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Abstract
Survival prediction is crucial to healthcare research, but is
confined primarily to specific types of data involving only the
present measurements. This paper considers the more gen-
eral class of healthcare data found in practice, which includes
a wealth of intermittently varying historical measurements in
addition to the present measurements. Making survival pre-
dictions on such data bristles with challenges to the existing
prediction models. For this reason, we propose a new semi-
proportional hazards model using locally time-varying coef-
ficients, and a novel complete-data model learning criterion
for coefficient optimization. Experiments on the healthcare
data demonstrate the effectiveness and generalizability of our
model and its promise in practical applications.

Introduction
Survival prediction in healthcare research examines the time
that elapses from the beginning of follow-up until the event
(also “failure”) of interest occurs. This event may be ad-
verse, for instance, biological death, readmission; or some-
times be beneficial, such as hospital discharge and healing of
a wound. Basically, the goal of survival prediction is to gen-
erate prognostic models for understanding disease processes
(Ghassemi et al. 2015), exploring interaction between prog-
nostic factors (Khosla et al. 2010), and predicting how new
patients will behave in the context of known data (Hong and
Hauskrecht 2015). The employment of survival prediction
would allow clinicians to answer patients’ queries as when
and how probable that a certain disease will recur, how long
they are likely to live, and how well they will respond to a
specific therapy. These can be crucial in healthcare, to as-
sess lifestyle appropriateness and make early decisions on
treatment and sometimes on end-of-life care.

Usually, one predicts the clinical outcome (typically, sur-
vival time) for patients using measurements of various prog-
nostic factors collected during the follow-up period (e.g.,
1-year study). These factors include demographic variable
such as age, gender, race, etc, and diagnostic informa-
tion like blood test results, tumor size, hemoglobin level,
etc (Lin et al. 2011). Exploring the simultaneous effects
of these factors on survival time is of practical interest
for researchers and clinicians, and has been the subject to
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much research. Broadly, such research attempts to qual-
ify the effects by learning regression coefficients for fac-
tors from their present measurements (PresMeas). For ex-
ample, (non-)parametric models (Jenkins 2005) and semi-
parametric Cox proportional hazards models (Cox 1972;
Vinzamuri and Reddy 2013; Yu et al. 2008) generally aim at
time-independent coefficients, while Aalen additive hazards
models (Gaı̈ffas and Guilloux 2012) and logistic regression
models (Lin et al. 2011; Liu et al. 2010) estimate coefficients
that vary with time, i.e., time-varying coefficients.

Nowadays, the general healthcare data collected by ever-
increasing electronic health record (EHR) databases in-
cludes a wealth of unaligned historical measurements (Hist-
Meas) due to the patients’ checkups at various time inter-
vals (Beirne, Clarkson, and Worthington 2007). For exam-
ple, of two patients, say p1 and p2, diagnosed with COPD
(Chronic Obstructive Pulmonary Disease) routinely sched-
uled for review, p1 may undergo a monthly checkup while p2

is examined bimonthly. This means we will acquire a COPD
data for which p2 has intermittent measurements of prognos-
tic factors in contrast to p1’s monthly measurements. Such
COPD data is a typical type of intermittently varying (IV)
data which is quite general in healthcare. Besides, COPD pa-
tients are probably readmitted to hospital frequently due to
the need for an emergency treatment; this, as a consequence,
makes COPD data involve more intermittent measurements
made at unexpected emergency time intervals.

IV data has by far outpaced the processing and analytical
capacities of the aforementioned models, mainly because: 1)
the observation of PresMeas for a patient indicates (s)he was
alive all the time in history, and therefore estimating the sur-
vival probabilities at historical measurement time snapshots
does not make sense, as stated in (Kalbfleisch and Prentice
2011); 2) the process of estimating coefficients at each snap-
shot is conducted on only part of patients in the context of
IV HistMeas; this may lead to a biased estimate that can-
not adequately fit the whole body of data, especially without
information exploited from HistMeas for coefficient opti-
mization. Much work such as (Moghaddass and Rudin 2014;
Chen et al. 2014; Cortese and Andersen 2010) has demon-
strated the significance of HistMeas to survival prediction.
This in turn suggests the need for a study on HistMeas in IV
data. To our knowledge, there is as yet no documented work
concerned with such study in survival prediction.
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For this concern, we propose in this paper a simple yet ef-
fective semi-proportional hazards (SPH for short) model that
uses locally time-varying coefficients, thereby relaxing the
proportional hazards assumption for the sake of practical-
ity, while retaining that model’s simplicity. To acquire those
coefficients, we develop an integrated model learning crite-
rion that includes an objective function based on maximum
likelihood of failure and censoring, and, simultaneously, an
optimization constraint based on the hazard trajectory ex-
plored from HistMeas. Besides, a regularization is applied to
prevent overfit arising from model learning. We investigate
SPH model on an IV dataset derived from a COPD data col-
lected from Centre Hospitalier Universitaire de Sherbrooke
(CHUS). The major contributions of this paper include:

