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Abstract

In this paper, we address the problem of personalized
next Point-of-interest (POI) recommendation which has
become an important and very challenging task in
location-based social networks (LBSNs), but not well
studied yet. With the conjecture that, under different
contextual scenario, human exhibits distinct mobility
patterns, we attempt here to jointly model the next POI
recommendation under the influence of user’s latent be-
havior pattern. We propose to adopt a third-rank ten-
sor to model the successive check-in behaviors. By in-
corporating softmax function to fuse the personalized
Markov chain with latent pattern, we furnish a Bayesian
Personalized Ranking (BPR) approach and derive the
optimization criterion accordingly. Expectation Maxi-
mization (EM) is then used to estimate the model pa-
rameters. Extensive experiments on two large-scale LB-
SNs datasets demonstrate the significant improvements
of our model over several state-of-the-art methods.

Introduction
In recent years, there have been an increased emphasis
on developing the location-based social networks(LBSNs),
such as Foursquare, Gowalla, Facebook Place, and GeoLife,
etc., where users can check-in at venues and share their
experiences towards point-of-interest(POIs) in the physical
world using mobile devices. This so called check-in behav-
ior has become a new culture of a modern life and could
be used to study life patterns of millions of LBSN users.
POI recommendation is one of the most important tasks in
LBSN, which is to provide recommendations of places to
users, and has attracted much attention as it not only im-
proves user viscosity to LBSN service provider but also ben-
efits for advertising agency to provide an effective way of
launching advertisement to target the potential clients.

POI recommendation has become a popular research is-
sue and attracted much effort(Gao et al. 2015; Yuan et al.
2014). Yet achieving accurate personalized POI recommen-
dation is challenging as the data available for each user is
highly sparse. The sparsity is due to the fact that check-in in-
teractions are conducted by the users on the voluntary basis.
“Diligent” users who keep checking-in on LBSN for every

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

venue they visited in physical world are in fact rare. Next
POI recommendation is a even harder task which is to be
accurate on predicting user’s very next move among tens of
thousands of location candidates, as the successive check-
in interactions are more sparse. In the literature, there ex-
ist only few works investigating next POI recommendation.
C. Cheng et al. propose to introduce the distance restriction
to a tensor-based pairwise ranking model to solve the next
POI recommendation problem(Cheng et al. 2013). The in-
tuition behind is that the checked-in POIs are usually geo-
graphically dense(Liu et al. 2013). However, the periodicity
of mobility and the user preference varying with the change
of contextual scenario e.g., the type of POIs, checked-in time
stamps have not yet been deeply exploited.

Human mobility has been well known for its periodic
property (Eagle and Pentland 2009; Li et al. 2010; Cho,
Myers, and Leskovec 2011). For next POI recommendation,
we focus more on the transition periodicity of location cat-
egories. For example, people may regularly stop by coffee
stalls, starbucks stores, to grab a cup of coffee on their way
to work in the morning, which can be explained as a periodic
transition pattern from coffee shop to workplace on weekday
morning. The next POI is highly likely related to the previ-
ous POI. For example, after taking part in intense outdoor
activities, e.g., hiking, running, some user may prefer to have
high-protein meals in restaurants like Steakhouse rather than
Juicy Bar. Fig.1(a) and Fig.1(b) plot the check-in probabili-
ties of the top-4 most popular location categories over time
of day(hours) and day of week respectively, based on the
check-in data of LA, collected from Foursquare. The cate-
gorical mobility periodicity is very obvious, e.g., the outdoor
places are often checked on weekends. Another interesting
observation is that the check-ins of nightspots occur most of-
ten on Friday and least often on Sunday. Fig.2 plots the tran-
sition probabilities between categories along with the day
of week. We observe that the transition preference shown in
Fig.2(a) is significantly different from that of Fig.2(e) but
somehow similar to that of Fig.2(b), which indicates that
there exist several latent transition patterns and such patterns
may play a key role for our next POI recommendation.

