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Abstract

The evaluation of Datalog rules over large Knowledge Graphs
(KGs) is essential for many applications. In this paper, we
present a new method of materializing Datalog inferences,
which combines a column-based memory layout with novel
optimization methods that avoid redundant inferences at run-
time. The pro-active caching of certain subqueries further in-
creases efficiency. Our empirical evaluation shows that this
approach can often match or even surpass the performance of
state-of-the-art systems, especially under restricted resources.

Introduction
Knowledge graphs (KGs) are widely used in industry and
academia to represent large collections of structured knowl-
edge. While many types of graphs are in use, they all
rely on simple, highly-normalized data models that can be
used to uniformly represent information from many diverse
sources. On the Web, the most prominent such format is
RDF (Cyganiak, Wood, and Lanthaler 2014), and large KGs
such as Bio2RDF (Callahan, Cruz-Toledo, and Dumontier
2013), DBpedia (Bizer et al. 2009), Wikidata (Vrandečić
and Krötzsch 2014), and YAGO (Hoffart et al. 2013) are
published in this format.

The great potential in KGs is their ability to make con-
nections – in a literal sense – between heterogeneous and
often incomplete data sources. Inferring implicit informa-
tion from KGs is therefore essential in many applications,
such as ontological reasoning, data integration, and infor-
mation extraction. The rule-based language Datalog offers a
common foundation for specifying such inferences (Abite-
boul, Hull, and Vianu 1995). While Datalog rules are rather
simple types of if-then rules, their recursive nature is making
them powerful. Many inference tasks can be captured in this
framework, including many types of ontological reasoning
commonly used with RDF. Datalog thus provides an excel-
lent basis for exploiting KGs to the full.

Unfortunately, the implementation of Datalog inferenc-
ing on large KGs remains very challenging. The task is
worst-case time-polynomial in the size of the KG, and hence
tractable in principle, but huge KGs are difficult to manage.
A preferred approach is therefore to materialize (i.e., pre-
compute) inferences. Modern DBMS such as Oracle 11g and
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OWLIM materialize KGs of 100M–1B edges in times rang-
ing from half an hour to several days (Kolovski, Wu, and
Eadon 2010; Bishop et al. 2011). Research prototypes such
as Marvin (Oren et al. 2009), C/MPI (Weaver and Hendler
2009), WebPIE (Urbani et al. 2012), and DynamiTE (Ur-
bani et al. 2013) achieve scalability by using parallel or dis-
tributed computing, but often require significant hardware
resources. Urbani et al., e.g., used up to 64 high-end ma-
chines to materialize a KG with 100B edges in 14 hours
(2012). In addition, all the above systems only support (frag-
ments of) the OWL RL ontology language, which is sub-
sumed by Datalog but significantly simpler.

Motik et al. have recently presented a completely new ap-
proach to this problem (2014). Their system RDFox exploits
fast main-memory computation and parallel processing. A
groundbreaking insight of this work is that this approach
allows processing mid-sized KGs on commodity machines.
This has opened up a new research field for in-memory Dat-
alog systems, and Motik et al. have presented several ad-
vancements (2015a; 2015b; 2015c).

Inspired by this line of research, we present a new ap-
proach to in-memory Datalog materialization. Our goal is to
further reduce memory consumption to enable even larger
KGs to be processed on even simpler computers. To do so,
we propose to maintain inferences in an ad-hoc column-
based storage layout. In contrast to traditional row-based
layouts, where a data table is represented as a list of tuples
(rows), column-based approaches use a tuple of columns
(value lists) instead. This enables more efficient joins (Idreos
et al. 2012) and effective, yet simple data compression
schemes (Abadi, Madden, and Ferreira 2006). However,
these advantages are set off by the comparatively high cost of
updating column-based data structures (Abadi et al. 2009).
This is a key challenge for using this technology during Dat-
alog materialization, where frequent insertions of large num-
bers of newly derived inferences need to be processed. In-
deed, to the best of our knowledge, no materialization ap-
proach has yet made use of columnar data structures. Our
main contributions are as follows:

• We design novel column-based data structures for in-
memory Datalog materialization. Our memory-efficient
design organizes inferences by rule and inference step.

