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Abstract

In Foursquare or Google+ Local, emerging spatial entities,
such as new business or venue, are reported to grow by 1%
every day. As information on such spatial entities is initially
limited (e.g., only name), we need to quickly harvest related
information from social media such as Flickr photos. Espe-
cially, achieving high-recall in photo population is essential
for emerging spatial entities, which suffer from data sparse-
ness (e.g., 71% restaurants of TripAdvisor in Seattle do not
have any photo, as of Sep 03, 2015). Our goal is thus to
address this limitation by identifying effective linking tech-
niques for emerging spatial entities and photos. Compared
with state-of-the-art baselines, our proposed approach im-
proves recall and F1 score by up to 24% and 18%, respec-
tively. To show the effectiveness and robustness of our ap-
proach, we have conducted extensive experiments in three
different cities, Seattle, Washington D.C., and Taipei, of vary-
ing characteristics such as geographical density and language.

Introduction

New business and venue open daily, as reported to be 1%
of knowledge bases (KBs) on spatial entities (SEs) such as
Foursquare and Google+ Local. However, KB pages of a
new place are often non-existent or near-empty (only name
and location are known). Thus, users cannot obtain informa-
tion about new places, until expert or non-expert volunteers
visit the places and annotate their KB pages, which may
take from a few days to a few years. Meanwhile, such new
arrivals create attention rather immediately in social media
that users post image and text to share their experiences and
interests, which can be considered as a passive annotation.

Our research question is thus to automatically populate
empty KB pages by such photos uploaded on social media
sites. A naive idea is querying SE names (e.g., ‘McCaw Hall
Prelude’) to Flickr (Wang et al. 2012), using location as an
additional feature to disambiguate (Packer et al. 2012). This
method is highly precise but suffers from low recall. In con-
trast, we propose high-recall approaches, tackling the fol-
lowing two causes of low recall.

• [C1] Tag sparsity: Web photos may be poorly tagged or
often have no “identifying” tag such as SE name.
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• [C2] Vocabulary mismatch: People tend to use various
“synonymous” tags, which refer to the same SE but can-
not be matched with its queried official SE name.

An existing solution for improving recall is clustering du-
plicate or near-duplicate photos to collect missing or syn-
onymous tags (which we use as a baseline in this work).
We propose a more systematic way to tackle the aforemen-
tioned two challenges and achieve significantly higher recall
over baselines (up to 24.3% in Table 2). This recall gain is
critical in many applications– F1 score of SE type catego-
rization (Srihari, Niu, and Li 2000; Wang et al. 2012) using
photos is improved by 7.7% (Table 7).

In particular, we address C1 and C2 in the following three
novel ways:

First, we infer missing tags by propagating tags among
duplicate/near-duplicate “photo clusters” referring to the
same SE. To infer such relations, existing related methods
adopt geo-spatial (Crandall et al. 2009), visual (Zheng et al.
2009), and/or textual (Belém et al. 2011) signals among sin-
gle photos. We later emprically show that our systematic ag-
gregation of these three signals is significantly superior to a
naive combination baseline (Figure 1).

Second, we mine a large Flickr corpus to obtain high-
quality synonyms. Existing related methods (Cheng, Lauw,
and Paparizos 2012; Jiang et al. 2013) leverage term co-
occurrence patterns in text documents, as an evidence of
synonymous term pairs. In contrast, we use image and lo-
cation signals, which can be mined from photos shooting
the same SE, to extract higher-quality synonyms in user-
generated tags. We show that aggregating these signals is
effective to expand SE names for photo population (Table 3
and Figure 2).

Lastly, we observe the mutually reinforcing nature of the
above two approaches to combine them into an iterative
framework for photo population. The key contributions of
this framework is to improve trade-off between precision
and recall (Figure 3) and show consistent performance in
cities of varying geographic density of SEs, language, and
popularity of SEs (Table 4-6 and Figure 4).
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Preliminaries

Problem Statement

Our goal is to link photos with their referent SE to populate
KB pages. In this work, SEs refer to places, such as attrac-
tions or restaurants, in a city. Coarser granular SEs, such as
cities, are not considered because they are rarely emerging
and can often be trivially linked due to broad coverage.