• A new prediction model against IV data, where survival
prediction on such data has not been well studied previ-
ously.

• A novel criterion for a complete-data learning, which
makes full use of present measurements (PresMeas) and
historical measurements (HistMeas) in conjunction.

• An application to a healthcare problem of interest by pre-
dicting the risk and survival of COPD.

Preliminaries and Related Work
This section will formalize the notion of IV data and then
briefly review a recent line of work on survival prediction.

Intermittently Varying Data
Given an IV dataset composed of N time-to-failure labeled
individuals, denoted by � = {(yi, δi,Zi∪xi)}Ni=1, one may
observe some individuals fail at K distinct failure times, 0 <
t1 < t2 < · · · < tK ; some other individuals may drop out
at failure times, and the remaining individuals may be still
alive right after tK . For individual i, the failure indicator,
δi, takes value 1 if failure occurs and 0 otherwise. Accord-
ingly, the observed time yi represents his/her failure time Ti

if δi = 1, and (right-)censoring time Ci otherwise. Pres-
Meas of the V prognostic factors made at yi are recorded as
xi = (xi1, xi2, . . . , xiV ). Prior to failure/dropout, a set of
HistMeas, Zi = {zi[τ ] : 0 < τ < yi}, are made at differ-
ent time snapshots, where zi[τ ] = (zi1[τ ], . . . , ziV [τ ]). This
notation can apply to time-independent data as well, as long
as ziv[τ ] ≡ xiv when factor v does not change over time.

Figure 1: An example of IV data. A yellow dot means the
patient is still alive while a red dot indicates a failure
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Figure 1 shows an example of IV data in which mea-
surement time snapshots are different over the five patients

during the 6-month follow-up. Specifically, each patient has
a few HistMeas at different time snapshots from other pa-
tients; that is, the measurements are irregularly made and
thus unaligned. Patients p1, p2 and p3 experienced a fail-
ure while p4 and p5 were censored. In this circumstance, we
have failure times tk ∈ {5 months, 6 months}. All PresMeas
were made at the failure times. Patients p1 and p2 were tied
due to having the same failure time (5 months). Patient p4

was at risk (i.e., still alive) at the end of follow-up, whereas
p5 dropped out at 5 months.

Survival Prediction
The goal of survival prediction is to forecast the failure time
T (i.e., how long to survive) of each individual x from a
certain population. Usually, one adopts a survivor function
S(t|x) = Pr(T ≥ t|x) to identify the probability of being
still alive at time t (this refers to an observed failure time in
training data, e.g., 5 or 6 months in Figure 1). This function
depends fully on the hazard function

h(t|x) = lim
Δt↓0+

Pr(t ≤ T ≤ t+Δt|T ≥ t;x)

Δt
,

which assesses the instantaneous rate of failure at t, condi-
tional on survival to that time. It can be seen that the greater
the value of h(t), the greater the risk of failure at t.

The Cox model (Cox 1972) determines the hazard in a
multiplicative manner: h(t|x) = h0(t) exp[f(x)], where
h0(t) represents an unspecified baseline hazard in the con-
text of x = (0, . . . , 0) and the link function f(x) = x�β.
The β means a vector of time-independent regression co-
efficients. By contrast, the Aalen model (Aalen 1989) as-
sumes an additive hazard such that h(t|x) = h0(t) + f(x).
The logistic regression model estimates the probability of
surviving beyond t by means of Pr(T ≥ t|x) = (1 +
exp[x�β + xi])−1 with xi a threshold. In practice, the
prognostic factors’ effects (e.g., the effect of a treatment)
may change over time with longer follow-up (Fisher and
Lin 1999). To accommodate such situations, there was a
surge of interest in learning time-varying coefficients β(t)
instead of β; examples include (Song and Wang 2013;
Sun, Sundaram, and Zhao 2009; Lin et al. 2011).