• We develop novel optimization techniques that reduce the
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amount of data that is considered during materialization.
• We introduce a new memoization method (Russell and

Norvig 2003) that caches results of selected subqueries
proactively, improving the performance of our procedure
and optimizations.
• We evaluate a prototype implementation or our approach.

Evaluation results show that our approach can signifi-
cantly reduce the amount of main memory needed for ma-
terialization, while maintaining competitive runtimes. This
allowed us to materialize fairly large graphs on commodity
hardware. Evaluations also show that our optimizations con-
tribute significantly to this result.

Proofs for the claims in this paper can be found in an ex-
tended technical report (Urbani, Jacobs, and Krötzsch 2015).

Preliminaries

We define Datalog in the usual way; details can be found
in the textbook by Abiteboul, Hull, and Vianu (1995). We
assume a fixed signature consisting of an infinite set C of
constant symbols, an infinite set P of predicate symbols, and
an infinite set V of variable symbols. Each predicate p ∈ P
is associated with an arity ar(p) ≥ 0. A term is a variable
x ∈ V or a constant c ∈ C. We use symbols s, t for terms; x,
y, z, v, w for variables; and a, b, c for constants. Expressions
like t, x, and a denote finite lists of such entities. An atom
is an expression p(t) with p ∈ P and |t| = ar(p). A fact is a
variable-free atom. A database instance is a finite set I of
facts. A rule r is an expression of the form

H ← B1, . . . , Bn (1)

where H and B1, . . . , Bn are head and body atoms, respec-
tively. We assume rules to be safe: every variable in H must
also occur in some Bi. A program is a finite set P of rules.

Predicates that occur in the head of a rule are called inten-
sional (IDB) predicates; all other predicates are extensional
(EDB). IDB predicates must not appear in databases. Rules
with at most one IDB predicate in their body are linear.

A substitution σ is a partial mapping V → C ∪ V. Its
application to atoms and rules is defined as usual. For a set
of facts I and a rule r as in (1), we define r(I) � {Hσ |
Hσ is a fact, and Biσ ∈ I for all 1 ≤ i ≤ n}. For a program
P, we define P(I) � ⋃r∈P r(I), and shortcuts P0(I) � I
and Pi+1(I) � P(Pi(I)). The set P∞(I) � ⋃i≥0 Pi(I) is the
materialization of I with P. This materialization is finite,
and contains all facts that are logical consequences of I∪P.

Knowledge graphs are often encoded in the RDF data
model (Cyganiak, Wood, and Lanthaler 2014), which rep-
resents labelled graphs as sets of triples of the form
〈subject, property, object〉. Technical details are not relevant
here. Schema information for RDF graphs can be expressed
using the W3C OWL Web Ontology Language. Since OWL
reasoning is complex in general, the standard offers three
lightweight profiles that simplify this task. In particular,
OWL reasoning can be captured with Datalog in all three
cases, as shown by Krötzsch (2011; 2012) and (implicitly
by translation to path queries) by Bischoff et al. (2014).

https://www.sharelatex.com/project/
55e81ff4f15586c96a363458 The simplest encoding

of RDF data for Datalog is to use a ternary EDB predicate
triple to represent triples. We use a simple Datalog program
as a running example:

T(x, v, y)← triple(x, v, y) (2)
Inverse(v,w)← T(v, owl:inverseOf,w) (3)

T(y,w, x)← Inverse(v,w), T(x, v, y) (4)
T(y, v, x)← Inverse(v,w), T(x,w, y) (5)

T(x, hasPart, z)← T(x, hasPart, y), T(y, hasPart, z) (6)
To infer new triples, we need an IDB predicate T, initialised
in rule (2). Rule (3) “extracts” an RDF-encoded OWL state-
ment that declares a property to be the inverse of another.
Rules (4) and (5) apply this information to derive inverted
triples. Finally, rule (6) is a typical transitivity rule for the
RDF property hasPart.