In this paper, we attempt to jointly model next POI rec-
ommendation under the influence of user’s latent behavior
pattern. We propose to adopt a third-rank tensor to model
the successive check-in behaviors. By incorporating the soft-
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Figure 1: Check-in Periodicity Analysis

max function to fuse the personalized Markov chain with
the aforementioned latent pattern’s influence, we furnish a
Bayesian Personalized Ranking (BPR)(Rendle et al. 2009)
approach and derive the optimization criterion accordingly.
In the model learning phase, the Expectation Maximization
(EM)(Neal and Hinton 1998) is used to estimate the model
parameters. The main contributions of this paper can be
summarized as follows:

• We propose a unified tensor-based latent model to fuse
the observed successive check-in behavior with latent be-
havior preference for each user to address a personalized
next POI recommendation problem. The corresponding
optimization criterion and learning steps/tricks have been
carefully studied.

• We evaluate the proposed model by detailed experiments
on two large-scale LBSN datasets and demonstrate that
our method outperforms other state-of-the-art POI recom-
mendation approaches by a large margin.

Related Work
Location recommendation has received intensive attention
recently due to a wide range of potential applications. It was
studied on GPS trajectory logs of hundreds of monitored
users (Zheng et al. 2009). With the easy access of users’
check-in data in LBSNs, many recent studies have been con-
ducted for POI recommendation, which can be roughly clas-
sified into four categories: 1) time-aware POI recommen-
dation which mainly leverages the temporal influence on
POIs to enhance the recommendation performance (Yuan
et al. 2013). 2) geographical influence enhanced POI rec-
ommendation which exploits the “geographical clustering
phenomenon” of check-in activities to improve the POI rec-
ommendation system (Liu et al. 2013). 3) content-aware
POI recommendation approaches which propose to detect
users’ current locations by analyzing their published tweets
(Chen et al. 2013) or to rank POIs by analyzing user’s com-
ments on them (Gao et al. 2015). However semantic analysis
is a very challenging research issue as most of comments in
LBSN are short and contextually ambiguous. 4) social in-
fluence enhanced POI recommendation which is inspired
by the intuition that friends of LBSNs tend to have more
common interests. By inferring the social relations, the qual-
ity of recommendation could be enhanced. However, there
are other opinions of leveraging social influence in the lit-
erature, as previous studies also report a large number of
friends share nothing in terms of POI (Ye, Yin, and Lee

2010). And E. Cho et al. report their findings that the long-
distance travel is more influenced by social relations (Cho,
Myers, and Leskovec 2011).

Some very recent works have incorporated group behav-
iors into recommender systems for enhancing performance.
T. Yuan et al. proposed a Group-Sparse Matrix Factoriza-
tion (GSMF) approach to factorize the rating matrices for
multiple behaviors into a user and item latent factor space
(Yuan et al. 2014). H. Wang et al. proposed a group-based
algorithm for POI recommendation (Henan Wang 2014) by
grouping users of similar interests based on their frequently
visited locations’ category hierarchy.

The next POI recommendation is a newly emerging task
and even challenging. In the literature, there exist only few
works in which the sequential influence between successive
check-ins is not yet well-studied. S. Feng et al. proposed a
personalized ranking metric embedding method (PRME) to
model personalized check-in sequences for next new POI
recommendation (Feng et al. 2015). C. Cheng et al. pro-
posed a tensor-based FPMC-LR model by considering the
order relationship between visitings (Cheng et al. 2013).
However, the periodicity of check-in data and categorical in-
fluence are not well studied. Moreover, the candidate set of
POIs is filtered by simply removing the venues far from the
previous checked-in POI to deal with the data sparsity. The
yielded smaller set leads to a lower computation cost at ex-
pense of neglecting the experience of users whose check-in
behavior patterns are exclusive from the majority ones and a
failure of predicting those far way POIs.