Our problem formulation focuses on supporting emerging
SE. An emerging SE can be formed as a tuple that has no
value for every attribute, such as name, type, location, and
background text, because emerging SEs are generally de-
fined as SEs out of KBs (Hoffart, Altun, and Weikum 2014).
However, in this paper, we make a minimal assumption on
an emerging SE– only an official name ne and (optional) lo-
cation le = {lat, lon} of an SE e are known. We argue this
assumption is realistic based on the following two observa-
tions: We could easily discover such emerging SE tuples by
adopting a simple heuristics of (Gao et al. 2010). This ap-
proach achieves 85% precision and 77% recall in discov-
ering SE names of TripAdvisor in Seattle. Alternatively, on-
line map services cover a lot of emerging SEs 〈ne, le〉, which
can be considered as a new KB. For example, in the case of
park in Seattle, Google map covers hundreds of parks while
Wikipedia covers only around 80 parks.

Formally, as an output, we augment an emerging SE e =
〈ne, le〉 into 〈Ne, le, Ie〉, where Ne is a set of synonymous
names of e and Ie is a set of relevant photos of e.

Solution Framework

We introduce the framework of our photo population system.
First, we collect photos and their metadata 〈user ID, image,
location (lat and lon), tags (only if exists)〉, which are gen-
erally available in most photo-sharing sites such as Flickr.
These photos are both geographically and visually grouped
into duplicate/near-duplicate photo clusters (clustering pre-
cision is over 98%) (Zheng et al. 2009). Given a photo clus-
ter p located in a city, finding its most relevant SE e∗ in all
SEs E of the city is to find a photo set Ie∗ of e∗ as follows:

e∗ = argmaxe∈EP (e, p)
= argmaxe∈EP (ne, le, p) (1)

Intuitively, the expression (ne, le) of a given SE e is proper,
as mentioned in problem statement, to aim at emerging SEs.

C1: Spatio-textual Photo Linking

To find the most relevant SE e∗ of a given photo cluster p,
the goal of the first component is to compute P (ne, le, p).
We decompose the model below, to simplify the estimation
of probability values.

P (ne, le, p) = P (ne|le, p)P (le, p)
= P (ne|p)P (le, p) (2)

Similar to (Fang and Chang 2014), we assume that, given
an SE e, how e is expressed (ne) and where e is located
(le) are conditionally independent. In other words, we have
P (ne|le, p) = P (ne|p). Thus, computing P (ne, le, p) boils
down to:

• P (le, p) of representing the geographical proximity be-
tween e and p. P (le, p) can be computed as distance-
based probability between a single location (le if exists)
and a set of locations (of photos in p) by using Gaussian
mixture model (Li and King 1999). In case that every le
is unknown, we set P (le, p) as 1.

• P (ne|p) of representing the textual proximity between e
and p. We now discuss the estimation of P (ne|p) in detail.

Textual Signal Estimation

Given a photo cluster p, we compute P (ne|p) which rep-
resents how relevant p is to ne. Intuitively, the probability
is estimated by matching an aggregated tag set of p with
ne. Such approach is likely to exclude photo clusters not
annotated with SE names. To loosen it, a photo cluster p
can be matched with an SE e, even though it is not anno-
tated with its name, if p can be matched with another photo
cluster pi with such annotation. To decide whether two clus-
ters p and pi refer to the same SE, P (ne|p) is obtained
from a pseudo-generative model using Bayes’ Rule. That is,
given two photo cluster p and pi, we combine the two clues,
P (p, pi) representing their textual similarity and P (ne|pi)
of reliability of pi for representing an SE e as follows:

P (ne|p) =
∑

∀i

P (pi|p)P (ne|pi) (3)

Strictly speaking, neither the generative process from p to pi

nor the generative model from pi to ne are known or defined
precisely, hence the above conditional probabilities cannot
be known exactly. However, we are not interested in prob-
abilities “per-se”, but rather in probability values as indica-
tors used eventually for linking decision in Eq. 1. For this
reason, we can use proxy quantities – respectively P (pi|p)
and P (ne|pi) – which are presented as below.

