city-based
interest model across these 14 categories, as illustrated in
Figure 1, where the x-axis represents 14 interest categories
and the y-axis is the percentage of tweets in each category.
The proposed MMF is summarized in Algorithm 1.

Topical vs. Non-topical Tweets The first step is to isolate
tweets that actually express a categorical interest for build-
ing the city-based interest model. We can view this step as
a binary classification problem for distinguishing between
topical and non-topical tweets. A key step for such a classi-
fication is feature selection, which is especially challenging
for tweets that are 140 characters in length and often written

1Of course, the city-based interest model could be further re-
fined to consider more top-level categories or nested categories.
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Algorithm 1: Build city-based interest models by MMF
Input: A set of cities S = {s1, s2, ..., sM}, a set of

tweets T = {(ti, si), i = 1, 2, ..., N, si ∈ S},
and topical categories C = {c1, c2, ..., cL}.

Output: City-based interest models �s = {d1, ..., dL}
1 for i ← 1 to N do
2 bi ← GeneratingBinaryFeature (ti)
3 γi ← GeneratingTokenFeature (ti)

4 ξ̄i ← GeneratingNewFeatureV ector (bi, γi)

5 Extracting a subset of tweets TΨ ∈ T as the training
dataset with manual labels indicating if the tweet ξ̄i is
topical (1) or not (0)

6 Training a binary classifier RF using TΨ

7 for i ← 1 to N do
8 fi ← RF (t̄i) distinguishing topical tweets
9 ξ′i ← (fi, bi, γi) new feature vector for tweet ti

10 Aggregating topical tweets TΩ = {ti, fi = 1, ti ∈ T}
11 Extracting a subset TΦ ∈ TΩ as the training dataset with

manual labels indicating which topical categories
cj ∈ C the tweet ti belongs to

12 Training two classifiers LG and SMO using TΦ

13 for ti in TΩ do

14 l1i ← LG(ξ′i) get topic category from LG
15 l2i ← SMO(ξ′i) get topic category from SMO
16 l3i ← MAX(γi) get topic category holding the

maximum value in the token feature γi
17 if l2i �= l2i �= l3i then

18 li ← OneExtraDetermination(l2i , l
2
i , l

3
i )

19 else

20 li ← MajorityV ote(l2i , l
2
i , l

3
i )

21 j ← GetIndexOfTopicCategory(li, C)
22 si ← Location(ti)
23 dj ← dj + 1, j ∈ {1, 2, . . . , L}, dj ∈ �si

24 return �si, i = 1, 2, ...,M

informally. Here, we adopt two types of features: binary fea-
tures representing various characteristics of the tweets and
token features for capturing category-specific words.

Binary Features. Inspired by the work (Sriram et al. 2010),
we define 12 binary features as follows: (·) Reference to an-
other user at the beginning of a tweet; (·) Reference to an-
other user within a tweet; (·) Reference to hashtag at begin-
ning of a tweet; (·) Reference to hashtag within a tweet; (·)
Personal pronoun at beginning of a tweet; (·) Opinion words;
(·) Time and date information; (·) URLs; (·) Currency infor-
mation; (·) Emphasis on words; (·) Emoticon; (·) Scores in
sports games.

Token Features. By token features, a tweet is represented
as a vector with 14 elements, each of which is the cumu-
lative score of keywords and phrases on the text of this
tweet in a corresponding category. For each of the 14 cat-
egories, three annotators identify a selection of keywords
and phrases based on (EnchantedLearning 2013). For in-
stance, for Politics we may select words like “Obama” and

“war”. Each keyword is weighted based on the number of
categories it appears in. Hence, a keyword appearing in a
single category is weighted 4, a keyword in up to four cate-
gories is weighted 2, and so on. Experimentally, we find that
a weighting scheme of (4, 2, 1) results in the best perfor-
mance after testing schemes like (3,2,1) and (5,3,1).