Returning to the example presented in Figure 1, the red
dot for p1 at 5 months tells us the survival probabilities sat-
isfying S(1 month|p1) = · · · = S(4 months|p1) ≡ 1, re-
vealing the difficulties of making use of HistMeas in predic-
tion. Alternatively, those models may learn coefficients by
approximating hazards, rather than survival probabilities, for
the five patients at each month. In doing so, the estimate of
coefficients may fit p1 well, but not four others who have in-
termittent measurements, e.g., the measurements for p2 are
available at only 2 months and 4 months.

Our Approach
This section will introduce a new semi-proportional hazards
model and its learning approach.

Semi-Proportional Hazards Model
To allow the effect of prognostic factors to vary with time,
our approach assigns K classes of coefficients, denoted by

73



B � (β1,β2, . . . ,βK)�, for identifying the contributions
of factors to risk at different failure times, where the coeffi-
cients at tk are given by βk = (βk1, βk2, . . . , βkV ). The link
function of individual i can thus be redefined as{

fB(xi) = x�
i βk|tk=yi

for PresMeas
fB(zi[τ ]) = zi[τ ]

�βk|tk=yi
for HistMeas

By this approach, individuals who fail (or drop out) at the
same time are specified with the same coefficients, as they
may obtain the same (or similar) therapeutic effect from
a treatment (Grundy et al. 1999); on the other hand, the
HistMeas and PresMeas for an individual are assigned the
same coefficients, since the interaction between factors for a
given individual does not change. This locally time-varying-
coefficient setting partly relaxes the proportional hazards as-
sumption. At this point, the hazards are seemingly propor-
tional between tied individuals (and between histories of an
individual), and non-proportional between non-tied individ-
uals. Hence, we call such hazards semi-proportional.

With the above hazard function, the survival probability
of individual xi at t can be calculated by

S(t|xi;B) =
(
exp[−H0(t)]

)exp[fB(xi)]
.

Here, the cumulative baseline hazard H0(t) =
∫ t

0
h0(u)du

can be rewritten by a Breslow’s estimator (Breslow 1974) in
the presence of tied failure times, as follows:

H0(t) =
∑

tk≤t
h0(tk) =

∑
k:tk≤t

∣∣Dk

∣∣∑
j∈Rk

exp
[
f
̂B(xj)

].
which is a step function with jumps at failure times. The
risk set Rk � {∀i : yi ≥ tk} includes those individuals
at risk of failure at tk, and Dk � {∀i : Ti = tk} contains
those who fail at tk, with

∣∣Dk

∣∣ the cardinality. We denote by
R+

k = Rk/Ck the set of individuals who are still alive right
after tk.

Objective Function based on PresMeas
The only important question so far unaddressed is how to
learn B. A straightforward way provided by Cox-type mod-
els is to maximize the so-called partial likelihood (Cox 1975;
Sun, Sundaram, and Zhao 2009). We thus rewrite such like-
lihood for the individuals who fail, in the form:

LD(B|�) =
∏

tk:failure
time

∏
i fails

Pr(i fails at tk)
Pr(j ∈ Rk fails at tk)

(1)

=
K∏

k=1

exp
[∑

i∈Dk
fB(xi)

]
(∑

j∈Rk
δj exp[fB(xj)]

)|Dk|.

The key idea here is to compare the risk of failure be-
tween the individuals who fail and those who are still at
risk. Since the tied individuals are in the minority, Eq. 1
employs the Peto’s modification on Efron approximation
(Hertz-Picciotto and Rockhill 1997).

It is worthy of note that Eq. 1 embodies the idea behind
most existing methods (Vinzamuri, Li, and Reddy 2014;
Yu et al. 2008), claiming that censoring data are non-
informative due to unobserved failure times and it is thus
desirable to eliminate these “useless” data from the model,
so long as we keep track of the risk set R. However, cen-
soring data do actually provide some information: failures
occurred after the censoring times. Needless to say, a mass
of significant information would vanish were we to exclude
this data. In view of this, we wish to assess the partial likeli-
hood of censoring that can be derived from Eq. 1, yielding

LC(B|�) =
∏

tk:failure
time

∏
i drops

out

Pr(i drops out at tk)
Pr(j ∈ Rk drops out at tk)