The term P (pi|p) represents the probability of generat-
ing contents (i.e., textual tags) of a photo cluster pi from
contents of a given photo cluster p. To estimate P (pi|p), we
compute the cosine similarity of the cluster pair based on the
Bag-of-Words model:

Sim(pi, p) = Tpi · Tp

|Tpi ||Tp| (4)

where Tp is a set of tags collected from a photo cluster p. To
denoise, all tags (geographically and visually aggregated) in
Tp are weighted by term frequency-inverse document fre-
quency (TFIDF), as we shall discuss later. Now a proxy of
P (pi|p) can be obtained by normalizing the content similar-
ity between pi and p:

P (pi|p) = Sim(pi, p)∑
∀j

Sim(pj , p)
(5)

The term P (ne|pi) can be interpreted as an indicator to how
reliably a photo cluster pi represents an SE e. We directly de-
rive the proxy value for this term using a simple frequency-
based approach as follows:

P (ne|pi) = |ne ∩ Tpi |∑
e′∈E

|ne′ ∩ Tpi | (6)
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C2: SE Name Expansion

We now discuss how to obtain a high-quality name set Ne of
semantically equivalent terms (i.e., synonyms) of a given SE
e. We consider all photo tags in Ie as synonym candidates.
To estimate the likelihood that a candidate tag t is an SE
synonym of ne, we measure how specific t is to a location
and how relevant t is to ne based on geo-spatial and image
signals, respectively, that can be captured from photo corpus.
As such a synonym scoring measure, we output Score(e, t)
(further normalized in the interval [0,1]) as follows:

Score(e, t) = λ · �wgeo · �fgeo(t) + (1 − λ) · �wimg · �fimg(e, t) (7)

where:
• �fgeo(t) is the feature vector that models the geo-

specificity of tag t;
• �fimg(e, t) is the feature vector that models the image rel-

evance between tag t and SE e;
• �wgeo and �wimg are the feature weight vector related to

�fgeo(t) and �fimg(e, t), respectively, which are trained us-
ing structural SVM on the training data set;

• λ ∈ (0, 1) is a systematic parameter, which is determined
using the quality function (F1 score in Eq. 9) on the train-
ing data set; it is used to adjust to tradeoff between �fgeo(t)
and �fimg(e, t). It is experimentally set to 0.5 in our work.

Geo-spatial Features

To quantify the spatiality of candidate tags, an external geo-
database identifies geo-terms in candidate tags, and coop-
eratively the identified tags are rated according to the geo-
graphic distribution of tagged photos.
• Geoterm Database: In Microsoft Bing services, Geocode

Dataflow API (GDA) can query large numbers of geo-
terms and their representative locations. Querying a tag t
to GDA, we set f1

geo(t) as 1 if its location is returned, and
0 otherwise.

• Geographic Variation: Not all geo-terms found by GDA
are desirable candidates for SE synonyms. Not only place-
level geo-terms such as ‘Space Needle’, there are also
country- or city-level geo-terms such as ‘USA’ and ‘Seat-
tle’, which are far more widely distributed. Thus, we com-
pute the variance V ar(t) of coordinates set of photos in-
cluding a tag t, then set f2

geo(t) = exp(−V ar(t)). We set
V ar(t) as infinite if there exists only one photo with t.

Image Features

To quantify the image relevance between a tag and an SE,
we extend the intuition of TFIDF. However, our unique con-
tribution is to define a “document” as an estimated set Ie

(e.g., by a query ne) of all photos on the same SE e. Using
this document, the following frequency features convey the
synonym evidence in both TF and IDF.
• Photo Frequency: A candidate tag is likely to be one of

SE names as more photos of an SE have the tag. Given
a tag t and an SE e, we set f1

img(e, t) as the number of
photos that have t in Ie.

• User Frequency: When uploading a photo collection,
“lazy users” often tend to copy the same tag set to all pho-
tos, which may cause overestimation of photo frequency.
To prevent this, we set f2

img(e, t) as the number of users
that assign t to photos in Ie.