To test the topical vs. non-topical tweet classifier, we man-
ually label a random sample of 8,200 tweets (3,200 topi-
cal and 5,000 non-topical tweets), where the ground truth
categories are assigned by the majority vote of three label-
ers. Meanwhile, these 3,200 topical tweets are further as-
signed to 14 categories. If three labelers have different opin-
ions on a tweet, one extra annotator is invited to make the
final decision. Since there is an imbalance in the dataset,
we additionally apply the resampling method of Synthetic
Minority Oversampling TEchnique (SMOTE) (Chawla et al.
2002) to balance the number of samples in topical and non-
topical tweets. We report the results of several classifiers
using 10-fold cross validation in Table 1. We can see that
Random Forest with both binary and token features provides
a better performance with a precision of 89.1%. Moreover,
SMOTE significantly improves performance of classifiers
with a maximum improvement of 4.3%.

Assigning Topical Tweets to Categories Once we have
separated out the non-topical tweets, our second step is to
assign a category to each of the remaining topical tweets for
building the city-based interest model. We propose a multi-
nomial classifier to further classify them into 14 pre-defined
categories. This multinomial classifier is a mixed one with
three components by utilizing the rule of majority vote. First
of all, we tested 6 classifiers (using the same setup as for the
binary classifier) to identify the best two of them. Based on
3,200 manually labeled tweets as well as 10-fold cross vali-
dation, we find that Logistic and SMO perform better. Addi-
tionally, we find that directly considering the category with
the highest score based purely on the token feature as the
assigned category of the tweet, the precision is 93.12%, the
recall is 92.54% and the F1-score is 92.83%. This method
is named “MAX” and is our third component; note that
“MAX” alone may lead to over-fitting. Hence, we combine
the three components to find the final category as determined
by the a majority vote of the three components. In cases of
ties, we default to the choice of the “MAX” approach.

Finally, we apply the MMF classifier to the entire dataset
of 4.8 million tweets. For evaluation, we randomly se-
lect a total of 1,000 of these tweets from each of 14 cat-
egories and manually label them. We find that our pro-
posed approach performs well with an average precision of
85.24%, an average recall of 86.19%, and an average F1-
score of 85.65%, and provides quality on par with prior
studies that have aimed to label tweets (Lee et al. 2011;
Huang and Mu 2014). Additionally, since our goal is to
identify a macro-perspective city-based interest model, in-
dividual labeling errors can be tolerated to some extent. Ul-
timately, we can apply this MMF approach to create city-
based interest models, as shown in Figure 1.
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Table 1: Precision For Classifying Topical and Non-Topical Tweets

Classifier
No SMOTE With SMOTE BOW

Binary Token Binary+Token Binary Token Binary+Token BOW
Naive Bayes 0.770 0.819 0.811 0.709 0.734 0.749 0.808

Logistic 0.797 0.833 0.832 0.736 0.810 0.861 0.778
RBF Network 0.776 0.817 0.785 0.703 0.746 0.775 0.782

C4.5 0.722 0.822 0.826 0.816 0.822 0.869 0.793
Random Forest 0.802 0.880 0.872 0.828 0.831 0.891 0.804

SMO 0.784 0.802 0.828 0.760 0.828 0.861 0.802

Uncovering Intrinsic Interests among Cities

Given the city-based interest models derived from geo-social
media, we explore in this section the quality of these models.
Do they reveal meaningful relationships among cities? Can
we identify coherent clusters of cities based on these interest
models? Do the models generalize?

Identifying Coherent Groups of Cities

To investigate these questions, we focus our initial efforts
on the original 112 cities and employ the well-known spec-
tral clustering algorithm over the city-based interest mod-
els. Since spectral clustering takes as input a pre-specified
number of clusters, we adopt the Cubic Clustering Criterion
(CCC) which estimates the number of clusters based on the
assumption that a uniform distribution on a hyperrectangle
will be divided into clusters shaped roughly like hypercubes
(Sarle 1983). The optimal number of clusters is commonly
taken as the one with the largest CCC. We tested the number
of clusters from 3 to 100, and as can be seen in the bottom-
right subfigure in Figure 3, the best choice is k = 10 (the
red point). Since the individual runs of the spectral cluster-
ing conduct slightly different clusters possible due to the
random initialization, we run the algorithm multiple times
(100 times in this study) and group together cities that are
clustered more than 50% of the time. After that, we further
employ Ward’s hierarchical minimum variance method to
refine these clusters.