Problem Definition
Let U = {u1, u2, ..., uM} be a set of LBSN users, and
L = {l1,2 , ..., lN} be a set of locations, also called POIs,
where each location is geocoded by {longitude, latitude}.
The set of POIs visited by user u before time t is denoted by
Lu, i.e. Lu = {L1

u, ..., L
t−1
u }. The contextual feature vec-

tor is defined as g(c) = {g1(c), ..., gF (c)} which infers a
specific contextual scenario c. The contextual features in-
clude previous location, time of day, day of week, previous
location’s category, etc. F denotes the number of features.
Assuming there are K latent behavior patterns determined
by contextual scenarios, the pattern distribution can be rep-
resented as Π = (π1, ..., πK), s.t.

∑K
k=1 πk = 1, where πk

denotes the probability of the contextual scenario belong-
ing to the kth latent pattern. With the conjecture that the
check-in behaviors are governed by the pattern-level pref-
erences, the probability distribution over next POIs is then
the mixture of each pattern-level preference towards those
POIs. Our goal is to estimate the pattern distribution Π and
pattern-level preference, so as to recommend top-N venues
to the user u for his next move by combining the obtained
pattern-level preferences.

Proposed Method
Our proposed model is to recommend next personalized
POIs via the ranking of probabilities that user u will move
from location i to next location l. Based on the first-order
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(a) Monday (b) Tuesday (c) Friday (d) Saturday (e) Sunday

Figure 2: Statistics on Location Category Transitions Along with The Day of Week. Categories={c1 : Arts & Entertainment,
c2: College & University, c3 : Food, c4 : Outdoors, c5 : Work, c6 : Nightlife Spot, c7 : Shop, c8 : Travel Spot}

Markov chain property, the probabilities is given as:
xu,i,l = p(Lu,l|c) (1)

where c denotes the contextual scenario. Thus, each user is
associated with a specific transition matrix χu which in total
generates a transition tensor χ ∈ [0, 1]|U |×|L|×|L| with each
χu,i,l representing the observed transition record of user u
from location i to location l. To further boost the recommen-
dation performance, here we study both personal preference
and spatial preference.

Personal Preference. As the transitions of χ are partially
observed, here we adopt the low-rank factorization model—
a special case of Canonical Decomposition which models
the pairwise interaction between all three modes of the ten-
sor (i.e. user U , location I , next location L), to fill up the
missing information, given as:

x̂u,i,l = uU,L · lL,U + lL,I · iI,L + uU,I · iI,U (2)
where uU,L and lL,U denote the latent factor vectors for
users and next locations, respectively. Other notions are sim-
ilarly defined. The term uU,I · iI,U can be removed since
it is independent of location l and does not affect the rank-
ing result, as shown in (Rendle, Freudenthaler, and Schmidt-
Thieme 2010), which generates a more compact expression
for x̂u,i,l:

x̂u,i,l = uU,L · lL,U + lL,I · iI,L. (3)
Spatial Preference. Inspired by (Cho, Myers, and

Leskovec 2011), human mobility is constrained geograph-
ically by the distance one can travel within a day and their
preference to visit a location decreases as the geographic dis-
tance increases. Moreover, most of POIs are likely explored
near to users’ residence, workplace, and frequently visited
POIs. Different from the existing works which simply re-
move locations out of the candidate list based on predefined
distance threshold, we leverage on the distance constraint by
defining ρ · d−1

i,l as the spatial preference of user u to visit a
di,lkm far away POI, and the optimal setting of ρ will be
learned during model inference phase.

Combining these two types of preference linearly, we
have an updated transition probability estimation, given as:

x̂u,i,l = uU,L · lL,U + lL,I · iI,L + ρ · d−1
i,l . (4)

Thus, even the locations far away from the previously
checked-in location have the chance to be recommended
when personal preference dominates. And some occasional
long journey could be predicted.