• Inverse SE Frequency: We need to filter popular non-
name tags, such as ‘Travel’, which have high photo and
user frequencies. As a penalty for such tags, we use SE
frequency(e ∈ E, t), which is defined as the number of
SEs E′ ⊆ E having any photo with t in Ie′∈E′ . Thus, we
set f3

img(e, t) = |E|
SE frequency(e,t) .

Combining C1 and C2

We embed two components, C1 of computing P (ne, le, p)
and C2 of extracting Ne, into a unified framework for popu-
lating Ie. Two components are mutually dependent and can
reinforce each other. First, C1 collects a new photo set Ie,
which updates synonym candidates and image feature values
for name expansion. Reversely, C2 extracts a new synonym
set Ne, which updates SE names (initially ne) and textual
probability for photo linking. Thus, we consider an iterative
process of alternating C1 and C2.

Formally, we reinforce the linking probability at each time
φ, i.e., P (Ne

φ, le, p)φ → P (Ne
φ+1, le, p)φ+1, being re-

peated until convergence (∗):

P (e, p) = P (ne, le, p) ≈ P (Ne
∗, le, p)∗ (8)

In the view of SE tuples, one iteration updates an SE tuple
〈Ne, Ie〉φ at time φ to an SE tuple 〈Ne, Ie〉φ+1 at time φ+1.
This procedure is repeated until all SE tuples at time φ are
equivalent to the SE tuples at time φ + 1.

Experimental Evaluation

Settings

Datasets and ground truth To validate the robustness
of our proposed linking system, we select three cities of
varying characteristics– Washington D.C. with skewed SEs
(near National Mall area), Seattle with less skewed SEs, and
Taipei with tags in Chinese. We use Flickr API to collect
photo tuples, which amount to 21,676 for Seattle; 19,995
for Washington D.C.; and 165,057 for Taipei. Note that such
photos are collected only by using the bounding box of city
area, which is a publicly available approach.

For experiments on emerging SEs defined in problem
statement, we limit information on SE tuples to only an
name ne and representative geo-coordinates le. To find such
〈ne, le〉 pairs, we first collect all SEs in the three cities from
TripAdvisor, which amount to 4,417 for Seattle; 3,513 for
Washington D.C.; and 10,840 for Taipei. Among the SEs,
we select all SEs appearing in our photo datasets, such that
their official names are tagged to photos by at least two dif-
ferent users.

Table 1 presents statistics on the discovered SEs with our
photo datasets. As ground truth, two volunteers manually la-
bel Ie from our photo datasets and find Ne from tags as-
signed in Ie, and then cross-check the labeling result. We
can observe SE distributions are more skewed in some area
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Table 1: Statistics on ground truth
Seattle Washington D.C. Taipei

Name language English English Chinese
#SEs 80 56 64
#SE-labeled photos 6,038 8,412 12,463
Avg.#SE synonyms 2.9 3.7 3.8
Avg. SE pair distance 5.7 km 2.1 km 7.5 km

in Washington D.C. (average SE pair distance is smaller as
2.1 km), compared to Seattle (5.7 km) or Taipei (7.5 km).

Evaluation measure As evaluation metrics, we adopt pre-
cision, recall, and their F1 score. Let IGT

e be a photo set of
the ground truth for an SE e, ISys

e be a photo set estimated
by a linking system (Sys) for e, and E be a set of SEs in a
city, then these evaluation metrics are computed as:

Precision = 1
|E|

∑

e∈E

|IGT
e ∩ ISys

e |
|ISys

e |

Recall = 1
|E|

∑

e∈E

|IGT
e ∩ ISys

e |
|IGT

e |
(9)

We adopt a 3-fold cross validation by randomly partitioning
the ground truth into three similarly sized groups.

Baselines We consider the following one high-precision
and two high-recall baseline linking systems to evaluate our
linking systems (denoted as Ours, Ours1, and Ours2).

• CLU: A state-of-the-art of linking photos to KB en-
try (Wang et al. 2012). We cluster duplicate or near-
duplicate photos for SEs, as a preprocessing, by using
geo-spatial and visual clustering techniques (Zheng et al.
2009). In the same manner as Eq. 1, CLU links a photo
cluster to its most relevant SE to be matched with aggre-
gated tag and location sets of the photo cluster.