=
K∏

k=1

exp
[∑

i∈Ck
fB(xi)

]
(∑

j∈Rk
(1− δj) exp[fB(xj)]

)|Ck|,

with Ck = {∀i : Ci = tk} those who drop out at tk.
An optimal B should allow the values of both LD and

LC to be large. The learning procedure thus comes down to
maximizing the two likelihoods in conjunction. To simplify
the algebraic manipulations, we perform such maximization
by minimizing the negative log partial likelihoods:

�D(B) =
K∑

k=1

(∣∣Dk

∣∣ log ∑
j∈Rk

δje
fB(xj) −

∑
i∈Dk

fB(xi)

)

�C(B) =
K∑

k=1

(∣∣Ck

∣∣ log ∑
j∈Rk

(1− δj)e
fB(xj) −

∑
i∈Ck

fB(xi)

)
.

Now, the objective function to be minimized falls out as

�(B) = �D(B) + b�C(B), (2)

where the tuning parameter, b, in effect, trades off the two
likelihoods in prediction, given by Laplace smoothing such
that b = |Ck|+1

|Ck|+|Dk|+K .

Optimization Constraint based on HistMeas
The major drawback to the objective function in Eq. 2 is
that only PresMeas are taken into account. As a result, the
learning process may yield an inaccurate estimate for the
otherwise HistMeas. Exploiting the information contained
in HistMeas and imposing this information on Eq. 2 as a
constraint can be a naive approach to addressing this prob-
lem. However, predicting the cumulative incidence and sur-
vival probability by using HistMeas has turned out to be no
longer feasible (Kalbfleisch and Prentice 2011), because the
observation of Zi tells us that individual i is alive at τ(< t).
Thus, we have

S(t|Zi) = Pr(T ≥ t|{zi[τ ] : 0 < τ < t}) ≡ 1.

Moreover, the baseline survivor function has no simple in-
terpretation, as argued in (Wang 2004). We therefore turn to
the instantaneous hazards that are still obtainable.

The hazards in parametric models (Jenkins 2005) are usu-
ally assumed to be drawn from some specific distributions,
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Table 1: Changes in the hazards with time, in the context of
different survival distributions

Distribution hazard function
Exponential constant
Weibull (shape
parameter p)

constant if p = 1; increasing if p > 1;
decreasing if p < 1

Gamma (shape
parameter α)

constant if α = 1; concave, increasing
if α > 1; convex, decreasing if α < 1

Log-Normal increasing and then decreasing

as shown in Table 1. In practice, however, hazard functions
under those strong assumptions should not be expected to be
suitable for all possible data. Were it not for those assump-
tions, one might see that the hazard at failure time can be
interpreted as maximal. In other words, for the history at τ ,
the more similar to the PresMeas, the higher the hazard at τ .
For a pairwise HistMeas of individual i, say zi[τ̈ ] and zi[τ̇ ],
then, the corresponding hazards satisfy

h(t|zi[τ̈ ]) ≥ h(t|zi[τ̇ ])
if Δi[τ̈ , τ̇ ] = Sim(zi[τ̈ ])− Sim(zi[τ̇ ]) ≥ 0,

where Sim(·) represents the similarity between xi and its
HistMeas. This study utilizes an inner product metric (Ali-
panahi et al. 2008) as the similarity measure. Some algebraic
manipulations on these hazards at tk yield the following:

Δi[τ̈ , τ̇ ]
(
zi[τ̇ ]− zi[τ̈ ]

)�
βk|tk=yi

≤ 0.

When we sort all |Zi| HistMeas by their similarity to xi,
only |Zi|−1 pairs (with removal of redundant pairs) are re-
quired. For late ease of use, we denote by Qi a collection of
these pairs and then group them by tied failure times. The
grouped HistMeas for those tied individuals thus satisfy

G(βk) =
∑

i:yi=tk

∑
[τ̈ ,τ̇ ]∈Qi

Δi[τ̈ , τ̇ ]
(
zi[τ̇ ]− zi[τ̈ ]

)�
βk ≤ 0.

The key to our study is then to minimize Eq. 2 in the con-
text of G(βk) ≤ 0 for all k. In other words, we aim to max-
imize the likelihood of PresMeas (including failure and cen-
soring) subject to the constraint derived from the pairwise
hazards of HistMeas. In doing so, the coefficients can be
optimized so as to fit all measurements well. The rationale
for this approach lies partly in the fact that clinicians diag-
nose patients and provide them with treatments on the basis
of medical records (i.e., histories) in addition to the present
symptom (Hong and Hauskrecht 2015).