Incorporating Pattern-Level Preference
With assumption that user mobility can be classified into
some latent behavior patterns, each pattern has distinct im-
pact to user’s transition preference, which indicates that
users’ transition probability is pattern-sensitive. Here, we
propose a novel model by introducing an intermediate la-
tent patterns layer to capture the pattern-level preference in
POI recommendation. s is the latent variable to indicate the
pattern-level influence. The joint probability of xu,i,l and s
is represented as:

p(Lu,l, s|c) = p(Lu,l|s, c)p(s|c) (5)

where p(s|c) is the mixing coefficient, i.e. π. The pattern-
level preference can be defined as:

x̂s
u,i,l = p(Lu,l|s, c)

= us
U,L · lsL,U + lsL,I · isI,L + ρs · d−1

i,l (6)

By marginalizing out the latent variable s, the correspond-
ing transition probability can be written as follows:

x̂u,i,l =
∑

s

x̂s
u,i,lp(s|c) (7)

Fig.3 gives a graphical illustration of our proposed model.
The upper tensor contains the historical check-in data which
is in fact the transition tensor χ, where the transition proba-
bility between two locations is labeled as “1” if we observe
that a transition happens between the two locations for a
user, or “?” otherwise. Each user, however, may have distinct
pattern-level preference under different pattern. And each
entry of lower tensors denotes the pattern-level transition
probability. It is noted that transition tensor χ is a mixture of
the pattern-level transition tensors, and p(s|c) is the mixing
coefficient. Then, our goal is to infer the proper pattern-level
transition probabilities and pattern distributions to recover
the unobserved transition preference by fitting model.

We adopt a soft-max function 1
Sc

exp(
∑F

j=1 α
s
jgj(c))

to infer the multi-patterns and p(s|c). αs
j is the weight

associated with the jth feature for latent pattern s and
Sc is the normalization factor that scaled the exponen-
tial function to be a proper probability distribution Π,
i.e. Sc =

∑K
k=1 exp(

∑F
j=1 α

sk
j gj(c)). In this representa-

tion, contextual scenario c is denoted by a bag of features
{g1(c), ..., gF (c)} where F is the number of features. By
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Figure 3: A graphical illustration of our proposed model

plugging the soft-max function into Eq.(7), x̂u,i,l is rewritten
as:

x̂u,i,l =
1

Sc

∑

s

x̂s
u,i,l exp(

F∑

j=1

αs
jgj(c)) (8)

The task of next POI recommendation is to recommend
top-N POIs to users, thus we can model it as a ranking >s

u,i
over locations, where x̂s

u,i,l denotes a personalized ranking
score of transition from location i to location l for user u
under pattern s.

m >s
u,i n ⇔ x̂s

u,i,m > x̂s
u,i,n (9)

Eq.(9) indicates user u prefers location m to location n un-
der pattern s.

Next, we derive the sequential Bayesian Personalized
Ranking (S-BPR) optimization criterion which is similar to
the general BPR approach (Rendle et al. 2009). Then for
user u influenced by the pattern-level preference s, the best
ranking can be modeled as:

p(Θ| >s
u,i) ∝ p(>s

u,i |Θ)p(Θ) (10)

where Θ is the set of model parameters, i.e. Θ =
{αS ,ρS , US

U,L, V
S
L,U , V

S
L,I , V

S
I,L}.

Then we estimate the model by maximizing the posterior
with assumption that users and their check-in history are in-
dependent:

argmax
Θ

∏

u∈U

∏

i∈Lu

∏

m∈Lt
u

∏

n/∈Lt
u

∑

s

p(m >s
u,i n|Θ) ·

p(s|c)p(Θ) (11)

The ranking probability can be futher expressed by:

p(m >s
u,i n|Θ) = p(xs

u,i,m > xs
u,i,n|Θ)

= p(xs
u,i,m − xs

u,i,n > 0|Θ) (12)

Similar to (Rendle, Freudenthaler, and Schmidt-Thieme
2010), we use the logistic function σ(z) = 1