With k = 10, we show the output clusters in Figure 3,
where the x-axis in each figure is the category (i.e. 1 = Arts,
2 = Entertainment, ..., 14 = Holidays) and the y-axis is the
relative difference of this category versus the mean percent-
age across all clusters. That is, cities in Cluster 1 score high
in Politics (Category 10) relative to all other clusters where
the mean is set to 0; similarly, cities in Cluster 2 score high in
Technology (Category 7) relative to all other clusters. Based
on manual inspection, we can observe that the clusters make
intuitive sense. For example:

• Political Cities: The first figure corresponding to Cluster
1 is over-represented by Politics (Category 10) and Travel
(Category 8) relative all other cities. Fitting our intuition,
this cluster contains Washington DC and Arlington, VA.

• College Towns: The fifth cluster is college towns that em-
phasize on Science and Education (Category 3) and Food
(Category 5) but low in Travel (Category 8) and Business
(Category 4). Member cities include Athens, GA, Blacks-
burg, VA, College Station, TX, and Cambridge, MA.
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Figure 2: Scatter Plot for All 112 Cities

• Tech Hubs: The second cluster contains technology-
related hubs like San Francisco, CA and San Jose, CA.

• Tourist Towns: The sixth cluster contains Orlando, FL,
Miami, FL, Honolulu, HI, and Las Vegas, NV, scoring
highest in Travel (Category 8) and Food (Category 5) and
relatively low in Sports (Category 6).

So based purely on high-level interests expressed via so-
cial media, the city-based interest models can uncover clear
coherence in how cities are related to one another. Focusing
on specific cities, we find similarly encouraging results. For
instance, Cambridge, MA has the largest degree of interest
in Travel relative to other college towns in its cluster; with
two world-class universities and closeness to a major city,
this interest is unsurprising. In Cluster 8, Birmingham, AL
has a high interest in religion relative to other cities in the
same cluster. College Park, MD displays the highest interest
in Politics relative to other college towns, most likely due to
its proximity to Washington DC.

For a better visual inspection, we apply principal compo-
nent analysis (PCA) to the city-based interest models of all
112 cities and plot the two cities according to their first two
principal components in Figure 2. Here we can see that the
10 clusters identify contiguous regions of related cities.

Validating Against Ground Truth

While these results are intuitively sensible, we now turn to
an evaluation of the quality of the discovered city-based in-
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Figure 3: 10 Clusters Derived from City-Based Interest Models

Table 2: Average Similarity Scores for 10 Clusters
Cluster Avg. with-in Cluster Avg. with All Others

1 1.00 0.31
2 0.79 0.23
3 0.86 0.38
4 None 0.26
5 0.78 0.29
6 0.80 0.34
7 0.66 0.32
8 0.83 0.28
9 0.77 0.36

10 0.80 0.28

terest models and clusters via three experiments: (i) the first
compares the discovered clusters versus a ground truth de-
rived from expert-curated lists of related cities; (ii) the sec-
ond assigns a group of 56 new cities to previously clustered
groups of 112 cities and evaluates the quality of these assign-
ment via three metrics (precision, recall, and F-measure);
and (iii) the third compares the discovered clusters con-
ducted through the proposed city-based interest models ver-
sus ones made by two alternative methods.

Versus Ground Truth. In the first experiment, we mine
800 expert-curated lists of related cities from the City-Data
web resource (City-Data 2008). These lists span many areas,
including top college cities, top sport cities, top religious
cities, top technology cities, and so forth. Treating member-
ship on a list as a signal of relatedness, we apply the Jaccard
coefficient to numerically measure the similarity between
two cities as a function of the number of lists the two co-
occur on. The similarity score (WS) between two cities can
be defined as:

WS(li, lj) =
|Oli ∩Olj |
|Oli ∪Olj |

(1)

where Ol denotes the set of lists the city l occur on.