Complete-data Model Learning
Prior to minimizing the objective function in Eq. 2, it is pru-
dent to consider that such minimization may lead to over-
fitting and poor generalizability of the prediction model. For
this reason, one should add a ‘capacity’ to overcome the pos-
sible overfitting tendency, as suggested in (Vinzamuri, Li,
and Reddy 2014; Yang et al. 2011). For this capacity, we em-
ploy a “ridge” penalty criterion (Verweij and Van Houwelin-
gen 1994) over ‖βk‖22 to prevent overfit arising. Addition-
ally, some unknown external factors in clinical trials may

act on patients such that some of them fail far too early or
live far too long. These patients are so-called outliers that
may lead the learning process to generate inaccurate coef-
ficients. To reduce sensitivity to these outliers, we attempt
to smooth the coefficients so that they vary smoothly across
consecutive time points, as described in (Lin et al. 2011). To
sum up, the optimal coefficients can be formally defined as
the solution to the following problem:

min
B

J(B) = �(B) + λ1

K∑
k=1

‖βk‖22 + λ2

K−1∑
k=1

‖βtk+1 − βtk‖22

s.t. G(βk) ≤ 0 ∀k = 1, 2, . . . ,K (3)

Note that, the constraint given by Eq. 3 is fundamental to our
approach. By means of this constraint, the underlying haz-
ard trajectory can be explored to further calibrate the coeffi-
cients. Yet, the existing models optimize their own objective
functions without such a constraint.

A closer look at the above nonlinear programming prob-
lem reveals that J is convex and differentiable, derived from
the statements presented in (Moghaddass and Rudin 2014),
and then the optimal estimate, B̂, can be a dual solution sat-
isfying the KKT (Karush-Kuhn-Tucker) conditions:

J(B̂) = min
B

J(B) = min
B

max
μ

(
J(B) +

∑K

k=1
μkG(βk)

)

μkG(β̂k) = 0 &
∂J

∂βk
|βk= ̂βk

= (0, . . . , 0)V ,

where μ = (μ1, μ2, . . . , μK) with μk ≥ 0 for all k. We ap-
ply the EM algorithm based on downhill simplex method
(Navon, Phua, and Ramamurthy 1988) to implement this
optimization. The iterative learning process begins with a
warm-start βt1 = (0.5, . . . , 0.5)V and runs until conver-
gence, i.e., until the change of coefficients between two suc-
cessive iterations is smaller than 10−3.

Experiments
We analyzed and evaluated our approach by comparative ex-
periments on an IV COPD data.

Data and Pre-processing
The original data involves the hospitalization records, but
not sufficient prognostic factors, for COPD patients in
CHUS during 2012–2013. We extracted and stimulated the
measurements on 35 factors for 451 patients based on the
original data rather than used it directly. Of those patients,
427 (The failure rate of COPD is usually not up to 94.8%; a
high rate is to allow the models which discard the censoring
data to perform effectively.) experienced a failure (demise
or readmission) and the remaining 24 were considered as
censoring. Of those factors, 16 are in binary format, indicat-
ing the presence or absence of a particular symptom or sign.
Data imputation was used to remedy the omissions: we filled
in the missing continuous values through a linear regression
presented in (Kim, Golub, and Park 2004), and chose to use
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the most frequent value as the default fill-in for the otherwise
missing binary values. In order to obtain a meaningful set of
coefficients, all continuous values were normalized within
the 0 to 1 range via min-max-scaling. Yet, converting binary
variables to continuous variables is not required.

Setup
Comparative experiments were designed to study the behav-
ior of our approach against three state-of-the-art models:
• MTLR: a logistic regression model (non-Cox), which

builds the survival function through multi-task learning
(Lin et al. 2011). The regularizers of this model were es-
timated via tenfold cross-validation (10CV) in our study.

• KW-Cox: a Cox-type model based on a kernel-weighted
partial likelihood. The Epanechnikov kernel function with
a bandwidth value of 1.5 was adopted in the experiment,
based on the results presented in (Liu et al. 2010).