We abbreviate hasPart, partOf and owl:inverseOf by hP,
pO and iO, respectively. Now consider a database I =
{triple(a, hP, b), triple(b, hP, c), triple(hP, iO, pO)}. Iteratively
applying rules (2)–(6) to I, we obtain the following new
derivations in each step, where superscripts indicate the rule
used to produce each fact:
P
1(I) : T(hP, iO, pO)(2) T(a, hP, b)(2) T(b, hP, c)(2)

P
2(I) : Inverse(hP, pO)(3) T(a, hP, c)(6)

P
3(I) : T(b, pO, a)(4) T(c, pO, b)(4) T(c, pO, a)(4)

No further facts can be inferred. For example, applying rule
(5) to P3(I) only yields duplicates of previous inferences.

Semi-Naive Evaluation
Our goal is to compute the materialization P∞(I). For this
we use a variant of the well-known technique of semi-naive
evaluation (SNE) (Abiteboul, Hull, and Vianu 1995) that is
based on a more fine-grained notion of derivation step.

In each step of the algorithm, we apply one rule r ∈ P to
the facts derived so far. We do this fairly, so that each rule
will be applied arbitrarily often. This differs from standard
SNE where all rules are applied in parallel in each step. We
write rule[i] for the rule applied in step i, and Δi

p for the set
of new facts with predicate p derived in step i. Note that
Δi

p = ∅ if p is not the head predicate of rule[i]. Moreover,
for numbers 0 ≤ i ≤ j, we define the set Δ[i, j]

p �
⋃ j

k=i Δ
k
p of

all p-facts derived between steps i and j. Consider a rule
r = p(t)← e1(t1), . . . , en(tn), q1(s1), . . . , qm(sm) (7)

where p, q1, . . . , qm are IDB predicates and e1, . . . , en are
EDB predicates. The naive way to apply r in step i + 1 to
compute Δi+1

p is to evaluate the following “rule”1

tmpp(t)← e1(t1), . . . , en(tn),Δ[0,i]
q1

(s1), . . . ,Δ[0,i]
qm

(sm) (8)

and to set Δi+1
p � tmpp \ Δ[0,i]

p . However, this would re-
compute all previous inferences of r in each step where r
is applied. Assume that rule r has last been evaluated in step
j < i + 1. We can restrict to evaluating the following rules:

tmpp(t)← e1(t1), . . . , en(tn),Δ[0,i]
q1

(s1), . . . ,Δ[0,i]
q�−1 (s�−1),

Δ
[ j,i]
q� (s�),Δ

[0, j−1]
q�+1 (s�+1), . . . ,Δ

[0, j−1]
qm (sm)

(9)

1Treating sets of facts like predicates is a common abuse of
notation for explaining SNE (Abiteboul, Hull, and Vianu 1995).
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Figure 1: Storage Layout for Column-Based Materialization

for all � ∈ {1, . . . ,m}. With tmpp the union of all sets of facts
derived from these m rules, we can define Δi+1

p � tmpp \
Δ

[0,i]
p as before. It is not hard to see that the rules of form (9)

consider all combinations of facts that are considered in rule
(8). We call this procedure the one-rule-per-step variant of
SNE. The procedure terminates if all rules in P have been
applied in the last |P| steps without deriving any new facts.

Theorem 1 For every input database instance I, and for
every fair application strategy of rules, the one-rule-per-
step variant of SNE terminates in some step i with the result
⋃

p Δ
[0,i]
p = P∞(I).

SNE is still far from avoiding all redundant computa-
tions. For example, any strategy of applying rules (2)–
(6) above will lead to T(b, pO, a) being derived by rule
(4). This new inference will be considered in the next
application of the second SNE variant tmpT(y, v, x) ←
Δ

[0,i]
Inverse

(v,w),Δ[ j,i]
T

(x,w, y) of rule (5), leading to the deriva-
tion of T(a, hP, b). However, this fact must be a duplicate
since it is necessary to derive T(b, pO, a) in the first place.

Column-Oriented Datalog Materialization

Our variant of SNE provides us with a high-level material-
ization procedure. To turn this into an efficient algorithm, we
use a column-based storage layout described next.

Our algorithms distinguish the data structures used for
storing the initial knowledge graph (EDB layer) from those
used to store derivations (IDB layer), as illustrated in Fig. 1.
The materialization process accesses the KG by asking con-
junctive queries to the EDB layer. There are well-known
ways to implement this efficiently, such as (Neumann and
Weikum 2010), and hence we focus on the IDB layer here.