1+e−z to ap-
proximate the likelihood of user’s preference over location
m and n:

p(m >s
u,i n|Θ) = σ(xs

u,i,m − xs
u,i,n) (13)

By assuming the model parameters’ prior follows a Guas-
sian distribution p(Θ) ∼ N(0, 2

λΘ
I), the MAP estimation is

now given as:

argmax
Θ

∏

u∈U

∏

i∈Lu

∏

m∈Lt
u

∏

n/∈Lt
u

{ 1

Sc
·

∑

s

σ(xs
u,i,m − xs

u,i,n) exp(

F∑

j=1

αs
jgj(c))e

−λΘ
2 ||Θ||2} (14)

Model Inference
Furthermore, Θ can also be estimated by maximizing the
following log-scale objective function:

argmax
Θ

∑

u∈U

∑

i∈Lu

∑

m∈Lt
u

∑

n/∈Lt
u

ln{ 1

Sc
·

∑

s

σ(xs
u,i,m − xs

u,i,n) exp(

F∑

j=1

αs
jgj(c))e

−λΘ
2 ||Θ||2} (15)

Here, we adopt Expectation Maximization(EM) algorithm
(Dempster, Laird, and Rubin 1977) to estimate the model
parameters.

In E-Step, γ(s) the posterior distribution of s is given as:

γ(s) = P (s| >s
u,i,Θ, c)

=
σ(xs

u,i,m−xs
u,i,n) exp(

∑F

j=1
αs

jgj(c))∑
s
σ(xs

u,i,m
−xs

u,i,n
) exp(

∑F

j=1
αs

j
gj(c))

(16)

And in M-Step, αS and {Θ \αS} can be derived by opti-
mizing the Q-function of Eq.(17) and Eq.(18), respectively.
The detailed algorithm and the parameter updating rules are
shown in Algorithm 1.

αS = argmax
αS

∑

u∈U

∑

i∈Lu

∑

m∈Lt
u

∑

n/∈Lt
u

∑

s

γ(s) ·

{ln( 1

Sc
exp(

F∑

j=1

αs
jgj(c)))−

λΘ

2
||Θ||2)} (17)

{Θ \αS} = argmax
{Θ\αS}

∑

u∈U

∑

i∈Lu

∑

m∈Lt
u

∑

n/∈Lt
u

∑

s

γ(s) ·

{lnσ(xs
u,i,m − xs

u,i,n)−
λΘ

2
||Θ||2)} (18)

Experiments
In this section, we evaluate the following: (1) how is the
proposed approach in comparison with other state-of-the-art
recommendation techniques? (2) how does the number of
latent classes affect the model accuracy? (3) how does the
features perform in the POI recommendation task?

Datasets
We choose two large-scale datasets from real-world LB-
SNs, Foursquare and Gowalla, to conduct the experiments.
Foursquare check-in data is within Los Angeles, provided
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Algorithm 1 Our Proposed Methodology
1: Input: the number of patterns K, check-in data D
2: draw Θ from N(0, 2

λΘ
I)

3: repeat
4: E-Step:
5: Sc ←

∑K
k=1 exp(

∑F
j=1 α

sk
j gj(c))

6: p(s|c) ← 1
Sc

exp(
∑F

j=1 α
s
jgj(c))

7: γ(s) ← σ(xs
u,i,m−xs

u,i,n) exp(
∑L

j=1
αs

jgj(c))∑
s
σ(xs

u,i,m
−xs

u,i,n
) exp(

∑L

j=1
αs

j
gj(c))

8: M-Step:
9: δ ← (1− σ(xs

u,i,m − xs
u,i,n))

10: us
U,L ←

∑
d
δ·γ(s)·(ms

L,U−ns
L,U )

λΘ

∑
d
γ(s)

11: isI,L ←
∑

d
δ·γ(s)·(ms

L,I−ns
L,I)