• CLU+REC: To overcome tag sparsity, REC (Belém et
al. 2011), a state-of-the-art tag recommender, finds rele-
vant tags to be added to photo tuples before performing
CLU. The key evidence of tag recommendation is tag co-
occurrence patterns to find textually similar photos of a
given query photo.

• CLU+SYN: SYN (Cheng, Lauw, and Paparizos 2012), a
state-of-the-art synonym extractor, addresses vocabulary
mismatch by expanding SE tuples with synonyms before
performing CLU. SYN uses its original scoring measures
but adopts photos having any tag as text documents.

Results and Discussion

We present the empirical findings for the following research
questions:
Q1: Does our system outperform baseline systems?
Q2: How does our system balance precision and recall?
Q3: Is our system robust in various factors?
Q4: Does our system indeed help machine understanding?

Overall performance (Q1). First, we compare the per-
formance of linking systems (Ours and three baselines). In
our target application of populating KB pages, we argue re-
call gain is crucial for emerging SEs suffering from extreme
sparsity. That is, it is important to improve recall, maintain-
ing high-precision. Thus, in the training step of all systems,
we set the objective function to maximize F1 score while
setting the minimum allowable precision to 0.8.

Table 2 shows precision, recall, and F1 score of the link-
ing systems. We can see that Ours achieves a significant
recall gain with marginal loss of precision, compared to
the high-precision method, CLU, and thus shows higher F1
scores. Although other high-recall baselines, CLU+REC and
CLU+SYN, also improve recall and F1 score, recall gain is
marginal and often smaller than precision loss. In contrast,
recall gain of Ours is (around three times) higher than preci-
sion loss of that consistently in three cities.

Component study (Q2). To see how our system achieves
such improvement, this section breaks down Ours into two
linking systems, Ours1 and Ours2, leveraging only a sub-
component, C1 or C2, respectively. We then discuss the ef-
fectiveness of each system and their combination. Due to
lack of space, we cover only Seattle and Washington D.C.

First, to discuss how tag sparsity is addressed, we com-
pare CLU+REC and Ours1, which considers only C1 but not
C2. The difference between CLU+REC and Ours1 is how
geo-spatial, visual, and textual signals among photos are ag-
gregated to compute P (ne, le, p). CLU+REC performs tag
recommendation (with textual signal) and photo clustering
(with spatio-visual signal), but two signals are considered in-
dependent and thus performed relatively poorly in Figure 1:
In this figure, we can see that Ours shows clearer distinc-
tion between correct linking (frequent in high-scoring re-
gion) and incorrect linking (frequent in low-scoring region)
than CLU+REC. By cooperating multiple signals, Ours1 is
more reliable in addressing tag sparsity than CLU+REC.

Second, to discuss how vocabulary mismatch is ad-
dressed, we compare CLU+SYN and Ours2, which is imple-
mented considering only C2 but not C1. Specifically, Ours2
first adopts a naive approximation of Ie as a set of photo
clusters having ne to find Ne, then re-approximate Ie as

Table 2: Comparison of linking systems. The performance gap with CLU is presented in parentheses.
Seattle Washington D.C. Taipei

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score
CLU .929 .524 .670 .945 .384 .546 .939 .414 .575
CLU+REC .915 (-.014) .549 (+.025) .687 (+.017) .920 (-.025) .435 (+.051) .591 (+.045) .939 (-) .425 (+.011) .585 (+.010)
CLU+SYN .899 (-.030) .535 (+.011) .671 (+.001) .902 (-.043) .414 (+.030) .567 (+.021) .929 (-.006) .483 (+.069) .636 (+.061)
Ours .891 (-.038) .636 (+.112) .742 (+.072) .864 (-.081) .627 (+.243) .726 (+.180) .862 (-.073) .621 (+.207) .722 (+.147)
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Figure 1: Score distribution of correct and incorrect linking

photo clusters having a tag t ∈ Ne (such that Score(e, t) ≥
0.8). As a result, Table 3 reports that Ours2 outperforms
naive fuzzy matching (Edit distance and common N-gram)
and SYN in terms of synonym precision1. Figure 2 shows
the linking performance of Ours2 over varying λ (linear
combination weight for fgeo and fimg). While using geo-
spatial features achieves high-precision due to accurate geo-
term DB, using image features improves recall by discover-
ing SE synonyms out of geo-term DB (e.g., ‘UW informa-
tion school’). In this figure, around 0.5 is optimal for λ. This
explains the complementary nature such that our combined
approach, C2, outperforms using either geo-spatial features
or image features (λ = 1 or 0).