Our work is inspired by column-based databases (Idreos
et al. 2012), an alternative to traditional row-based databases
for efficiently storing large data volumes. Their superior per-
formance on analytical queries is compensated for by lower
performance for data updates. Hence, we structure the IDB
layer using a column-based layout in a way that avoids the
need for frequent updates. To achieve this, we store each of
the sets of inferences Δi

p that are produced during the deriva-
tion in a separate column-oriented table. The table for Δi

p is
created when applying rule[i] in step i and never modified
thereafter. We store the data for each rule application (step
number, rule, and table) in one block, and keep a separate list
of blocks for each IDB predicate. The set of facts derived for

one IDB predicate p is the union of the contents of all tables
in the list of blocks for p. Figure 1 illustrates this scheme,
and shows the data computed for the running example.

The columnar tables for Δi
p are sorted by extending the or-

der of integer indices used for constants to tuples of integers
in the natural way (lexicographic order of tuples). Therefore,
the first column is fully sorted, the second column is a con-
catenation of sorted lists for each interval of tuples that agree
on the first component, and so on. Each column is com-
pressed using run-length encoding (RLE), where maximal
sequences of n repeated constants c are represented by pairs
〈a, n〉 (Abadi, Madden, and Ferreira 2006).

Our approach enables valuable space savings for in-
memory computation. Ordering tables improves compres-
sion rates, and rules with constants in their heads (e.g., (6))
lead to constant columns, which occupy almost no memory.
Furthermore, columns of EDB relations can be represented
by queries that retrieve their values from the EDB layer,
rather than by a copy of these values. Finally, many infer-
ence rules simply “copy” data from one predicate to another,
e.g., to define a subclass relationship, so we can often share
column-objects in memory rather than allocating new space.

We also obtain valuable time savings. Sorting tables
means they can be used in merge joins, the most efficient
type of join, where two sorted relations are compared in a
single pass. This also enables efficient, set-at-a-time dupli-
cate elimination, which we implement by performing outer
merge joins between a newly derived result tmpp and all pre-
viously derived tables Δi

p. The use of separate tables for each
Δi

p eliminates the cost of insertions, and at the same time
enables efficient bookkeeping to record the derivation step
and rule used to produce each inference. Step information is
needed to implement SNE, but the separation of inferences
by rule enables further optimizations (see next section).

There is also an obvious difficulty for using our approach.
To evaluate a SNE rule (9), we need to find all answers to
the rule’s body, viewed as a conjunctive query. This can be
achieved by computing the following join:
(
e1(t1) �� . . . �� en(tn)

)
�� Δ[0,i]

q1
(s1) �� . . . �� Δ[0,i]

q�−1 (s�−1)

�� Δ
[ j,i]
q� (s�) �� Δ

[0, j−1]
q�+1 (s�+1) �� . . . �� Δ

[0, j−1]
qm (sm)

(10)

The join of the EDB predicates ek can be computed effi-
ciently by the EDB layer; let REDB denote the resulting re-
lation. Proceeding from left to right, we now need to com-
pute REDB �� Δ

[0,i]
q1 (s1). However, our storage scheme stores

the second relation in many blocks, so that we actually must
compute REDB �� (

⋃i
k=0 Δ

k
q1
)(s1), which could be expensive

if there are many non-empty q1 blocks in the range [0, i].
We reduce this cost by performing on-demand concate-

nation of tables: before computing the join, we consolidate
Δk

q1
(k = 0, . . . , i) in a single data structure. This structure is

either a hash table or a fully sorted table – the rule engine
decides heuristically to use a hash or a merge join. In either
case, we take advantage of our columnar layout and concate-
nate only columns needed in the join, often just a single col-
umn. The join performance gained with such a tailor-made
data structure justifies the cost of on-demand concatenation.
We delete the auxiliary structures after the join.
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This approach is used whenever the union of many IDB
tables is needed in a join. However, especially the expres-
sion Δ[ j,i]

q� may often refer to only one (non-empty) block, in
which case we can work directly on its data. We use several
optimizations that aim to exclude some non-empty blocks
from a join so as to make this more likely, as described next.