• SE-Cox: a Cox-type model based on a smoothing empiri-
cal likelihood. The kernel bandwidth was set as N−0.2 =
0.3, as suggested in (Sun, Sundaram, and Zhao 2009).

Note that CV can be also a way of choosing the bandwidth
parameters. Since the three models were not inherently de-
signed for the scenario of ties, we modified their likelihood
functions to render them applicable to the COPD data. In
addition, to provide deeper insight into the functionality of
SPH, three reduced versions were designed for comparison.
• SPH-H disposes of all HistMeas via the removal of Eq. 3;
• SPH-C discards all censoring data, thereby excluding the

likelihood �C(B) from Eq. 2;
• SPH-S requires the coefficient for each factor to be a con-

stant. Hence, the smoothing is not necessary for J(B).
We rewrote three metrics below for model evaluation.
• Survival AUC (S-AUC), which evaluates performance on

the binary COPD classification task. It qualifies the ability
of a model to answer the question: Is COPD likely to recur
in patient i within one year? The AUC (the area under the
ROC curve) is redefined as (1 is the indicator function):

S-AUC =

∑K
k=1

∑
xi∈Dk

∑
xj∈R+

k
1S(tk|xi)<S(tk|xj)∑K

k=1 |Ck| · |R+
k |

.

• Survival Concordance Index (S-CI), which gives an esti-
mate of how well the output of a model matches the rel-
ative time-to-failure for all pairs of patients that can ac-
tually be ordered, that is, how accurately the model can
answer the question: Is COPD more likely to recur in pa-
tient i or patient j? In our case, it formally becomes (The
npair is the number of comparable pairs of patients.)

S-CI =
1

npair

∑
yi>Tj

∑
k:tk>Tj

1S(tk|xi)>S(tk|xj).

• Survival Mean Square Error (S-MSE), which measures
the quality of survival probability predictions, i.e., pre-
diction accuracy. S-MSE answers the question: How ac-
curate is the diagnosis that COPD will recur in patient

i? We referred to (Vinzamuri, Li, and Reddy 2014) and
modified the MSE for our use, as follows:

S-MSE =
1

N

∑K

k=1

∑
xi∈Dk∪Ck

(
δi−h0(tk)e

fB(xi)
)2
.

In all experiments we report generalized 10CV results,
over 100 replicates, in the form of mean ± standard devia-
tion. The regularization parameters of SPH, λ1 and λ2, were
selected by another 10CV on the training data.

Results
Figure 2 shows the changes in cumulative hazards (left) and
survival probabilities (right) with time when different mod-
els are applied to predict a COPD patient who was read-
mitted to hospital within 25 days. Two interesting differ-
ences can be observed: 1) SPH and MTLR are able to pro-
duce more smooth curves of cumulative hazards and survival
probabilities than SE-Cox and KW-Cox, because the use of
regularization in SPH and MTLR allows the coefficients to
vary smoothly over time; 2) Superior to the other models,
SPH clearly shows that the patient was at quite a high cumu-
lative hazard as early as about the 10th day, especially given
that the survival probability at that time drops down to only
14.7%. This patient could thus be issued a flareup, indicating
that COPD would soon recur, and offered advice on timely
treatment. In clinical trials, this is crucial for COPD patients
who are likely to have an acute exacerbation on those days.
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Figure 2: Change in cumulative hazard (left) and survival
probability (right) for a COPD patient over 25 days (i.e., the
period from discharge to readmission). Note: the survival
probability= exp(the negative cumulative hazard)

In Figure 3, we evaluate S-AUC and S-CI to compare the
prediction ability of our approach against others. SPH and
MTLR perform better than KW-Cox and SE-Cox since they
make full use of data collected from the censoring COPD
patients and can thus acquire the exact coefficients to qual-
ify the interaction between the prognostic factors over all
patients, not just those patients who have an exact time to
readmission. The performances of KW-Cox and SE-Cox are
characterized by large variances partly due to the difficul-
ties in choosing their bandwidth parameters (Liu et al. 2010;
Sun, Sundaram, and Zhao 2009). Overall, thanks to the find-
ings on the hazard trajectory and the learning criterion lever-
aging such findings, SPH achieves significantly better per-
formance in terms of S-AUC and S-CI, which demonstrates
that our model can more effectively predict the progression

76



0.6

0.7

0.8

0.9

SPH MTLR KW-Cox SE-Cox
model

S-AUC

S-CI

Figure 3: Comparison of different models’ performances in
terms of S-AUC and S-CI

of COPD. It thus appears that SPH is a good aid to clinicians
to help with early diagnosis and treatment.