Lastly, as shown in Figure 3, the F1 score of Ours is im-

1Synonym precision (SP@K) represents ratio of ranking results
such that the correct synonym is contained within Top-K tags.

Table 3: Comparison of SE synonym extraction
Seattle Washington D.C.

SP@1 SP@2 SP@3 SP@1 SP@2 SP3
Fuzzy matching 0.33 0.27 0.22 0.58 0.45 0.36
SYN 0.91 0.55 0.38 0.98 0.50 0.41
Ours2 0.94 0.69 0.55 0.98 0.87 0.72

Figure 2: Influence of a parameter λ in Ours2. Performance
values are averaged between Seattle and Washington D.C.

(a) Seattle (b) Washington D.C.

Figure 3: Convergence of Ours

proved by alternating its two components C1 and C2 (i.e.,
1:Our1→ 2:Our2→ 3:Our1→...) and is higher than that of
a self-iteration of Ours2 (i.e., 1:Our2→ 2:Our2→...). This
means that C1 and C2 are mutually reinforced to address tag
sparsity and vocabulary mismatch together. As a result, Ours
is converged to F1 score of Table 2 within the small number
of SE-photo linking iterations.

Robustness analysis (Q3). This section presents the three
factors influencing the performance over different datasets:
Geographic density, language, and popularity.

As shown in Table 1, SEs in Washington D.C. are more
skewed to a certain area than those in Seattle. Because
skewed SEs cause ambiguous photo linking, as shown in
Table 2, baselines in Washington D.C. thus suffer lower
F1 score compared to those in Seattle. In contrast, Table
4 shows that performance gap between the two cities de-
creases in our approaches.

Another factor is dependence on the linguistic character-
istics of tags. For example, synonym extraction using Edit
distance (denoted as EditDist) is more effective in finding
English synonyms. Table 5 shows the significant score gap
differentiating English synonym pairs from other name pairs
in Seattle and Washington D.C. Meanwhile, such difference
is marginal in Taipei dataset of another language. This inef-

Table 4: Comparison of linking performance gaps between
Seattle and Washington D.C.

F1 score
Seattle Washington D.C. Gap

CLU .670 .546 ±.124
CLU+REC .687 .591 ±.096
CLU+SYN .671 .567 ±.104
Ours1 .693 .627 ±.066
Ours2 .730 .681 ±.049
Ours (converged) .742 .726 ±.016

Table 5: Average edit distance between synonyms of the
same SE and between synonyms of different SEs

Average Edit distance
Synonym pair Other pair Gap

Seattle 8.6 15.4 ±6.8
Washington D.C. 9.5 18.6 ±9.1
Taipei 3.5 5.9 ±2.4
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Figure 4: Ratio of the number of correctly linked photos between Ours and CLU. The dotted lines indicate where Ratio = 1.

Table 6: Gap of normalized synonym precision at Top-1
(SP@1) between English- and Chinese-named SEs

Normalized SP@1
U.S. cities Taipei Gap

EditDist .147 .104 ±.043
Ours2 .331 .352 ±.021

fectiveness affects synonym mining. Table 6 reports SP@1
normalized by the average number of synonyms of each set,
of English- and Chinese-named SEs, respectively.2 We can
observe that normalized SP@1 of Chinese-named SEs suf-
fers when EditDist is used. In contrast, Ours2 achieves com-
parable SP@1 for English- and Chinese-named SE.

Lastly, we should see the impact of photo population
over SE popularity, as a desirable solution for emerging SEs
should consistently outperform both before and after these
SEs get noticed (i.e., low and high populairy). We thus re-
port how many more photos are linked by Ours compared
to CLU according to the size of ground truth. In Figure 4,
x-axis represents SEs sorted by |IGT

e | and y-axis represents
the ratio3 between the number of photos linked by Ours and
CLU. That is, a dotted line (Ratio = 1) represents the per-
formance of CLU and the solid line shows how much Ours
outperforms– 2.1 times better than CLU on average in all
cities. We stress that Ours consistently outperforms in all
ranges– up to 4.5 (= 45

10 ), 6.5 (= 13
2 ), and, 5 (= 30

6 ) times better
than CLU in the tail range of each city, respectively.