We compute the average similarity scores in each of the
10 clusters as shown in Table 2. Overall, the average similar-
ity for cities within clusters is 0.81, as compared to 0.31 for
cities in different clusters. In other words, the city-based in-
terest models lead to groups of cities that conform to expert-
curated lists of how cities are related. Across each discov-
ered cluster, the results hold with stronger list-based sim-
ilarity within clusters than across clusters. Note that Clus-
ter 4 is an outlier, containing just one city (New York City)
and so there is no within cluster assessment. These results
support the assertion that city-based interest models built on
geo-social media do meaningfully model cities.

Testing New Cities. Coupled with this investigation of the
112 cities in our initial dataset, we additionally consider
a collection of 56 new cities that appear on 800 top lists,
but not in our collected 112 cities. Following our approach,
we construct for each city an interest profile by collecting
tweets, classifying them into 14 pre-defined categories using
the hybrid classifier, and aggregating them with their corre-
sponding tagged geo-location information. We then assign
each city to the cluster with the smallest Euclidean distance
from its interest model. As in the case of the original 112
cities, we find intuitive and sensible results: college towns
like Chapel Hill, NC, Auburn, AL, State College, PA, and
Urbana-Champaign, IL are assigned to our original College
Towns cluster (Cluster 5). Palo Alto, CA is assigned to the
Tech Hubs (Cluster 2). Destinations like Napa, CA, Lahaina,
HI, Palm Springs, CA, and Savannah, GA are assigned to
Tourist Towns (Cluster 6).

We also quantitatively evaluate the quality of these assign-
ments by considering two metrics – Average Precision and
Average Recall – over the space of expert-curated lists:

AP =
∑

li∈Sc

|Sc

⋂
Sli
list|

|Sc| , AR =
∑

li∈Sc

|Sc

⋂
Sli
list|

|Sli
list|

,

where Sli
list denotes the set of cities co-occurring with city
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li in the set of lists, and Sc is a set of cities in the cluster c.
Higher values indicate that the city-based interest models do
reflect the underlying relationships among these cities.

In practice, we employ a distance metric, Euclidean Dis-
tance, to assign each of the additional 56 cities to one of the
10 clusters after testing different metrics. The results are re-
ported in Table 3. Note that since there is no city assigned to
clusters 1 and 4, and only one city to be assigned to cluster
2, 3 and 10, respectively, we are not able to calculate metrics
for these five clusters. For the rest of the clusters, the Aver-
age F1 reaches 70.4% on average with the best of 100% in
the cluster 6 and the worst of 34% in the cluster 9 to which
only four cities are assigned. This result is a good indicator
implying that most of the 56 cities are correctly assigned to
a cluster based on the proposed city-based interest models.

Table 3: Performance for 56 Cities
Cluster Avg. Precision Avg. Recall Avg. F1

5 85% 77% 81%
6 100% 100% 100%
7 79% 73% 76%
8 71% 52% 61%
9 44% 29% 34%

Comparison with Alternative Methods. While encourag-
ing, are the proposed city-based models better at identifying
coherent groups of cities than other methods? To address this
questions, we consider two alternatives for grouping cities –
one based on demographics data using the spectral cluster-
ing approach, similar to (Yin et al. 2011); and one based
on topic vectors derived from Latent Dirichlet Allocation
(LDA). For the demographics-based approach, we represent
each of the 112 cities by 827 unique demographic features
from the ACS 5 Year Data. For the LDA-based approach, the
number of topics is determined by the method of Arun et al.
(Arun et al. 2010) where LDA is treated as a matrix factor-
ization mechanism. In both cases, the number of clusters is
set as 10 as we did before. We average the average similar-
ity score on all clusters as reported in Table 4. It is apparent
that the coherent groups of cities derived from the proposed
city-based interest model results in a higher average simi-
larity scores in both with-in and with-out clusters are more
reasonable than ones produced from the demographic-based
and LDA-based approaches.