Dynamic Optimization

Our storage layout is most effective when only a few blocks
of fact tables Δi

p must be considered for applying a rule,
as this will make on-demand concatenation simpler or com-
pletely obsolete. An important advantage of our approach is
that we can exclude individual blocks when applying a rule,
based on any information that is available at this time.

We now present three different optimization techniques
whose goal is precisely this. In each case, assume that we
have performed i derivation steps and want to apply rule r
of the form (7) in step i + 1, and that j < i + 1 was the
last step in which r has been applied. We consider each of
the m versions of the SNE rule (9) in separation. We start
by gathering, for each IDB atom qk(sk) in the body of r,
the relevant range of non-empty tables Δo

qk
. We also record

which rule rule[o] was used to create this table in step o.

Mismatching Rules

An immediate reason for excluding Δo
qk

from the join is that
the head of rule[o] does not unify with qk(sk). This occurs
when there are distinct constant symbols in the two atoms.
In such a case, it is clear that none of the IDB facts in Δo

qk

can contribute to matches of qk(sk), so we can safely remove
o from the list of blocks considered for this body atom. For
example, rule (3) can always ignore inferences of rule (6),
since the constants hasPart and owl:inverseOf do not match.

We can even apply this optimization if the head of rule[o]
unifies with the body atom qk(sk), by exploiting the infor-
mation contained in partial results obtained when computing
the join (10) from left to right. Simplifying notation, we can
write (10) as follows:

REDB �� Δ
[l1,u1]
q1

�� . . . �� Δ[lm,um]
qm

(11)

where REDB denotes the relation obtained by joining the
EDB atoms. We compute this m-ary join by applying m bi-
nary joins from left to right. Thus, the decision about the
blocks to include for Δ[lk ,uk]

qk only needs to be made when
we have already computed the relation Rk � REDB ��

Δ
[l1,u1]
q1 �� . . . �� Δ[lk−1,uk−1]

qk−1 . This relation yields all possi-
ble instantiations for the variables that occur in the terms
t1, . . . , tn, s1, . . . , sk−1, and we can thus view Rk as a set of
possible partial substitutions that may lead to a match of the
rule. Using this notation, we obtain the following result.

Theorem 2 If, for all σ ∈ Rk, the atom qk(sk)σ does not
unify with the head of rule[o], then the result of (10) remains
the same when replacing the relation Δ[lk ,uk]

qk by (Δ[lk ,uk]
qk \Δo

qk
).

This turns a static optimization technique into a dynamic,
data-driven optimization. While the static approach required
a mismatch of rules under all possible instantiations, the dy-
namic version considers only a subset of those, which is

guaranteed to contain all actual matches. This idea can be
applied to other optimizations as well. In any case, imple-
mentations must decide if the cost of checking a potentially
large number of partial instantiations in Rk is worth paying
in the light of the potential savings.

Redundant Rules

A rule is trivially redundant if its head atom occurs in its
body. Such rules do not need to be applied, as they can only
produce duplicate inferences. While trivially redundant rules
are unlikely to occur in practice, the combination of two
rules frequently has this form. Namely, if the head of rule[o]
unifies with qk(sk), then we can resolve rule r with rule[o],
i.e., apply backward chaining, to obtain a rule of the form:

ro = p(t)← e1(t1), . . . , en(tn), q1(s1), . . . , qk−1(sk−1),
Bodyrule[o], qk+1(sk+1), . . . , qm(sm).

(12)

where Bodyrule[o] is a variant of the body of rule[o] to which
a most general unifier has been applied. If rule ro is trivially
redundant, we can again ignore Δo

qk
. Moreover, we can again

turn this into a dynamic optimization method by using par-
tially computed joins as above.

Theorem 3 If, for all σ ∈ Rk, the rule roσ is trivially redun-
dant, then the result of (10) remains the same when replac-
ing the relation Δ[lk ,uk]

qk by (Δ[lk ,uk]
qk \ Δo

qk
).