Knowledge mining (Q4). This section discusses how our
system contributes to mining other knowledge on emerging
SEs. For example, we can consider a task of inferring SE
type, such as Park, Cafe, and Restaurant. For each SE, we
collect photos using either Ours or CLU, from which we
compare the accuracy of predicted SE type. Formally, we
collect a set J of 16 SE types frequently used in TripAdvi-
sor and collect a set Ij of photos having each SE type term
j ∈ J . Then, given an SE e and its populated photos Ie,
we identify its SE type e.j by maximizing cosine similar-
ity cos(TIj

, TIe
) where TI is an TFIDF-weighted tag vector

obtained from a photo set I (Wang et al. 2012).
Table 7 shows the performance of type inference for 80

SEs in Seattle. We can see that the results of Ours are better
than those of CLU. This improvement is resulted from the
better photo population (significantly increasing recall with
marginal loss of precision) in Table 2.

2We observe that city with more synonyms is favored in SP@1.
3Ratio = |IGT

e ∩ IOurs
e |/|IGT

e ∩ ICLU
e |.

Table 7: Performance of SE type inference in Seattle
Type inference

Precision Recall F1 score
CLU .774 (41/53) .513 (41/80) .617
Ours .781 (50/64) .625 (50/80) .694

Related Work

Entity linking aims either to understand meanings of men-
tions (e.g., ‘Apple’) by linking to KB (Liu et al. 2013;
Shen et al. 2012; Han, Sun, and Zhao 2011) or to pop-
ulate KB pages with information around mentions, such
as photos (Wang et al. 2012; García-Silva et al. 2011;
Taneva, Kacimi, and Weikum 2010). Existing photo link-
ing systems for well-known entities leverage rich informa-
tion on KB, such as entity type (Wang et al. 2012), con-
text word (García-Silva et al. 2011), and synonym (Taneva,
Kacimi, and Weikum 2010). However, it is difficult to ap-
ply this work to emerging entities, which have no such
information on KBs (Hoffart, Altun, and Weikum 2014;
Jin et al. 2014; Li and Sun 2014; Gao et al. 2010).

Recent projects propose to mine such information from
plain text on the Web. For example, empty (or near empty)
KB pages of emerging entities can be annotated by dis-
covering entity-related context words (Taneva, Kacimi,
and Weikum 2011), synonyms (Jiang et al. 2013; Cheng,
Lauw, and Paparizos 2012; Chakrabarti et al. 2012), and
acronyms (Zhang et al. 2011) from arbitrary Web docu-
ments. Similar techniques also have been applied to mine
tags for photos without entity name, which is key evidence
for linking (Belém et al. 2011; Sigurbjörnsson and Van Zwol
2008) – We observe that over 50% of photos are not tagged
with relevant SE names.

To better apply above solutions to emerging SEs and their
photos, location feature should be considered (Packer et al.
2012). We thus aggregate geographically and visually close
photos (Crandall et al. 2009; Zheng et al. 2009) and their
tags (Qian et al. 2013; Sergieh et al. 2012; Silva and Mar-
tins 2011) into one cluster to enrich linking evidence for SE.
However, our experimental results show that various exist-
ing features as above are less effective and less robust in
populating photos on emerging SEs, while our systematic
aggregation significantly outperforms such baselines.

Conclusion

In this paper, we have presented how to harvest informa-
tion from social media on emerging SEs. By aggregating lo-
cation, image, and text evidences in a systematic way, our

306



linking approach was effective in improving 24% in recall
and 18% in F1 score from state-of-the-arts, and was robust
in different cities of varying characteristics. We empirically
showed that photos harvested by our approach are more
helpful to understand emerging SEs by improving SE type
inference. Mining more sophisticated knowledge beyond SE
type is a promising future direction.
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