Table 4: Comparing Performance of Identifying Coherent
Groups of Cities with Two Other Approaches

Method Avg. with-in Cluster� Avg. with All Others�
City-based 0.81 0.31

Demogr.-based 0.72 0.32
LDA-based 0.56 0.35

�Avg. means averaging the average similarity score on all clus-
ters.

Linking Demographics to Interest Models

So far we have seen that city-based interest models built
over public geo-social media can provide a new window

into modeling and comparing cities, and that latent groups
of cities can naturally fall out of these models. We now fo-
cus our attention on linking the city-based interest models to
demographic features of these cities, toward identifying key
characteristics of each city that provide explanatory power
over its expressed interests. By identifying the relationship
between the underlying characteristics of cities and the inter-
ests of its population via social media, we can begin to utilize
them in further analysis and applications such as building
interest prediction models, location-based recommendation
systems, targeted advertising, location selection and urban
social analytics.

Consider a set of city demographic features Θ which
might play an important role in shaping the interests of peo-
ple. For city s, we denote its k demographic features as
DGs = {dg1s , dg2s , ..., dgks }, DGs ∈ Θ. Given M clusters
of cities {(si, sci), i ∈ {1, 2, ..., N}, sci ∈ {1, 2, ...,M}}
derived from geo-social media city-based interest models
where sci is the label of cluster for city si, we explore the
salient demographic factors impacting these interest models.
Recall that these interest models are based on tweets col-
lected over the course of one year, so we anticipate that the
interests embedded in these models reflect long-term popu-
lation interests.

Concretely, we consider the original 112 cities and the
827 demographic features extracted from the 2010 Census
and ACS 5 Year Data. But which of these demographic fea-
tures actually contribute to the city-based interest models?
Finding these salient demographic factors can be viewed as
a feature selection problem. Since the number of features
is significantly larger than the number of instances (cities),
we adopt the Elastic Net (Zou and Hastie 2005), which has
been shown to be a good tool for feature selection in the
high-dimensional data. Similar to the work (Zhu and Hastie
2004), we employ a multinomial logistic regression model
(known as the logit model) to this study. By considering the
elastic net regularization, the negative log-likelihood can be
defined as:

argmin−
N∑

i=1

(
∑

k=sci

DGT
i βk + log

M∑

j=1

eDGT
i βj )

+ λ1

M∑

j=1

|βj |+ λ2

M∑

j=1

‖βj‖2,
(2)

where βi is a k-vector βi = (βi1, βi2, ..., βik)
T , λ1 and

λ2 are the shrinkage parameters. We can solve this model
using coordinate descent (Friedman, Hastie, and Tibshirani
2009). It should be noted that each cluster is associated with
their own β, meaning that there are M parameter vectors
{β1,β2, . . . ,βM} if we have M clusters in cities.

Taking into account the frequencies of selected features
occurring in 10 clusters and their sizes of estimated coeffi-
cients, we identify the top-two salient features for each city-
based interest model in Table 5. These are the most explana-
tory demographic features for the interest expressed by each
city. For example, the interests expressed in tweets by mem-
bers of College Towns (Cluster 5) can be best modeled by
features (negatively) related to hours worked and age. Polit-
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Table 5: Selected Demographic Features
No. of Cluster Selected Features Coefficient

1 Median Family Income 46.444
Mean Hours Worked in Past 12 Months for Workers 16 to 64 Years 10.095

2 Median Household Income by Age of Householder (Householder 25 to 44 Years) 35.183
Race Population: Asian alone 8.667

3 Median Age by Means of Transportation to Work (Carpooled) 129.643
Median Household Income by Age of Householder 65 Years and Over -28.171

4 Population of Workers by Means of Transportation to Work (Subway) 10.657
Population of Workers by Means of Transportation to Work (Public Transportation) 1.897