λΘ

∑
d
γ(s)

12: ms
L,U ←

∑
d
δ·γ(s)·us

U,L

λΘ

∑
d
γ(s)

13: ns
L,U ←

∑
d
δ·γ(s)·(−us

U,L)

λΘ

∑
d
γ(s)

14: ms
L,I ←

∑
d
δ·γ(s)·isI,L

λΘ

∑
d
γ(s)

15: ns
L,I ←

∑
d
δ·γ(s)·(−isI,L)

λΘ

∑
d
γ(s)

16: αs ←
∑

d
γ(s)·g(e)·(1−p(s|c))
λΘ

∑
d
γ(s)

17: ρs ←
∑

d
δ·γ(s)·(d−1

i,m
−d−1

i,n
)

λΘ

∑
d
γ(s)

18: until convergence
19: Return: Θ

by (Bao, Zheng, and Mokbel 2012), while Gowalla dataset
is from (Cheng et al. 2012) with a complete snapshot. For
both datasets, we removed the users who checked in LSBN
less than 10 times, and the POIs which have been checked
in less than 5 times (Note that the categorical information of
POIs are not included in Gowalla dataset). The statistics of
the two datasets are listed in Table 1.

Table 1: Dataset Statistics

#User #POI #Check-in #Avg.chenk-in
Foursquare 2823 84937 130583 46.25
Gowalla 1388 11235 301678 217.35

Evaluation Metrics
Given a top-N recommendation list SN,u,rec sorted in de-
scending order of the prediction values to user u, we adapt a
precision metric to evaluate the performance of our proposed
next POI recommendation, given as:

Precision@N =
1

|U |
∑

u∈U

|SN,u,rec ∩ Svisited|
|Svisited| (19)

where Svisited are the visited locations of user u and |U |
denotes the number of the users, N is the size of the next

POI candidate list.

Comparison
We compare the proposed model with the following meth-
ods:

• MF: matrix factorization (Koren, Bell, and Volinsky
2009) is widely used in conventional recommender sys-
tems, which factorizes the user-item preference matrix.

• PMF: probabilistic matrix factorization is a well-known
method for modeling time evolving relation data (Mnih
and Salakhutdinov 2007).

• FPMC-LR: this method is proposed in (Cheng et al.
2013), which is the state-of-the-art personalized succes-
sive POI recommendation method.

Table 2 reports the comparison results between our model
and the baseline methods. We set λΘ to be 1 for both FPMC-
LR and our proposed model. The empirical settings of the
number of latent behavior patterns are 4 and 6 for Gowalla
dataset and Foursquare dataset, respectively. For other pa-
rameters, we tune them in the training sets to find the opti-
mal values, and subsequently use them in the test set. The
results show that:

• Both FPMC-LR and the proposed model outperform MF
and PMF significantly, which indicates that the conven-
tional POI recommendation algorithms are not effective
for the successive POI recommendation. One possible ex-
planation could be that MF and PMF mainly exploit the
user preference rather than making use of the sequen-
tial information. More specifically, our proposed model
achieves a relative improvement of at least 91% for MF
and 81% for PMF respectively, while FPMC-LR also
achieves an improvement compared with MF and PMF.
This demonstrates that spatial influence plays an impor-
tant role in next POI recommendation.

• Our proposed method consistently outperforms FPMC-
LR, improving around 35% and 45% over FPMC-LR for
Foursquare dataset and Gowalla dataset, respectively. It
illustrates that inferring user latent behavior patterns can
better capture user mobility preference in LBSNs, and
therefore, help us recommend POIs to users more accu-
rately.

User 
ID

Case Study of Success Next POI 
Recommendation

2282 From Arches National Park Visitor Center 
(2011.06.10, 14:24, Fri) to Patagonia Outlet 

(2011.6.12, 10:26, Sun),
distance=304 km., time interval=44 hr.