For example, assume we want to apply rule (5) of
our initial example, and Δo

T
was derived by rule (4). Us-

ing backward chaining, we obtain ro = T(y,w, x) ←
Inverse(v,w), Inverse(v,w′), T(y,w′, x), which is not trivially
redundant. However, evaluating the first part of the body
Inverse(v,w), Inverse(v,w′) for our initial example data, we
obtain just a single substitution σ = {v �→ hP,w �→ pO,
w′ �→ pO}. Now roσ = T(y, pO, x) ← Inverse(hP, pO),
Inverse(hP, pO), T(y, pO, x) is trivially redundant. This op-
timization depends on the data, and cannot be found by con-
sidering rules alone.

Subsumed Rules

Many further optimizations can be realized using our novel
storage layout. As a final example, we present an optimiza-
tion that we have not implemented yet, but which we think is
worth mentioning as it is theoretically sound and may show
a promising direction for future works. Namely, we consider
the case where some of the inferences of rule r were already
produced by another rule since the last application of r in
step j. We say that rule r1 is subsumed by rule r2 if, for all
sets of facts I, r1(I) ⊆ r2(I). It is easy to compute this,
based on the well-known method of checking subsumption
of conjunctive queries (Abiteboul, Hull, and Vianu 1995).
If this case is detected, r1 can be ignored during material-
ization, leading to another form of static optimization. How-
ever, this is rare in practice. A more common case is that one
specific way of applying r1 is subsumed by r2.

Namely, when considering whether to use Δo
qk

when ap-
plying rule r, we can check if the resolved rule ro shown in
(12) is subsumed by a rule r′ that has already been applied
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after step o. If yes, then Δo
qk

can again be ignored. For exam-
ple, consider the rules (2)–(6) and an additional rule

Compound(x)← T(x, hasPart, y), (13)
which is a typical way to declare the domain of a property.
Then we never need to apply rule (13) to inferences of rule
(6), since the combination of these rules Compound(x) ←
T(x, hasPart, y′), T(y′, hasPart, y) is subsumed by rule (13).

One can pre-compute these relationships statically, result-
ing in statements of the form “r1 does not need to be applied
to inferences produced by r2 in step o if r3 has already been
applied to all facts up until step o.” This information can then
be used dynamically during materialization to eliminate fur-
ther blocks. The special case r1 = r3 was illustrated in the
example. It is safe for a rule to subsume part of its own ap-
plication in this way.

Memoization
The application of a rule with m IDB body atoms requires
the evaluation of m SNE rules of the form (9). Most of the
joined relations Δ[lk ,uk]

qk range over (almost) all inferences of
the respective IDB atom, starting from lk = 0. Even if opti-
mizations can eliminate many blocks in this range, the algo-
rithm may spend considerable resources on computing these
optimizations and the remaining on-demand concatenations,
which may still be required. This cost occurs for each appli-
cation of the rule, even if there were no new inferences for
qk since the last computation.

Therefore, rules with fewer IDB body atoms can be eval-
uated faster. Especially rules with only one IDB body atom
require only a single SNE rule using the limited range of
blocks Δ[ j,i]

q1 . To make this favorable situation more com-
mon, we can pre-compute the extensions of selected IDB
atoms, and then treat these atoms as part of the EDB layer.
We say that the pre-computed IDB atom is memoized. For
example, we could memoize the atom T(v, owl:inverseOf,w)
in (3). Note that we might memoize an atom without pre-
computing all instantiations of its predicate. A similar ap-
proach was used for OWL RL reasoning by Urbani et al.
(2014), who proved the correctness of this transformation.

SNE is not efficient for selective pre-computations, since
it would compute large parts of the materialization. Goal-
directed methods, such as QSQ-R or Magic Sets, focus on
inferences needed to answer a given query and hence are
more suitable (Abiteboul, Hull, and Vianu 1995). We found
QSQ-R to perform best in our setting.

Which IDB atoms should be memoized? For specific in-
ferencing tasks, this choice is often fixed. For example, it
is very common to pre-compute the sub-property hierarchy.
We cannot rely on such prior domain knowledge for general
Datalog, and we therefore apply a heuristic: we attempt pre-
computation for all most general body atoms with QSQ-R,
but set a timeout (default 1 sec). Memoization is only per-
formed for atoms where pre-computation completes before
this time. This turns out to be highly effective in some cases.