5 Mean Hours Worked in Past 12 Months for Workers 16 to 64 Years -164.662
Median Age by Means of Transportation to Work (Car, Truck or Van) -65.153

6 Median Age by Sex (Total) 87.125
Median Number of Rooms -40.936

7 Median Number of Rooms 61.657
Median Age by Means of Transportation to Work (Total) 26.829

8 Median Age by Sex (Total) 63.572
Household Size by Vehicle Available (1-Person:2-Vehicles) 20.954

9 Mean Hours Worked in Past 12 Months for Workers 16 to 64 Years 145.883
Median Monthly Housing Costs(Dollars) -65.417

10 Median Family Income 18.651
Median Age by Means of Transportation to Work (Total) 179.753

ical Cities (Cluster 1) are most impacted by median family
income and mean working time. Tech Hubs (Cluster 2) are
related to median income and population of Asians.

Forecasting City Profiles
Finally, we investigate in this section the connection be-
tween these salient demographic features and a city’s de-
mographic information. The benefit of such an investigation
is that accessing and collecting geo-social media data are
much easier than collecting new demographic data of cities
(which can take 1 to 10 years). So, can the city-based interest
model be estimated based only on underlying demograph-
ics? Rather than claiming a causal relationship, our goal is
to uncover the potential connection between underlying de-
mographic factors and the positioning of a city as revealed
through our city-based interest model clusters. With these
models, we can isolate how demographic changes can alter
the trajectory of a city’s future interests.

Based upon a total of 64 selected salient features for all
cities, we propose two models: a multivariate multiple linear
regression (MMLR) model used to estimate the linear asso-
ciation between predictors and responses, and a neural net-
work (NN) model, which is one of the most widely applied
machine learning methods. Distributions of people’s inter-
ests in all 168 cities (112 cities + 56 cities) are employed
to develop prediction models in this section. Given a city’s
salient demographic data only, these two models can predict
the city-based interest model. Specifically, the multivariate
multiple linear regression (MMLR) model can be expressed
as the following equation:

�si = DGi ∗ βi + ei, i = 1, ..., N (3)
where �si is the city-based interest model for city si as we in-
troduced in this study; DGi is the demographic feature vec-
tor corresponding to city si, ei is the error term with multi-
variate normal distribution, and N is the number of samples
which is equal to 168 cities in our study.

The neural network (NN) model consists of two hidden
layers in each of which there are 10 nodes with the standard

back propagation (BP) algorithm. The sigmoid function is
applied as the activation function in the neural network. In
order to evaluate the performance of these two models, we
adopt the Root Mean Square Error (RMSE). The 10-fold
cross validation is applied in estimating parameters, which
divides our data into 10 equally-sized sub-data sets, and per-
forms 10 training and validation steps. In each step, 9 sub-
data sets are utilized as training data and the remaining one
is for validating. Each sub-data set can be only used as the
validation once. Overall, the prediction results are summa-
rized in Table 6.

Table 6: Performance of Models by RMSE
Model RMSE Max Error Min Error

MMRL 0.0122 0.0591 0.0000232
NN 0.0186 0.0750 0.00006065

As we can see, both models can estimate the city-based
interest model with very low error, with the MMRL model
achieving better RMSE than the neural network model. This
positive result demonstrates that these two prediction mod-
els work well and that it is possible to automatically predict
the city-based interest profiles.

Conclusion
Geo-social media uncovers a new window into not only in-
dividuals, but also to the cities in which they reside. Ex-
ploring the relationship between cities and social media is
an emerging and important research area. In this paper, we
have explored the potential of geo-social media to construct
location-based interest profiles to uncover the hidden re-
lationships among disparate locations. We have seen that
these models can identify coherent clusters of cities that
conform with expert-curated lists of related cities. We have
also shown how these city-based interest models can be con-
nected to the underlying demographics of these cities, open-
ing new opportunities for forecasting the future of cities.
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