1598 From Silvia's Hair Design(2011.05.20, 13:09, 
Fri) to Don Carlos(2011.05.21, 12:19, Sat),

distance=0.5577 km., time interval=23.16 hr.
192 From holiday Inn Express (2011.07.03, 06:01, 

Sun) to Hartsfield-Jackson Atlanta International 
Airport (2011.07.03, 08:50, Sun), 

distance= 82.82 km., time interval=2.81 hr.

(a) Case Study (b) Quantitative Evaluation of
accumulated precision along
with distance

Figure 4: Prediction Ability vs. Distance
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Table 2: Performance Comparison

Metrics Foursquare Gowalla
MF PMF FPMC-LR Our MF PMF FPMC-LR Our

P@1
Improve

0.023
91.30%

0.024
83.33%

0.032
37.50% 0.044 0.022

100.00%
0.024

83.33%
0.029

51.72% 0.044

P@5
Improve

0.067
92.54%

0.071
81.69%

0.097
32.99% 0.129 0.086

96.51%
0.093

81.72%
0.116

45.69% 0.169

P@10
Improve

0.089
91.01%

0.093
82.80%

0.128
32.81% 0.170 0.147

99.32%
0.158

85.44%
0.198

47.98% 0.293

P@20
Improve

0.108
97.22%

0.116
83.62%

0.155
37.42% 0.213 0.188

100.53%
0.202

86.63%
0.247

52.63% 0.377

Fig. 4 shows the prediction ability vs. distance. Both case
study of success next POI prediction(see in Fig. 4(a)) and
quantitative results(see in Fig. 4(b)) manifest that our model
is capable of predicting transitions within a localized region
as well as an occasional journey with long distance.

Impact of the Contextual Features
Here, we discuss the recommendation efforts of different
types of contextual information, i.e. Previous Location’s
Category, Time of Day, Day of Week. Figure 5 depicts the
experimental results with variants of combinations of con-
textual information incorporated. In general, the model ac-
curacy increases with more contextual information added in.
It indicates that finer latent patterns are obtained to better
capture user preference.

(a) Foursquare (b) Gowalla

Figure 5: Impact of Feature Combos(T stands for time, W
stands for week and C stands for )

Impact of the Number of Latent Patterns
Figure 6 shows the experimental results with different set-
tings of the number of latent patterns. We can see that for
both datasets, the model accuracy increases with the in-
creasing of the number of patterns. When the number of la-
tent patterns reaches 6 for Foursquare and 4 for Gowalla,
the returns diminish largely. Even the performance gained
by adding one more latent pattern is minor compared to
the difference between the number of patterns less than 6
for Foursquare and 4 for Gowalla. For example, P@10 on
Gowalla dataset is 0.184 using 3 latent patterns, whereas
the four-latent-pattern model has a P@10 of 0.293, which
is a 59.2% relative improvement. Using a five-latent-pattern

(a) Foursquare (b) Gowalla

Figure 6: Number of Latent Pattern

model only increase performance by another 1.4%. Be-
sides considering the additional computation cost of infer-
ring preference for each pattern, we conclude that the 6 la-
tent patterns for Foursquare and 4 latent patterns for Gowalla
is rich enough to complete the task of next personalized POI
recommendation.

Conclusion and Future Work
To address the personalized next POI recommendation prob-
lem, in this paper we propose a unified tensor-based la-
tent model to capture the successive check-in behavior by
exploring the latent pattern-level preference for each user.
We derive a BPR-like optimization criterion accordingly
and then use Expectation Maximization (EM) to estimate
the model parameters. Performance evaluation conducted
on two large-scale real-world LBSNs datasets shows that
our proposed approach improves the recommendation ac-
curacy significantly compared against other state-of-the-art
methods. More specifically, our proposed method is capable
of predicting journey of long distance and the consecutive
check-ins which span a long period of time. For future work,
we will soon evaluate our proposed model’s ability for next
new POI recommendation by redefining the transition tensor
in a categorical dimension.
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