Evaluation
In this section, we evaluate our approach based on a pro-
totype implementation called VLog. As our main goal is to

#triples VLog Rule sets
Dataset (EDB facts) DB size L U LE

LUBM1K 133M 5.5GB 170 202 182
LUBM5K 691M 28GB " " "
DBpedia 112M 4.8GB 9396 — —
Claros 19M 980MB 2689 3229 2749
Claros-S 500K 41MB " " "

Table 1: Statistics for Datasets and Rule Sets Used

support KG materialization under limited resources, we per-
form all evaluations on a laptop computer. Our source code
and a short tutorial is found at https://github.com/jrbn/vlog.
Experimental Setup The computer used in all experiments
is a Macbook Pro with a 2.2GHz Intel Core i7 processor,
512GB SDD, and 16GB RAM running on MacOS Yosemite
OS v10.10.5. All software (ours and competitors) was com-
piled from C++ sources using Apple CLang/LLVM v6.1.0.

We used largely the same data that was also used to eval-
uate RDFox (Motik et al. 2014). Datasets and Datalog pro-
grams are available online.2 The datasets we used are the
cultural-heritage ontology Claros (Motik et al. 2014), the
DBpedia KG extracted from Wikipedia (Bizer et al. 2009),
and two differently sized graphs generated with the LUBM
benchmark (Guo, Pan, and Heflin 2005). In addition, we cre-
ated a random sample of Claros that we call Claros-S. Statis-
tics on these datasets are given in Table 1.

All of these datasets come with OWL ontologies that can
be used for inferencing. Motik et al. used a custom trans-
lation of these ontologies into Datalog. There are several
types of rule sets: “L” denotes the custom translation of
the original ontology; “U” is an (upper) approximation of
OWL ontologies that cannot be fully captured in Datalog;
“LE” is an extension of the “L” version with additional
rules to make inferencing harder. All of these rules oper-
ate on a Datalog translation of the input graph, e.g., a triple
〈entity:5593, rdf:type, a3:Image〉 might be represented by a
fact a3:Image(entity:5593). We added rules to translate EDB
triples to IDB atoms. TheW3C standard also defines another
set of derivation rules for OWL RL that can work directly on
triples (Motik et al. 2009). We use “O” to refer to 66 of those
rules, where we omitted the rules for datatypes and equality
reasoning (Motik et al. 2009, Tables 4 and 8).

VLog combines an on-disk EDB layer with an in-memory
columnar IDB layer to achieve a good memory/runtime bal-
ance on limited hardware. The specifically developed on-
disk database uses six permutation indexes, following stan-
dard practice in the field (Neumann and Weikum 2010). No
other tool is specifically optimized for our setting, but the
leading in-memory system RDFox is most similar, and we
therefore use it for comparison. As our current prototype
does not use parallelism, we compared it to the sequential
version of the original version of RDFox (Motik et al. 2014).
We recompiled it with the “release” configuration and the
sequential storage variant. Later RDFox versions perform
equality reasoning, which would lead to some input data be-
ing interpreted differently (2015a; 2015b). We were unable

2http://www.cs.ox.ac.uk/isg/tools/RDFox/2014/AAAI/
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Data/Rules RDFox (seq) VLog
time mem time mem IDBs

LUBM1K/L 82 11884 38 2198 172M
LUBM1K/U 148 14593 80 2418 197M
LUBM1K/LE oom oom 2175 9818 322M
LUBM5K/L oom oom 196 8280 815M
LUBM5K/U oom oom 434 7997 994M
LUBM5K/LE oom oom tout tout —
DBpedia/L 177 7917 91 532 33M
Claros/L 2418 5696 644 2406 89M
Claros/LE oom oom tout tout —
Claros-S/LE 8.5 271 2.5 127 3.7M

Table 2: Materialization Time (sec) and Peak Memory (MB)

Data/Rules MR+RR MR RR No opt.