To gain a better understanding of the merits of our ap-
proach, we compared the performance of SPH and its three
reduced versions in the context of a varying train/test ratio.
It can be seen from Figure 4 that SPH outperforms all of the
reduced versions, especially in the training-data-deficient
case, testifying to the powerful generalizability of SPH. This
reveals SPH’s potential capacity to adapt to healthcare data,
since the basic argument is that identification of survival
time for a patient may be quite expensive or time-consuming
in practice, and the known data for analysis is generally
much less extensive than the unknown data, i.e., small train-
ing data and large test data (Vinzamuri, Li, and Reddy 2014).
The comparison between SPH and SPH-H indicates that a
mass of useful information is concealed in the HistMeas. As
the percentage of training patients grows, we see a down-
ward trend to SPH-C, mainly because more and more cen-
soring patients would be discarded and thus the coefficients
generated by SPH-C give rise to overfitting on failure data
and underfitting on censoring data.

S-AUC S-CI

0.60

0.65

0.70

0.75

0.80

0.85

0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
percentage of training patients

SPH

SPH-H

SPH-C

SPH-S

Figure 4: Comparison of SPH and its reduced versions in
terms of S-AUC and S-CI, and changes in their performance
with varying percentage of training patients

Figure 5 shows the changes in coefficients with respect to
the two factors FEV1 (forced expiratory volume per second)
and pack-years (of smoking) during the 52-week follow-up.
SPH-S uses time-independent coefficients; in contrast, SPH
can yield more smoothly varying coefficients and, more im-
portantly, prevent the factors’ effects on prognosis from re-
versing since, unlike SPH-H and SPH-C, the coefficients
generated by SPH for each factor do not switch between pos-
itive and negative values. From the medical point of view,

FEV1 has a protective effect against COPD and thus should
always be assigned negative coefficients.
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Figure 5: Comparison of changes in coefficients with time

Table 2 presents S-MSE of predicted survival probabili-
ties of patients at 52 weeks and also the 25% lower quantile
(13 weeks), median (26 weeks) and 75% upper quantile (39
weeks) of the follow-up period. It can be seen from the ta-
ble that SPH scores a clear win over other models, yielding
much more accurate (lower errors) predictions on survival
probability. The semi-proportional hazards approach makes
our model more flexible in handling the underlying relation-
ship between tied patients and also the combination of Hist-
Meas and PresMeas. In view of the outstanding performance
of SPH in terms of S-MSE, we assert that the use of our ap-
proach can enhance the confidence of survival prediction.

Table 2: S-MSE of predicted survival probabilities in vari-
ous periods of follow-up. Bold emphasis indicates superior
performance of one model over the others. The numbers in
parentheses are the corresponding standard errors
Model 13 weeks 26 weeks 39 weeks 52 weeks
MTLR 4.34(.197) 5.36(.202) 3.41(.370) 6.81(.186)
KW-Cox 3.97(.140) 4.77(.208) 6.12(.363) 6.32(.295)
SE-Cox 5.32(.233) 4.63(.166) 4.26(.183) 5.09(.262)
SPH 2.56(.083) 3.19(.113) 3.24(.074) 3.88(.128)
SPH-H 3.27(.178) 3.93(.176) 4.33(.259) 4.28(.243)
SPH-C 5.11(.108) 4.73(.249) 3.90(.355) 4.79(.299)
SPH-S 4.25(.196) 5.82(.253) 4.65(.332) 5.85(.274)

Conclusions
IV data poses a variety of challenges that the existing sur-
vival prediction models cannot handle. In this paper, we pro-
posed an effective semi-proportional hazards model with lo-
cally time-varying coefficients for a task of survival predic-
tion on IV data. Our main goal was to learn and optimize
the coefficients. For this purpose, we designed an integrated
complete-data model learning criterion in which the failure
and censoring data were encompassed by the objective func-
tion and, simultaneously, the historical data were used to
build an optimization constraint. Comparative experiments
on a COPD data have demonstrated the outstanding perfor-
mance of our approach and its capacity to undertake survival
prediction on general IV healthcare data. We will conduct
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further research on IV data including sequence pattern min-
ing in order to explore the underlying patterns of prognostic
factors from patients’ historical data.
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