LUBM1K/L 38 39 38 40
LUBM5K/L 196 197 202 206
DBpedia/L 91 92 93 88
Claros/L 644 3130 684 3169

Table 3: Impact of Dynamic Optimizations (times in sec)

to deactivate this feature, and hence did not use these ver-
sions. If not stated otherwise, VLog was always used with
dynamic optimizations activated but without memoization.
Runtime and Memory Usage Table 2 reports the runtime
and memory usage for materialization on our test data, and
the total number of inferences computed by VLog. Not all
operations could be completed on our hardware: oom de-
notes an out-of-memory error, while tout denotes a timeout
after 3h. Memory denotes the peak RAM usage as measured
using OS APIs.

The number of IDB facts inferred by VLog is based on
a strict separation of IDB and EDB predicates, using rules
like (2) to import facts used in rules. This is different from
the figure reported for RDFox, which corresponds to unique
triples (inferred or given). We have compared the output of
both tools to ensure correctness.

RDFox has been shown to achieve excellent speedups us-
ing multiple CPUs, so our sequential runtime measurements
are not RDFox’s best performance but a baseline for fast
in-memory computation in a single thread. Memory usage
can be compared more directly, since the parallel version of
RDFox uses only slightly more memory (Motik et al. 2014).
As we can see, VLog requires only 6%–46% of the work-
ing memory used by RDFox. As we keep EDB data on disk,
the comparison with a pure in-memory system like RDFox
should take the on-disk file sizes into account (Table 1); even
when we add these, VLog uses less memory in all cases
where RDFox terminates. In spite of these memory savings,
VLog shows comparable runtimes, even when considering
an (at most linear) speedup when parallelizing RDFox.
Dynamic Optimization Our prototype supports the op-
timizations “Mismatching Rules” (MR) and “Redundant
Rules” (RR) discussed earlier. Table 3 shows the runtimes
obtained by enabling both, one, or none of them.

Both MR and RR have little effect on LUBM and DB-
pedia. We attribute this to the rather “shallow” rules used in

Data/Rules No Mem. Memoization
ttotal #atoms tMem tMat ttotal

LUBM1K/L 38 39 1.4 40.4 41.5
LUBM1K/O 1514 41 6.5 230 236.5

Table 4: Impact of Memoization (times in sec)

both cases. In constrast, both optimizations are very effective
on Claros, reducing runtime by a factor of almost five. This
is because SNE leads to some expensive joins that produce
only duplicates and that the optimizations can avoid.
Memoization To evaluate the impact of memoization, we
materialized LUBM1K with and without this feature, using
the L and O rules. Table 4 shows total runtimes with and
without memoization, the number of IDB atoms memoized,
and the time used to compute their memoization.

For the L rules, memoization has no effect on materializa-
tion runtime despite the fact that 39 IDB atoms were mem-
oized. For the O rules, in contrast, memoization decreases
materialization runtime by a factor of six, at an initial cost of
6.5 seconds. We conclude that this procedure is indeed bene-
ficial, but only if we use the standard OWL RL rules. Indeed,
rules such as (4), which we used to motivate memoization,
do not occur in the L rules. In a sense, the construction of L
rules internalizes certain EDB facts and thus pre-computes
their effect before materialization.

Discussion and Conclusions

We have introduced a new column-oriented approach to per-
form Datalog in-memory materialization over large KGs.
Our goal was to perform this task in an efficient man-
ner, minimizing memory consumption and CPU power. Our
evaluation indicates that it is a viable alternative to existing
Datalog engines, leading to competitive runtimes at a signif-
icantly reduced memory consumption.

Our evaluation has also highlighted some challenges to
address in future work. First, we observed that the execution
of large joins can become problematic when many tables
must be scanned for removing duplicates. This was the pri-
mary reason why the computation did not finish in time on
some large datasets. Second, our implementation does not
currently exploit multiple processors, and it will be interest-
ing to see to how techniques of intra/inter query parallelism
can be applied in this setting. Third, we plan to study mech-
anisms for efficiently merging inferences back into the input
KG, which is not part of Datalog but useful in practice. Fi-
nally, we would also like to continue extending our dynamic
optimizations to more complex cases, and to develop further
optimizations that take advantage of our design.

Many further continuations of this research come to mind.
To the best of our knowledge, this is the first work to ex-
ploit a column-based approach for Datalog inferencing, and
it does indeed seem as if the research on large-scale in-
memory Datalog computation has only just begun.
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